2.90/1.56 WORST_CASE(NON_POLY, ?) 2.90/1.57 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 2.90/1.57 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 2.90/1.57 2.90/1.57 2.90/1.57 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.57 2.90/1.57 (0) CpxTRS 2.90/1.57 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 2.90/1.57 (2) TRS for Loop Detection 2.90/1.57 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 2.90/1.57 (4) BEST 2.90/1.57 (5) proven lower bound 2.90/1.57 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 2.90/1.57 (7) BOUNDS(n^1, INF) 2.90/1.57 (8) TRS for Loop Detection 2.90/1.57 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 2.90/1.57 (10) BOUNDS(INF, INF) 2.90/1.57 2.90/1.57 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (0) 2.90/1.57 Obligation: 2.90/1.57 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.57 2.90/1.57 2.90/1.57 The TRS R consists of the following rules: 2.90/1.57 2.90/1.57 and(true, X) -> X 2.90/1.57 and(false, Y) -> false 2.90/1.57 if(true, X, Y) -> X 2.90/1.57 if(false, X, Y) -> Y 2.90/1.57 add(0, X) -> X 2.90/1.57 add(s(X), Y) -> s(add(X, Y)) 2.90/1.57 first(0, X) -> nil 2.90/1.57 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 2.90/1.57 from(X) -> cons(X, from(s(X))) 2.90/1.57 2.90/1.57 S is empty. 2.90/1.57 Rewrite Strategy: INNERMOST 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 2.90/1.57 Transformed a relative TRS into a decreasing-loop problem. 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (2) 2.90/1.57 Obligation: 2.90/1.57 Analyzing the following TRS for decreasing loops: 2.90/1.57 2.90/1.57 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.57 2.90/1.57 2.90/1.57 The TRS R consists of the following rules: 2.90/1.57 2.90/1.57 and(true, X) -> X 2.90/1.57 and(false, Y) -> false 2.90/1.57 if(true, X, Y) -> X 2.90/1.57 if(false, X, Y) -> Y 2.90/1.57 add(0, X) -> X 2.90/1.57 add(s(X), Y) -> s(add(X, Y)) 2.90/1.57 first(0, X) -> nil 2.90/1.57 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 2.90/1.57 from(X) -> cons(X, from(s(X))) 2.90/1.57 2.90/1.57 S is empty. 2.90/1.57 Rewrite Strategy: INNERMOST 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (3) DecreasingLoopProof (LOWER BOUND(ID)) 2.90/1.57 The following loop(s) give(s) rise to the lower bound Omega(n^1): 2.90/1.57 2.90/1.57 The rewrite sequence 2.90/1.57 2.90/1.57 first(s(X), cons(Y, Z)) ->^+ cons(Y, first(X, Z)) 2.90/1.57 2.90/1.57 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 2.90/1.57 2.90/1.57 The pumping substitution is [X / s(X), Z / cons(Y, Z)]. 2.90/1.57 2.90/1.57 The result substitution is [ ]. 2.90/1.57 2.90/1.57 2.90/1.57 2.90/1.57 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (4) 2.90/1.57 Complex Obligation (BEST) 2.90/1.57 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (5) 2.90/1.57 Obligation: 2.90/1.57 Proved the lower bound n^1 for the following obligation: 2.90/1.57 2.90/1.57 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.57 2.90/1.57 2.90/1.57 The TRS R consists of the following rules: 2.90/1.57 2.90/1.57 and(true, X) -> X 2.90/1.57 and(false, Y) -> false 2.90/1.57 if(true, X, Y) -> X 2.90/1.57 if(false, X, Y) -> Y 2.90/1.57 add(0, X) -> X 2.90/1.57 add(s(X), Y) -> s(add(X, Y)) 2.90/1.57 first(0, X) -> nil 2.90/1.57 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 2.90/1.57 from(X) -> cons(X, from(s(X))) 2.90/1.57 2.90/1.57 S is empty. 2.90/1.57 Rewrite Strategy: INNERMOST 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (6) LowerBoundPropagationProof (FINISHED) 2.90/1.57 Propagated lower bound. 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (7) 2.90/1.57 BOUNDS(n^1, INF) 2.90/1.57 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (8) 2.90/1.57 Obligation: 2.90/1.57 Analyzing the following TRS for decreasing loops: 2.90/1.57 2.90/1.57 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 2.90/1.57 2.90/1.57 2.90/1.57 The TRS R consists of the following rules: 2.90/1.57 2.90/1.57 and(true, X) -> X 2.90/1.57 and(false, Y) -> false 2.90/1.57 if(true, X, Y) -> X 2.90/1.57 if(false, X, Y) -> Y 2.90/1.57 add(0, X) -> X 2.90/1.57 add(s(X), Y) -> s(add(X, Y)) 2.90/1.57 first(0, X) -> nil 2.90/1.57 first(s(X), cons(Y, Z)) -> cons(Y, first(X, Z)) 2.90/1.57 from(X) -> cons(X, from(s(X))) 2.90/1.57 2.90/1.57 S is empty. 2.90/1.57 Rewrite Strategy: INNERMOST 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (9) InfiniteLowerBoundProof (FINISHED) 2.90/1.57 The following loop proves infinite runtime complexity: 2.90/1.57 2.90/1.57 The rewrite sequence 2.90/1.57 2.90/1.57 from(X) ->^+ cons(X, from(s(X))) 2.90/1.57 2.90/1.57 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 2.90/1.57 2.90/1.57 The pumping substitution is [ ]. 2.90/1.57 2.90/1.57 The result substitution is [X / s(X)]. 2.90/1.57 2.90/1.57 2.90/1.57 2.90/1.57 2.90/1.57 ---------------------------------------- 2.90/1.57 2.90/1.57 (10) 2.90/1.57 BOUNDS(INF, INF) 3.07/1.59 EOF