3.31/1.67 WORST_CASE(NON_POLY, ?) 3.31/1.68 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.31/1.68 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.31/1.68 3.31/1.68 3.31/1.68 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.31/1.68 3.31/1.68 (0) CpxTRS 3.31/1.68 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.31/1.68 (2) TRS for Loop Detection 3.31/1.68 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.31/1.68 (4) BEST 3.31/1.68 (5) proven lower bound 3.31/1.68 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.31/1.68 (7) BOUNDS(n^1, INF) 3.31/1.68 (8) TRS for Loop Detection 3.31/1.68 (9) InfiniteLowerBoundProof [FINISHED, 0 ms] 3.31/1.68 (10) BOUNDS(INF, INF) 3.31/1.68 3.31/1.68 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (0) 3.31/1.68 Obligation: 3.31/1.68 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.31/1.68 3.31/1.68 3.31/1.68 The TRS R consists of the following rules: 3.31/1.68 3.31/1.68 fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) 3.31/1.68 add(0, X) -> X 3.31/1.68 add(s(X), