2.97/1.54 WORST_CASE(Omega(n^1), O(n^1)) 2.97/1.56 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 2.97/1.56 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.97/1.56 2.97/1.56 2.97/1.56 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.97/1.56 2.97/1.56 (0) CpxTRS 2.97/1.56 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 2.97/1.56 (2) CpxTRS 2.97/1.56 (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] 2.97/1.56 (4) BOUNDS(1, n^1) 2.97/1.56 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 2.97/1.56 (6) TRS for Loop Detection 2.97/1.56 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 2.97/1.56 (8) BEST 2.97/1.56 (9) proven lower bound 2.97/1.56 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 2.97/1.56 (11) BOUNDS(n^1, INF) 2.97/1.56 (12) TRS for Loop Detection 2.97/1.56 2.97/1.56 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (0) 2.97/1.56 Obligation: 2.97/1.56 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.97/1.56 2.97/1.56 2.97/1.56 The TRS R consists of the following rules: 2.97/1.56 2.97/1.56 f(x, y) -> g(x, y) 2.97/1.56 g(h(x), y) -> h(f(x, y)) 2.97/1.56 g(h(x), y) -> h(g(x, y)) 2.97/1.56 2.97/1.56 S is empty. 2.97/1.56 Rewrite Strategy: INNERMOST 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 2.97/1.56 transformed relative TRS to TRS 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (2) 2.97/1.56 Obligation: 2.97/1.56 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 2.97/1.56 2.97/1.56 2.97/1.56 The TRS R consists of the following rules: 2.97/1.56 2.97/1.56 f(x, y) -> g(x, y) 2.97/1.56 g(h(x), y) -> h(f(x, y)) 2.97/1.56 g(h(x), y) -> h(g(x, y)) 2.97/1.56 2.97/1.56 S is empty. 2.97/1.56 Rewrite Strategy: INNERMOST 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (3) CpxTrsMatchBoundsTAProof (FINISHED) 2.97/1.56 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 2.97/1.56 2.97/1.56 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 2.97/1.56 final states : [1, 2] 2.97/1.56 transitions: 2.97/1.56 h0(0) -> 0 2.97/1.56 f0(0, 0) -> 1 2.97/1.56 g0(0, 0) -> 2 2.97/1.56 g1(0, 0) -> 1 2.97/1.56 f1(0, 0) -> 3 2.97/1.56 h1(3) -> 2 2.97/1.56 g1(0, 0) -> 4 2.97/1.56 h1(4) -> 2 2.97/1.56 g2(0, 0) -> 3 2.97/1.56 h1(3) -> 1 2.97/1.56 h1(3) -> 4 2.97/1.56 h1(4) -> 1 2.97/1.56 h1(4) -> 4 2.97/1.56 h1(3) -> 3 2.97/1.56 h1(4) -> 3 2.97/1.56 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (4) 2.97/1.56 BOUNDS(1, n^1) 2.97/1.56 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 2.97/1.56 Transformed a relative TRS into a decreasing-loop problem. 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (6) 2.97/1.56 Obligation: 2.97/1.56 Analyzing the following TRS for decreasing loops: 2.97/1.56 2.97/1.56 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.97/1.56 2.97/1.56 2.97/1.56 The TRS R consists of the following rules: 2.97/1.56 2.97/1.56 f(x, y) -> g(x, y) 2.97/1.56 g(h(x), y) -> h(f(x, y)) 2.97/1.56 g(h(x), y) -> h(g(x, y)) 2.97/1.56 2.97/1.56 S is empty. 2.97/1.56 Rewrite Strategy: INNERMOST 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (7) DecreasingLoopProof (LOWER BOUND(ID)) 2.97/1.56 The following loop(s) give(s) rise to the lower bound Omega(n^1): 2.97/1.56 2.97/1.56 The rewrite sequence 2.97/1.56 2.97/1.56 g(h(x), y) ->^+ h(g(x, y)) 2.97/1.56 2.97/1.56 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 2.97/1.56 2.97/1.56 The pumping substitution is [x / h(x)]. 2.97/1.56 2.97/1.56 The result substitution is [ ]. 2.97/1.56 2.97/1.56 2.97/1.56 2.97/1.56 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (8) 2.97/1.56 Complex Obligation (BEST) 2.97/1.56 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (9) 2.97/1.56 Obligation: 2.97/1.56 Proved the lower bound n^1 for the following obligation: 2.97/1.56 2.97/1.56 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.97/1.56 2.97/1.56 2.97/1.56 The TRS R consists of the following rules: 2.97/1.56 2.97/1.56 f(x, y) -> g(x, y) 2.97/1.56 g(h(x), y) -> h(f(x, y)) 2.97/1.56 g(h(x), y) -> h(g(x, y)) 2.97/1.56 2.97/1.56 S is empty. 2.97/1.56 Rewrite Strategy: INNERMOST 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (10) LowerBoundPropagationProof (FINISHED) 2.97/1.56 Propagated lower bound. 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (11) 2.97/1.56 BOUNDS(n^1, INF) 2.97/1.56 2.97/1.56 ---------------------------------------- 2.97/1.56 2.97/1.56 (12) 2.97/1.56 Obligation: 2.97/1.56 Analyzing the following TRS for decreasing loops: 2.97/1.56 2.97/1.56 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 2.97/1.56 2.97/1.56 2.97/1.56 The TRS R consists of the following rules: 2.97/1.56 2.97/1.56 f(x, y) -> g(x, y) 2.97/1.56 g(h(x), y) -> h(f(x, y)) 2.97/1.56 g(h(x), y) -> h(g(x, y)) 2.97/1.56 2.97/1.56 S is empty. 2.97/1.56 Rewrite Strategy: INNERMOST 3.14/1.57 EOF