3.19/1.61 WORST_CASE(Omega(n^1), O(n^1)) 3.30/1.62 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.30/1.62 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.30/1.62 3.30/1.62 3.30/1.62 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.30/1.62 3.30/1.62 (0) CpxTRS 3.30/1.62 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.30/1.62 (2) CpxTRS 3.30/1.62 (3) CpxTrsMatchBoundsTAProof [FINISHED, 33 ms] 3.30/1.62 (4) BOUNDS(1, n^1) 3.30/1.62 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.30/1.62 (6) TRS for Loop Detection 3.30/1.62 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.30/1.62 (8) BEST 3.30/1.62 (9) proven lower bound 3.30/1.62 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.30/1.62 (11) BOUNDS(n^1, INF) 3.30/1.62 (12) TRS for Loop Detection 3.30/1.62 3.30/1.62 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (0) 3.30/1.62 Obligation: 3.30/1.62 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.30/1.62 3.30/1.62 3.30/1.62 The TRS R consists of the following rules: 3.30/1.62 3.30/1.62 f(nil) -> nil 3.30/1.62 f(.(nil, y)) -> .(nil, f(y)) 3.30/1.62 f(.(.(x, y), z)) -> f(.(x, .(y, z))) 3.30/1.62 g(nil) -> nil 3.30/1.62 g(.(x, nil)) -> .(g(x), nil) 3.30/1.62 g(.(x, .(y, z))) -> g(.(.(x, y), z)) 3.30/1.62 3.30/1.62 S is empty. 3.30/1.62 Rewrite Strategy: INNERMOST 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.30/1.62 transformed relative TRS to TRS 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (2) 3.30/1.62 Obligation: 3.30/1.62 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.30/1.62 3.30/1.62 3.30/1.62 The TRS R consists of the following rules: 3.30/1.62 3.30/1.62 f(nil) -> nil 3.30/1.62 f(.(nil, y)) -> .(nil, f(y)) 3.30/1.62 f(.(.(x, y), z)) -> f(.(x, .(y, z))) 3.30/1.62 g(nil) -> nil 3.30/1.62 g(.(x, nil)) -> .(g(x), nil) 3.30/1.62 g(.(x, .(y, z))) -> g(.(.(x, y), z)) 3.30/1.62 3.30/1.62 S is empty. 3.30/1.62 Rewrite Strategy: INNERMOST 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.30/1.62 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. 3.30/1.62 3.30/1.62 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.30/1.62 final states : [1, 2] 3.30/1.62 transitions: 3.30/1.62 nil0() -> 0 3.30/1.62 .0(0, 0) -> 0 3.30/1.62 f0(0) -> 1 3.30/1.62 g0(0) -> 2 3.30/1.62 nil1() -> 1 3.30/1.62 nil1() -> 3 3.30/1.62 f1(0) -> 4 3.30/1.62 .1(3, 4) -> 1 3.30/1.62 .1(0, 0) -> 6 3.30/1.62 .1(0, 6) -> 5 3.30/1.62 f1(5) -> 1 3.30/1.62 nil1() -> 2 3.30/1.62 g1(0) -> 7 3.30/1.62 nil1() -> 8 3.30/1.62 .1(7, 8) -> 2 3.30/1.62 .1(0, 0) -> 10 3.30/1.62 .1(10, 0) -> 9 3.30/1.62 g1(9) -> 2 3.30/1.62 nil1() -> 4 3.30/1.62 .1(3, 4) -> 4 3.30/1.62 f1(6) -> 4 3.30/1.62 f1(5) -> 4 3.30/1.62 .1(0, 6) -> 6 3.30/1.62 nil1() -> 7 3.30/1.62 .1(7, 8) -> 7 3.30/1.62 g1(10) -> 7 3.30/1.62 g1(9) -> 7 3.30/1.62 .1(10, 0) -> 10 3.30/1.62 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (4) 3.30/1.62 BOUNDS(1, n^1) 3.30/1.62 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.30/1.62 Transformed a relative TRS into a decreasing-loop problem. 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (6) 3.30/1.62 Obligation: 3.30/1.62 Analyzing the following TRS for decreasing loops: 3.30/1.62 3.30/1.62 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.30/1.62 3.30/1.62 3.30/1.62 The TRS R consists of the following rules: 3.30/1.62 3.30/1.62 f(nil) -> nil 3.30/1.62 f(.(nil, y)) -> .(nil, f(y)) 3.30/1.62 f(.(.(x, y), z)) -> f(.(x, .(y, z))) 3.30/1.62 g(nil) -> nil 3.30/1.62 g(.(x, nil)) -> .(g(x), nil) 3.30/1.62 g(.(x, .(y, z))) -> g(.(.(x, y), z)) 3.30/1.62 3.30/1.62 S is empty. 3.30/1.62 Rewrite Strategy: INNERMOST 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.30/1.62 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.30/1.62 3.30/1.62 The rewrite sequence 3.30/1.62 3.30/1.62 g(.(x, nil)) ->^+ .(g(x), nil) 3.30/1.62 3.30/1.62 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.30/1.62 3.30/1.62 The pumping substitution is [x / .(x, nil)]. 3.30/1.62 3.30/1.62 The result substitution is [ ]. 3.30/1.62 3.30/1.62 3.30/1.62 3.30/1.62 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (8) 3.30/1.62 Complex Obligation (BEST) 3.30/1.62 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (9) 3.30/1.62 Obligation: 3.30/1.62 Proved the lower bound n^1 for the following obligation: 3.30/1.62 3.30/1.62 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.30/1.62 3.30/1.62 3.30/1.62 The TRS R consists of the following rules: 3.30/1.62 3.30/1.62 f(nil) -> nil 3.30/1.62 f(.(nil, y)) -> .(nil, f(y)) 3.30/1.62 f(.(.(x, y), z)) -> f(.(x, .(y, z))) 3.30/1.62 g(nil) -> nil 3.30/1.62 g(.(x, nil)) -> .(g(x), nil) 3.30/1.62 g(.(x, .(y, z))) -> g(.(.(x, y), z)) 3.30/1.62 3.30/1.62 S is empty. 3.30/1.62 Rewrite Strategy: INNERMOST 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (10) LowerBoundPropagationProof (FINISHED) 3.30/1.62 Propagated lower bound. 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (11) 3.30/1.62 BOUNDS(n^1, INF) 3.30/1.62 3.30/1.62 ---------------------------------------- 3.30/1.62 3.30/1.62 (12) 3.30/1.62 Obligation: 3.30/1.62 Analyzing the following TRS for decreasing loops: 3.30/1.62 3.30/1.62 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.30/1.62 3.30/1.62 3.30/1.62 The TRS R consists of the following rules: 3.30/1.62 3.30/1.62 f(nil) -> nil 3.30/1.62 f(.(nil, y)) -> .(nil, f(y)) 3.30/1.62 f(.(.(x, y), z)) -> f(.(x, .(y, z))) 3.30/1.62 g(nil) -> nil 3.30/1.62 g(.(x, nil)) -> .(g(x), nil) 3.30/1.62 g(.(x, .(y, z))) -> g(.(.(x, y), z)) 3.30/1.62 3.30/1.62 S is empty. 3.30/1.62 Rewrite Strategy: INNERMOST 3.34/1.66 EOF