3.32/1.58 WORST_CASE(Omega(n^1), O(n^1)) 3.32/1.58 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.32/1.58 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.32/1.58 3.32/1.58 3.32/1.58 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.32/1.58 3.32/1.58 (0) CpxTRS 3.32/1.58 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.32/1.58 (2) CpxTRS 3.32/1.58 (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] 3.32/1.58 (4) BOUNDS(1, n^1) 3.32/1.58 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.32/1.58 (6) TRS for Loop Detection 3.32/1.58 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.32/1.58 (8) BEST 3.32/1.58 (9) proven lower bound 3.32/1.58 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.32/1.58 (11) BOUNDS(n^1, INF) 3.32/1.58 (12) TRS for Loop Detection 3.32/1.58 3.32/1.58 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (0) 3.32/1.58 Obligation: 3.32/1.58 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.32/1.58 3.32/1.58 3.32/1.58 The TRS R consists of the following rules: 3.32/1.58 3.32/1.58 h(f(x, y)) -> f(y, f(h(h(x)), a)) 3.32/1.58 3.32/1.58 S is empty. 3.32/1.58 Rewrite Strategy: INNERMOST 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.32/1.58 transformed relative TRS to TRS 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (2) 3.32/1.58 Obligation: 3.32/1.58 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.32/1.58 3.32/1.58 3.32/1.58 The TRS R consists of the following rules: 3.32/1.58 3.32/1.58 h(f(x, y)) -> f(y, f(h(h(x)), a)) 3.32/1.58 3.32/1.58 S is empty. 3.32/1.58 Rewrite Strategy: INNERMOST 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.32/1.58 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 3.32/1.58 3.32/1.58 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.32/1.58 final states : [1] 3.32/1.58 transitions: 3.32/1.58 f0(0, 0) -> 0 3.32/1.58 a0() -> 0 3.32/1.58 h0(0) -> 1 3.32/1.58 h1(0) -> 4 3.32/1.58 h1(4) -> 3 3.32/1.58 a1() -> 5 3.32/1.58 f1(3, 5) -> 2 3.32/1.58 f1(0, 2) -> 1 3.32/1.58 f1(0, 2) -> 4 3.32/1.58 h2(0) -> 8 3.32/1.58 h2(8) -> 7 3.32/1.58 a2() -> 9 3.32/1.58 f2(7, 9) -> 6 3.32/1.58 f2(2, 6) -> 3 3.32/1.58 f1(0, 2) -> 8 3.32/1.58 f2(2, 6) -> 7 3.32/1.58 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (4) 3.32/1.58 BOUNDS(1, n^1) 3.32/1.58 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.32/1.58 Transformed a relative TRS into a decreasing-loop problem. 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (6) 3.32/1.58 Obligation: 3.32/1.58 Analyzing the following TRS for decreasing loops: 3.32/1.58 3.32/1.58 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.32/1.58 3.32/1.58 3.32/1.58 The TRS R consists of the following rules: 3.32/1.58 3.32/1.58 h(f(x, y)) -> f(y, f(h(h(x)), a)) 3.32/1.58 3.32/1.58 S is empty. 3.32/1.58 Rewrite Strategy: INNERMOST 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.32/1.58 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.32/1.58 3.32/1.58 The rewrite sequence 3.32/1.58 3.32/1.58 h(f(x, y)) ->^+ f(y, f(h(h(x)), a)) 3.32/1.58 3.32/1.58 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.32/1.58 3.32/1.58 The pumping substitution is [x / f(x, y)]. 3.32/1.58 3.32/1.58 The result substitution is [ ]. 3.32/1.58 3.32/1.58 3.32/1.58 3.32/1.58 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (8) 3.32/1.58 Complex Obligation (BEST) 3.32/1.58 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (9) 3.32/1.58 Obligation: 3.32/1.58 Proved the lower bound n^1 for the following obligation: 3.32/1.58 3.32/1.58 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.32/1.58 3.32/1.58 3.32/1.58 The TRS R consists of the following rules: 3.32/1.58 3.32/1.58 h(f(x, y)) -> f(y, f(h(h(x)), a)) 3.32/1.58 3.32/1.58 S is empty. 3.32/1.58 Rewrite Strategy: INNERMOST 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (10) LowerBoundPropagationProof (FINISHED) 3.32/1.58 Propagated lower bound. 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (11) 3.32/1.58 BOUNDS(n^1, INF) 3.32/1.58 3.32/1.58 ---------------------------------------- 3.32/1.58 3.32/1.58 (12) 3.32/1.58 Obligation: 3.32/1.58 Analyzing the following TRS for decreasing loops: 3.32/1.58 3.32/1.58 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.32/1.58 3.32/1.58 3.32/1.58 The TRS R consists of the following rules: 3.32/1.58 3.32/1.58 h(f(x, y)) -> f(y, f(h(h(x)), a)) 3.32/1.58 3.32/1.58 S is empty. 3.32/1.58 Rewrite Strategy: INNERMOST 3.32/1.61 EOF