320.67/291.57 WORST_CASE(Omega(n^1), O(n^2)) 320.67/291.59 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 320.67/291.59 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 320.67/291.59 320.67/291.59 320.67/291.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 320.67/291.59 320.67/291.59 (0) CpxTRS 320.67/291.59 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 320.67/291.59 (2) CpxWeightedTrs 320.67/291.59 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 320.67/291.59 (4) CpxTypedWeightedTrs 320.67/291.59 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 320.67/291.59 (6) CpxTypedWeightedCompleteTrs 320.67/291.59 (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 320.67/291.59 (8) CpxTypedWeightedCompleteTrs 320.67/291.59 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 1 ms] 320.67/291.59 (10) CpxRNTS 320.67/291.59 (11) InliningProof [UPPER BOUND(ID), 0 ms] 320.67/291.59 (12) CpxRNTS 320.67/291.59 (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 320.67/291.59 (14) CpxRNTS 320.67/291.59 (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] 320.67/291.59 (16) CpxRNTS 320.67/291.59 (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 320.67/291.59 (18) CpxRNTS 320.67/291.59 (19) IntTrsBoundProof [UPPER BOUND(ID), 374 ms] 320.67/291.59 (20) CpxRNTS 320.67/291.59 (21) IntTrsBoundProof [UPPER BOUND(ID), 168 ms] 320.67/291.59 (22) CpxRNTS 320.67/291.59 (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 320.67/291.59 (24) CpxRNTS 320.67/291.59 (25) IntTrsBoundProof [UPPER BOUND(ID), 320 ms] 320.67/291.59 (26) CpxRNTS 320.67/291.59 (27) IntTrsBoundProof [UPPER BOUND(ID), 73 ms] 320.67/291.59 (28) CpxRNTS 320.67/291.59 (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 320.67/291.59 (30) CpxRNTS 320.67/291.59 (31) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] 320.67/291.59 (32) CpxRNTS 320.67/291.59 (33) IntTrsBoundProof [UPPER BOUND(ID), 52 ms] 320.67/291.59 (34) CpxRNTS 320.67/291.59 (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 320.67/291.59 (36) CpxRNTS 320.67/291.59 (37) IntTrsBoundProof [UPPER BOUND(ID), 462 ms] 320.67/291.59 (38) CpxRNTS 320.67/291.59 (39) IntTrsBoundProof [UPPER BOUND(ID), 146 ms] 320.67/291.59 (40) CpxRNTS 320.67/291.59 (41) FinalProof [FINISHED, 0 ms] 320.67/291.59 (42) BOUNDS(1, n^2) 320.67/291.59 (43) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 320.67/291.59 (44) TRS for Loop Detection 320.67/291.59 (45) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 320.67/291.59 (46) BEST 320.67/291.59 (47) proven lower bound 320.67/291.59 (48) LowerBoundPropagationProof [FINISHED, 0 ms] 320.67/291.59 (49) BOUNDS(n^1, INF) 320.67/291.59 (50) TRS for Loop Detection 320.67/291.59 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (0) 320.67/291.59 Obligation: 320.67/291.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 320.67/291.59 320.67/291.59 320.67/291.59 The TRS R consists of the following rules: 320.67/291.59 320.67/291.59 p(0) -> 0 320.67/291.59 p(s(x)) -> x 320.67/291.59 le(0, y) -> true 320.67/291.59 le(s(x), 0) -> false 320.67/291.59 le(s(x), s(y)) -> le(x, y) 320.67/291.59 minus(x, 0) -> x 320.67/291.59 minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) 320.67/291.59 if(true, x, y) -> x 320.67/291.59 if(false, x, y) -> y 320.67/291.59 320.67/291.59 S is empty. 320.67/291.59 Rewrite Strategy: INNERMOST 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 320.67/291.59 Transformed relative TRS to weighted TRS 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (2) 320.67/291.59 Obligation: 320.67/291.59 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). 