3.29/1.63 WORST_CASE(NON_POLY, ?) 3.41/1.64 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.41/1.64 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.41/1.64 3.41/1.64 3.41/1.64 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.41/1.64 3.41/1.64 (0) CpxTRS 3.41/1.64 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.41/1.64 (2) TRS for Loop Detection 3.41/1.64 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.41/1.64 (4) BEST 3.41/1.64 (5) proven lower bound 3.41/1.64 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.41/1.64 (7) BOUNDS(n^1, INF) 3.41/1.64 (8) TRS for Loop Detection 3.41/1.64 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 3.41/1.64 (10) BOUNDS(INF, INF) 3.41/1.64 3.41/1.64 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (0) 3.41/1.64 Obligation: 3.41/1.64 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.41/1.64 3.41/1.64 3.41/1.64 The TRS R consists of the following rules: 3.41/1.64 3.41/1.64 primes -> sieve(from(s(s(0)))) 3.41/1.64 from(X) -> cons(X, from(s(X))) 3.41/1.64 head(cons(X, Y)) -> X 3.41/1.64 tail(cons(X, Y)) -> Y 3.41/1.64 if(true, X, Y) -> X 3.41/1.64 if(false, X, Y) -> Y 3.41/1.64 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.41/1.64 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.41/1.64 3.41/1.64 S is empty. 3.41/1.64 Rewrite Strategy: INNERMOST 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.41/1.64 Transformed a relative TRS into a decreasing-loop problem. 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (2) 3.41/1.64 Obligation: 3.41/1.64 Analyzing the following TRS for decreasing loops: 3.41/1.64 3.41/1.64 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.41/1.64 3.41/1.64 3.41/1.64 The TRS R consists of the following rules: 3.41/1.64 3.41/1.64 primes -> sieve(from(s(s(0)))) 3.41/1.64 from(X) -> cons(X, from(s(X))) 3.41/1.64 head(cons(X, Y)) -> X 3.41/1.64 tail(cons(X, Y)) -> Y 3.41/1.64 if(true, X, Y) -> X 3.41/1.64 if(false, X, Y) -> Y 3.41/1.64 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.41/1.64 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.41/1.64 3.41/1.64 S is empty. 3.41/1.64 Rewrite Strategy: INNERMOST 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.41/1.64 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.41/1.64 3.41/1.64 The rewrite sequence 3.41/1.64 3.41/1.64 sieve(cons(X, Y)) ->^+ cons(X, filter(X, sieve(Y))) 3.41/1.64 3.41/1.64 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1]. 3.41/1.64 3.41/1.64 The pumping substitution is [Y / cons(X, Y)]. 3.41/1.64 3.41/1.64 The result substitution is [ ]. 3.41/1.64 3.41/1.64 3.41/1.64 3.41/1.64 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (4) 3.41/1.64 Complex Obligation (BEST) 3.41/1.64 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (5) 3.41/1.64 Obligation: 3.41/1.64 Proved the lower bound n^1 for the following obligation: 3.41/1.64 3.41/1.64 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.41/1.64 3.41/1.64 3.41/1.64 The TRS R consists of the following rules: 3.41/1.64 3.41/1.64 primes -> sieve(from(s(s(0)))) 3.41/1.64 from(X) -> cons(X, from(s(X))) 3.41/1.64 head(cons(X, Y)) -> X 3.41/1.64 tail(cons(X, Y)) -> Y 3.41/1.64 if(true, X, Y) -> X 3.41/1.64 if(false, X, Y) -> Y 3.41/1.64 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.41/1.64 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.41/1.64 3.41/1.64 S is empty. 3.41/1.64 Rewrite Strategy: INNERMOST 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (6) LowerBoundPropagationProof (FINISHED) 3.41/1.64 Propagated lower bound. 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (7) 3.41/1.64 BOUNDS(n^1, INF) 3.41/1.64 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (8) 3.41/1.64 Obligation: 3.41/1.64 Analyzing the following TRS for decreasing loops: 3.41/1.64 3.41/1.64 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.41/1.64 3.41/1.64 3.41/1.64 The TRS R consists of the following rules: 3.41/1.64 3.41/1.64 primes -> sieve(from(s(s(0)))) 3.41/1.64 from(X) -> cons(X, from(s(X))) 3.41/1.64 head(cons(X, Y)) -> X 3.41/1.64 tail(cons(X, Y)) -> Y 3.41/1.64 if(true, X, Y) -> X 3.41/1.64 if(false, X, Y) -> Y 3.41/1.64 filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y)))) 3.41/1.64 sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y))) 3.41/1.64 3.41/1.64 S is empty. 3.41/1.64 Rewrite Strategy: INNERMOST 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (9) InfiniteLowerBoundProof (FINISHED) 3.41/1.64 The following loop proves infinite runtime complexity: 3.41/1.64 3.41/1.64 The rewrite sequence 3.41/1.64 3.41/1.64 from(X) ->^+ cons(X, from(s(X))) 3.41/1.64 3.41/1.64 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.41/1.64 3.41/1.64 The pumping substitution is [ ]. 3.41/1.64 3.41/1.64 The result substitution is [X / s(X)]. 3.41/1.64 3.41/1.64 3.41/1.64 3.41/1.64 3.41/1.64 ---------------------------------------- 3.41/1.64 3.41/1.64 (10) 3.41/1.64 BOUNDS(INF, INF) 3.41/1.67 EOF