2.90/1.58 WORST_CASE(NON_POLY, ?) 2.90/1.59 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 2.90/1.59 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.90/1.59 2.90/1.59 2.90/1.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.59 2.90/1.59 (0) CpxTRS 2.90/1.59 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 2.90/1.59 (2) TRS for Loop Detection 2.90/1.59 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 2.90/1.59 (4) BEST 2.90/1.59 (5) proven lower bound 2.90/1.59 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 2.90/1.59 (7) BOUNDS(n^1, INF) 2.90/1.59 (8) TRS for Loop Detection 2.90/1.59 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 2.90/1.59 (10) BOUNDS(INF, INF) 2.90/1.59 2.90/1.59 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (0) 2.90/1.59 Obligation: 2.90/1.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.59 2.90/1.59 2.90/1.59 The TRS R consists of the following rules: 2.90/1.59 2.90/1.59 from(X) -> cons(X, from(s(X))) 2.90/1.59 2ndspos(0, Z) -> rnil 2.90/1.59 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2.90/1.59 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2.90/1.59 2ndsneg(0, Z) -> rnil 2.90/1.59 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2.90/1.59 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 2.90/1.59 pi(X) -> 2ndspos(X, from(0)) 2.90/1.59 plus(0, Y) -> Y 2.90/1.59 plus(s(X), Y) -> s(plus(X, Y)) 2.90/1.59 times(0, Y) -> 0 2.90/1.59 times(s(X), Y) -> plus(Y, times(X, Y)) 2.90/1.59 square(X) -> times(X, X) 2.90/1.59 2.90/1.59 S is empty. 2.90/1.59 Rewrite Strategy: INNERMOST 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 2.90/1.59 Transformed a relative TRS into a decreasing-loop problem. 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (2) 2.90/1.59 Obligation: 2.90/1.59 Analyzing the following TRS for decreasing loops: 2.90/1.59 2.90/1.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.59 2.90/1.59 2.90/1.59 The TRS R consists of the following rules: 2.90/1.59 2.90/1.59 from(X) -> cons(X, from(s(X))) 2.90/1.59 2ndspos(0, Z) -> rnil 2.90/1.59 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2.90/1.59 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2.90/1.59 2ndsneg(0, Z) -> rnil 2.90/1.59 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2.90/1.59 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 2.90/1.59 pi(X) -> 2ndspos(X, from(0)) 2.90/1.59 plus(0, Y) -> Y 2.90/1.59 plus(s(X), Y) -> s(plus(X, Y)) 2.90/1.59 times(0, Y) -> 0 2.90/1.59 times(s(X), Y) -> plus(Y, times(X, Y)) 2.90/1.59 square(X) -> times(X, X) 2.90/1.59 2.90/1.59 S is empty. 2.90/1.59 Rewrite Strategy: INNERMOST 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (3) DecreasingLoopProof (LOWER BOUND(ID)) 2.90/1.59 The following loop(s) give(s) rise to the lower bound Omega(n^1): 2.90/1.59 2.90/1.59 The rewrite sequence 2.90/1.59 2.90/1.59 plus(s(X), Y) ->^+ s(plus(X, Y)) 2.90/1.59 2.90/1.59 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 2.90/1.59 2.90/1.59 The pumping substitution is [X / s(X)]. 2.90/1.59 2.90/1.59 The result substitution is [ ]. 2.90/1.59 2.90/1.59 2.90/1.59 2.90/1.59 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (4) 2.90/1.59 Complex Obligation (BEST) 2.90/1.59 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (5) 2.90/1.59 Obligation: 2.90/1.59 Proved the lower bound n^1 for the following obligation: 2.90/1.59 2.90/1.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.59 2.90/1.59 2.90/1.59 The TRS R consists of the following rules: 2.90/1.59 2.90/1.59 from(X) -> cons(X, from(s(X))) 2.90/1.59 2ndspos(0, Z) -> rnil 2.90/1.59 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2.90/1.59 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2.90/1.59 2ndsneg(0, Z) -> rnil 2.90/1.59 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2.90/1.59 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 2.90/1.59 pi(X) -> 2ndspos(X, from(0)) 2.90/1.59 plus(0, Y) -> Y 2.90/1.59 plus(s(X), Y) -> s(plus(X, Y)) 2.90/1.59 times(0, Y) -> 0 2.90/1.59 times(s(X), Y) -> plus(Y, times(X, Y)) 2.90/1.59 square(X) -> times(X, X) 2.90/1.59 2.90/1.59 S is empty. 2.90/1.59 Rewrite Strategy: INNERMOST 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (6) LowerBoundPropagationProof (FINISHED) 2.90/1.59 Propagated lower bound. 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (7) 2.90/1.59 BOUNDS(n^1, INF) 2.90/1.59 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (8) 2.90/1.59 Obligation: 2.90/1.59 Analyzing the following TRS for decreasing loops: 2.90/1.59 2.90/1.59 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.59 2.90/1.59 2.90/1.59 The TRS R consists of the following rules: 2.90/1.59 2.90/1.59 from(X) -> cons(X, from(s(X))) 2.90/1.59 2ndspos(0, Z) -> rnil 2.90/1.59 2ndspos(s(N), cons(X, Z)) -> 2ndspos(s(N), cons2(X, Z)) 2.90/1.59 2ndspos(s(N), cons2(X, cons(Y, Z))) -> rcons(posrecip(Y), 2ndsneg(N, Z)) 2.90/1.59 2ndsneg(0, Z) -> rnil 2.90/1.59 2ndsneg(s(N), cons(X, Z)) -> 2ndsneg(s(N), cons2(X, Z)) 2.90/1.59 2ndsneg(s(N), cons2(X, cons(Y, Z))) -> rcons(negrecip(Y), 2ndspos(N, Z)) 2.90/1.59 pi(X) -> 2ndspos(X, from(0)) 2.90/1.59 plus(0, Y) -> Y 2.90/1.59 plus(s(X), Y) -> s(plus(X, Y)) 2.90/1.59 times(0, Y) -> 0 2.90/1.59 times(s(X), Y) -> plus(Y, times(X, Y)) 2.90/1.59 square(X) -> times(X, X) 2.90/1.59 2.90/1.59 S is empty. 2.90/1.59 Rewrite Strategy: INNERMOST 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (9) InfiniteLowerBoundProof (FINISHED) 2.90/1.59 The following loop proves infinite runtime complexity: 2.90/1.59 2.90/1.59 The rewrite sequence 2.90/1.59 2.90/1.59 from(X) ->^+ cons(X, from(s(X))) 2.90/1.59 2.90/1.59 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 2.90/1.59 2.90/1.59 The pumping substitution is [ ]. 2.90/1.59 2.90/1.59 The result substitution is [X / s(X)]. 2.90/1.59 2.90/1.59 2.90/1.59 2.90/1.59 2.90/1.59 ---------------------------------------- 2.90/1.59 2.90/1.59 (10) 2.90/1.59 BOUNDS(INF, INF) 3.19/1.62 EOF