320.67/291.59 320.67/291.59 320.67/291.59 The TRS R consists of the following rules: 320.67/291.59 320.67/291.59 p(0) -> 0 [1] 320.67/291.59 p(s(x)) -> x [1] 320.67/291.59 le(0, y) -> true [1] 320.67/291.59 le(s(x), 0) -> false [1] 320.67/291.59 le(s(x), s(y)) -> le(x, y) [1] 320.67/291.59 minus(x, 0) -> x [1] 320.67/291.59 minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] 320.67/291.59 if(true, x, y) -> x [1] 320.67/291.59 if(false, x, y) -> y [1] 320.67/291.59 320.67/291.59 Rewrite Strategy: INNERMOST 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 320.67/291.59 Infered types. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (4) 320.67/291.59 Obligation: 320.67/291.59 Runtime Complexity Weighted TRS with Types. 320.67/291.59 The TRS R consists of the following rules: 320.67/291.59 320.67/291.59 p(0) -> 0 [1] 320.67/291.59 p(s(x)) -> x [1] 320.67/291.59 le(0, y) -> true [1] 320.67/291.59 le(s(x), 0) -> false [1] 320.67/291.59 le(s(x), s(y)) -> le(x, y) [1] 320.67/291.59 minus(x, 0) -> x [1] 320.67/291.59 minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] 320.67/291.59 if(true, x, y) -> x [1] 320.67/291.59 if(false, x, y) -> y [1] 320.67/291.59 320.67/291.59 The TRS has the following type information: 320.67/291.59 p :: 0:s -> 0:s 320.67/291.59 0 :: 0:s 320.67/291.59 s :: 0:s -> 0:s 320.67/291.59 le :: 0:s -> 0:s -> true:false 320.67/291.59 true :: true:false 320.67/291.59 false :: true:false 320.67/291.59 minus :: 0:s -> 0:s -> 0:s 320.67/291.59 if :: true:false -> 0:s -> 0:s -> 0:s 320.67/291.59 320.67/291.59 Rewrite Strategy: INNERMOST 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (5) CompletionProof (UPPER BOUND(ID)) 320.67/291.59 The transformation into a RNTS is sound, since: 320.67/291.59 320.67/291.59 (a) The obligation is a constructor system where every type has a constant constructor, 320.67/291.59 320.67/291.59 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 320.67/291.59 none 320.67/291.59 320.67/291.59 (c) The following functions are completely defined: 320.67/291.59 320.67/291.59 le_2 320.67/291.59 p_1 320.67/291.59 minus_2 320.67/291.59 if_3 320.67/291.59 320.67/291.59 Due to the following rules being added: 320.67/291.59 none 320.67/291.59 320.67/291.59 And the following fresh constants: none 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (6) 320.67/291.59 Obligation: 320.67/291.59 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 320.67/291.59 320.67/291.59 Runtime Complexity Weighted TRS with Types. 320.67/291.59 The TRS R consists of the following rules: 320.67/291.59 320.67/291.59 p(0) -> 0 [1] 320.67/291.59 p(s(x)) -> x [1] 320.67/291.59 le(0, y) -> true [1] 320.67/291.59 le(s(x), 0) -> false [1] 320.67/291.59 le(s(x), s(y)) -> le(x, y) [1] 320.67/291.59 minus(x, 0) -> x [1] 320.67/291.59 minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) [1] 320.67/291.59 if(true, x, y) -> x [1] 320.67/291.59 if(false, x, y) -> y [1] 320.67/291.59 320.67/291.59 The TRS has the following type information: 320.67/291.59 p :: 0:s -> 0:s 320.67/291.59 0 :: 0:s 320.67/291.59 s :: 0:s -> 0:s 320.67/291.59 le :: 0:s -> 0:s -> true:false 320.67/291.59 true :: true:false 320.67/291.59 false :: true:false 320.67/291.59 minus :: 0:s -> 0:s -> 0:s 320.67/291.59 if :: true:false -> 0:s -> 0:s -> 0:s 320.67/291.59 320.67/291.59 Rewrite Strategy: INNERMOST 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (7) NarrowingProof (BOTH BOUNDS(ID, ID)) 320.67/291.59 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (8) 320.67/291.59 Obligation: 320.67/291.59 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 320.67/291.59 320.67/291.59 Runtime Complexity Weighted TRS with Types. 