6.28/2.46 WORST_CASE(Omega(n^1), O(n^1)) 6.28/2.47 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 6.28/2.47 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.28/2.47 6.28/2.47 6.28/2.47 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 6.28/2.47 6.28/2.47 (0) CpxTRS 6.28/2.47 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 6.28/2.47 (2) CpxTRS 6.28/2.47 (3) CpxTrsMatchBoundsProof [FINISHED, 0 ms] 6.28/2.47 (4) BOUNDS(1, n^1) 6.28/2.47 (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 6.28/2.47 (6) CpxTRS 6.28/2.47 (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 6.28/2.47 (8) typed CpxTrs 6.28/2.47 (9) OrderProof [LOWER BOUND(ID), 0 ms] 6.28/2.47 (10) typed CpxTrs 6.28/2.47 (11) RewriteLemmaProof [LOWER BOUND(ID), 464 ms] 6.28/2.47 (12) proven lower bound 6.28/2.47 (13) LowerBoundPropagationProof [FINISHED, 0 ms] 6.28/2.47 (14) BOUNDS(n^1, INF) 6.28/2.47 6.28/2.47 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (0) 6.28/2.47 Obligation: 6.28/2.47 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 6.28/2.47 6.28/2.47 6.28/2.47 The TRS R consists of the following rules: 6.28/2.47 6.28/2.47 a(b(x)) -> b(a(x)) 6.28/2.47 a(c(x)) -> x 6.28/2.47 6.28/2.47 S is empty. 6.28/2.47 Rewrite Strategy: INNERMOST 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 6.28/2.47 transformed relative TRS to TRS 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (2) 6.28/2.47 Obligation: 6.28/2.47 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 6.28/2.47 6.28/2.47 6.28/2.47 The TRS R consists of the following rules: 6.28/2.47 6.28/2.47 a(b(x)) -> b(a(x)) 6.28/2.47 a(c(x)) -> x 6.28/2.47 6.28/2.47 S is empty. 6.28/2.47 Rewrite Strategy: INNERMOST 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (3) CpxTrsMatchBoundsProof (FINISHED) 6.28/2.47 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 1. 6.28/2.47 The certificate found is represented by the following graph. 6.28/2.47 6.28/2.47 "[1, 2, 4] 6.28/2.47 {(1,2,[a_1|0, b_1|1, c_1|1]), (1,4,[b_1|1]), (2,2,[b_1|0, c_1|0]), (4,2,[a_1|1, b_1|1, c_1|1]), (4,4,[b_1|1])}" 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (4) 6.28/2.47 BOUNDS(1, n^1) 6.28/2.47 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (5) RenamingProof (BOTH BOUNDS(ID, ID)) 6.28/2.47 Renamed function symbols to avoid clashes with predefined symbol. 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (6) 6.28/2.47 Obligation: 6.28/2.47 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 6.28/2.47 6.28/2.47 6.28/2.47 The TRS R consists of the following rules: 6.28/2.47 6.28/2.47 a(b(x)) -> b(a(x)) 6.28/2.47 a(c(x)) -> x 6.28/2.47 6.28/2.47 S is empty. 6.28/2.47 Rewrite Strategy: INNERMOST 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 6.28/2.47 Infered types. 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (8) 6.28/2.47 Obligation: 6.28/2.47 Innermost TRS: 6.28/2.47 Rules: 6.28/2.47 a(b(x)) -> b(a(x)) 6.28/2.47 a(c(x)) -> x 6.28/2.47 6.28/2.47 Types: 6.28/2.47 a :: b:c -> b:c 6.28/2.47 b :: b:c -> b:c 6.28/2.47 c :: b:c -> b:c 6.28/2.47 hole_b:c1_0 :: b:c 6.28/2.47 gen_b:c2_0 :: Nat -> b:c 6.28/2.47 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (9) OrderProof (LOWER BOUND(ID)) 6.28/2.47 Heuristically decided to analyse the following defined symbols: 6.28/2.47 a 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (10) 6.28/2.47 Obligation: 6.28/2.47 Innermost TRS: 6.28/2.47 Rules: 6.28/2.47 a(b(x)) -> b(a(x)) 6.28/2.47 a(c(x)) -> x 6.28/2.47 6.28/2.47 Types: 6.28/2.47 a :: b:c -> b:c 6.28/2.47 b :: b:c -> b:c 6.28/2.47 c :: b:c -> b:c 6.28/2.47 hole_b:c1_0 :: b:c 6.28/2.47 gen_b:c2_0 :: Nat -> b:c 6.28/2.47 6.28/2.47 6.28/2.47 Generator Equations: 6.28/2.47 gen_b:c2_0(0) <=> hole_b:c1_0 6.28/2.47 gen_b:c2_0(+(x, 1)) <=> b(gen_b:c2_0(x)) 6.28/2.47 6.28/2.47 6.28/2.47 The following defined symbols remain to be analysed: 6.28/2.47 a 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (11) RewriteLemmaProof (LOWER BOUND(ID)) 6.28/2.47 Proved the following rewrite lemma: 6.28/2.47 a(gen_b:c2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) 6.28/2.47 6.28/2.47 Induction Base: 6.28/2.47 a(gen_b:c2_0(+(1, 0))) 6.28/2.47 6.28/2.47 Induction Step: 6.28/2.47 a(gen_b:c2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) 6.28/2.47 b(a(gen_b:c2_0(+(1, n4_0)))) ->_IH 6.28/2.47 b(*3_0) 6.28/2.47 6.28/2.47 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (12) 6.28/2.47 Obligation: 6.28/2.47 Proved the lower bound n^1 for the following obligation: 6.28/2.47 6.28/2.47 Innermost TRS: 6.28/2.47 Rules: 6.28/2.47 a(b(x)) -> b(a(x)) 6.28/2.47 a(c(x)) -> x 6.28/2.47 6.28/2.47 Types: 6.28/2.47 a :: b:c -> b:c 6.28/2.47 b :: b:c -> b:c 6.28/2.47 c :: b:c -> b:c 6.28/2.47 hole_b:c1_0 :: b:c 6.28/2.47 gen_b:c2_0 :: Nat -> b:c 6.28/2.47 6.28/2.47 6.28/2.47 Generator Equations: 6.28/2.47 gen_b:c2_0(0) <=> hole_b:c1_0 6.28/2.47 gen_b:c2_0(+(x, 1)) <=> b(gen_b:c2_0(x)) 6.28/2.47 6.28/2.47 6.28/2.47 The following defined symbols remain to be analysed: 6.28/2.47 a 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (13) LowerBoundPropagationProof (FINISHED) 6.28/2.47 Propagated lower bound. 6.28/2.47 ---------------------------------------- 6.28/2.47 6.28/2.47 (14) 6.28/2.47 BOUNDS(n^1, INF) 6.59/2.55 EOF