320.67/291.59 The TRS R consists of the following rules: 320.67/291.59 320.67/291.59 p(0) -> 0 [1] 320.67/291.59 p(s(x)) -> x [1] 320.67/291.59 le(0, y) -> true [1] 320.67/291.59 le(s(x), 0) -> false [1] 320.67/291.59 le(s(x), s(y)) -> le(x, y) [1] 320.67/291.59 minus(x, 0) -> x [1] 320.67/291.59 minus(0, s(y)) -> if(true, 0, p(minus(0, y))) [3] 320.67/291.59 minus(s(x'), s(y)) -> if(le(x', y), 0, p(minus(s(x'), y))) [3] 320.67/291.59 if(true, x, y) -> x [1] 320.67/291.59 if(false, x, y) -> y [1] 320.67/291.59 320.67/291.59 The TRS has the following type information: 320.67/291.59 p :: 0:s -> 0:s 320.67/291.59 0 :: 0:s 320.67/291.59 s :: 0:s -> 0:s 320.67/291.59 le :: 0:s -> 0:s -> true:false 320.67/291.59 true :: true:false 320.67/291.59 false :: true:false 320.67/291.59 minus :: 0:s -> 0:s -> 0:s 320.67/291.59 if :: true:false -> 0:s -> 0:s -> 0:s 320.67/291.59 320.67/291.59 Rewrite Strategy: INNERMOST 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 320.67/291.59 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 320.67/291.59 The constant constructors are abstracted as follows: 320.67/291.59 320.67/291.59 0 => 0 320.67/291.59 true => 1 320.67/291.59 false => 0 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (10) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 320.67/291.59 minus(z, z') -{ 3 }-> if(le(x', y), 0, p(minus(1 + x', y))) :|: z = 1 + x', z' = 1 + y, x' >= 0, y >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, y))) :|: z' = 1 + y, y >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (11) InliningProof (UPPER BOUND(ID)) 320.67/291.59 Inlined the following terminating rules on right-hand sides where appropriate: 320.67/291.59 320.67/291.59 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 320.67/291.59 if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (12) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> x :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> y :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: y >= 0, z = 0, z' = y 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 320.67/291.59 minus(z, z') -{ 3 }-> if(le(x', y), 0, p(minus(1 + x', y))) :|: z = 1 + x', z' = 1 + y, x' >= 0, y >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, y))) :|: z' = 1 + y, y >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (13) SimplificationProof (BOTH BOUNDS(ID, ID)) 320.67/291.59 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (14) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 320.67/291.59 Found the following analysis order by SCC decomposition: 320.67/291.59 320.67/291.59 { le } 320.67/291.59 { if } 320.67/291.59 { p } 320.67/291.59 { minus } 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (16) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {le}, {if}, {p}, {minus} 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (17) ResultPropagationProof (UPPER BOUND(ID)) 320.67/291.59 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (18) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {le}, {if}, {p}, {minus} 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (19) IntTrsBoundProof (UPPER BOUND(ID)) 320.67/291.59 320.67/291.59 Computed SIZE bound using CoFloCo for: le 320.67/291.59 after applying outer abstraction to obtain an ITS, 320.67/291.59 resulting in: O(1) with polynomial bound: 1 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (20) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {le}, {if}, {p}, {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: ?, size: O(1) [1] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (21) IntTrsBoundProof (UPPER BOUND(ID)) 320.67/291.59 320.67/291.59 Computed RUNTIME bound using KoAT for: le 320.67/291.59 after applying outer abstraction to obtain an ITS, 320.67/291.59 resulting in: O(n^1) with polynomial bound: 2 + z' 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (22) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 3 }-> if(le(z - 1, z' - 1), 0, p(minus(1 + (z - 1), z' - 1))) :|: z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {if}, {p}, {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (23) ResultPropagationProof (UPPER BOUND(ID)) 320.67/291.59 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (24) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {if}, {p}, {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (25) IntTrsBoundProof (UPPER BOUND(ID)) 320.67/291.59 320.67/291.59 Computed SIZE bound using CoFloCo for: if 320.67/291.59 after applying outer abstraction to obtain an ITS, 320.67/291.59 resulting in: O(n^1) with polynomial bound: z' + z'' 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (26) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {if}, {p}, {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 if: runtime: ?, size: O(n^1) [z' + z''] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (27) IntTrsBoundProof (UPPER BOUND(ID)) 320.67/291.59 320.67/291.59 Computed RUNTIME bound using CoFloCo for: if 320.67/291.59 after applying outer abstraction to obtain an ITS, 320.67/291.59 resulting in: O(1) with polynomial bound: 1 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (28) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {p}, {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (29) ResultPropagationProof (UPPER BOUND(ID)) 320.67/291.59 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (30) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {p}, {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (31) IntTrsBoundProof (UPPER BOUND(ID)) 320.67/291.59 320.67/291.59 Computed SIZE bound using KoAT for: p 320.67/291.59 after applying outer abstraction to obtain an ITS, 320.67/291.59 resulting in: O(n^1) with polynomial bound: z 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (32) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {p}, {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 320.67/291.59 p: runtime: ?, size: O(n^1) [z] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (33) IntTrsBoundProof (UPPER BOUND(ID)) 320.67/291.59 320.67/291.59 Computed RUNTIME bound using CoFloCo for: p 320.67/291.59 after applying outer abstraction to obtain an ITS, 320.67/291.59 resulting in: O(1) with polynomial bound: 1 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (34) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 320.67/291.59 p: runtime: O(1) [1], size: O(n^1) [z] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (35) ResultPropagationProof (UPPER BOUND(ID)) 320.67/291.59 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (36) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 320.67/291.59 p: runtime: O(1) [1], size: O(n^1) [z] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (37) IntTrsBoundProof (UPPER BOUND(ID)) 320.67/291.59 320.67/291.59 Computed SIZE bound using CoFloCo for: minus 320.67/291.59 after applying outer abstraction to obtain an ITS, 320.67/291.59 resulting in: O(n^1) with polynomial bound: z 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (38) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: {minus} 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 320.67/291.59 p: runtime: O(1) [1], size: O(n^1) [z] 320.67/291.59 minus: runtime: ?, size: O(n^1) [z] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (39) IntTrsBoundProof (UPPER BOUND(ID)) 320.67/291.59 320.67/291.59 Computed RUNTIME bound using CoFloCo for: minus 320.67/291.59 after applying outer abstraction to obtain an ITS, 320.67/291.59 resulting in: O(n^2) with polynomial bound: 1 + 6*z' + z'^2 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (40) 320.67/291.59 Obligation: 320.67/291.59 Complexity RNTS consisting of the following rules: 320.67/291.59 320.67/291.59 if(z, z', z'') -{ 1 }-> z' :|: z = 1, z' >= 0, z'' >= 0 320.67/291.59 if(z, z', z'') -{ 1 }-> z'' :|: z' >= 0, z'' >= 0, z = 0 320.67/291.59 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 320.67/291.59 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 320.67/291.59 minus(z, z') -{ 4 + z' }-> if(s', 0, p(minus(1 + (z - 1), z' - 1))) :|: s' >= 0, s' <= 1, z - 1 >= 0, z' - 1 >= 0 320.67/291.59 minus(z, z') -{ 3 }-> if(1, 0, p(minus(0, z' - 1))) :|: z' - 1 >= 0, z = 0 320.67/291.59 p(z) -{ 1 }-> 0 :|: z = 0 320.67/291.59 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 320.67/291.59 320.67/291.59 Function symbols to be analyzed: 320.67/291.59 Previous analysis results are: 320.67/291.59 le: runtime: O(n^1) [2 + z'], size: O(1) [1] 320.67/291.59 if: runtime: O(1) [1], size: O(n^1) [z' + z''] 320.67/291.59 p: runtime: O(1) [1], size: O(n^1) [z] 320.67/291.59 minus: runtime: O(n^2) [1 + 6*z' + z'^2], size: O(n^1) [z] 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (41) FinalProof (FINISHED) 320.67/291.59 Computed overall runtime complexity 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (42) 320.67/291.59 BOUNDS(1, n^2) 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (43) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 320.67/291.59 Transformed a relative TRS into a decreasing-loop problem. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (44) 320.67/291.59 Obligation: 320.67/291.59 Analyzing the following TRS for decreasing loops: 320.67/291.59 320.67/291.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 320.67/291.59 320.67/291.59 320.67/291.59 The TRS R consists of the following rules: 320.67/291.59 320.67/291.59 p(0) -> 0 320.67/291.59 p(s(x)) -> x 320.67/291.59 le(0, y) -> true 320.67/291.59 le(s(x), 0) -> false 320.67/291.59 le(s(x), s(y)) -> le(x, y) 320.67/291.59 minus(x, 0) -> x 320.67/291.59 minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) 320.67/291.59 if(true, x, y) -> x 320.67/291.59 if(false, x, y) -> y 320.67/291.59 320.67/291.59 S is empty. 320.67/291.59 Rewrite Strategy: INNERMOST 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (45) DecreasingLoopProof (LOWER BOUND(ID)) 320.67/291.59 The following loop(s) give(s) rise to the lower bound Omega(n^1): 320.67/291.59 320.67/291.59 The rewrite sequence 320.67/291.59 320.67/291.59 le(s(x), s(y)) ->^+ le(x, y) 320.67/291.59 320.67/291.59 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 320.67/291.59 320.67/291.59 The pumping substitution is [x / s(x), y / s(y)]. 320.67/291.59 320.67/291.59 The result substitution is [ ]. 320.67/291.59 320.67/291.59 320.67/291.59 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (46) 320.67/291.59 Complex Obligation (BEST) 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (47) 320.67/291.59 Obligation: 320.67/291.59 Proved the lower bound n^1 for the following obligation: 320.67/291.59 320.67/291.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 320.67/291.59 320.67/291.59 320.67/291.59 The TRS R consists of the following rules: 320.67/291.59 320.67/291.59 p(0) -> 0 320.67/291.59 p(s(x)) -> x 320.67/291.59 le(0, y) -> true 320.67/291.59 le(s(x), 0) -> false 320.67/291.59 le(s(x), s(y)) -> le(x, y) 320.67/291.59 minus(x, 0) -> x 320.67/291.59 minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) 320.67/291.59 if(true, x, y) -> x 320.67/291.59 if(false, x, y) -> y 320.67/291.59 320.67/291.59 S is empty. 320.67/291.59 Rewrite Strategy: INNERMOST 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (48) LowerBoundPropagationProof (FINISHED) 320.67/291.59 Propagated lower bound. 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (49) 320.67/291.59 BOUNDS(n^1, INF) 320.67/291.59 320.67/291.59 ---------------------------------------- 320.67/291.59 320.67/291.59 (50) 320.67/291.59 Obligation: 320.67/291.59 Analyzing the following TRS for decreasing loops: 320.67/291.59 320.67/291.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 320.67/291.59 320.67/291.59 320.67/291.59 The TRS R consists of the following rules: 320.67/291.59 320.67/291.59 p(0) -> 0 320.67/291.59 p(s(x)) -> x 320.67/291.59 le(0, y) -> true 320.67/291.59 le(s(x), 0) -> false 320.67/291.59 le(s(x), s(y)) -> le(x, y) 320.67/291.59 minus(x, 0) -> x 320.67/291.59 minus(x, s(y)) -> if(le(x, s(y)), 0, p(minus(x, p(s(y))))) 320.67/291.59 if(true, x, y) -> x 320.67/291.59 if(false, x, y) -> y 320.67/291.59 320.67/291.59 S is empty. 320.67/291.59 Rewrite Strategy: INNERMOST 320.67/291.63 EOF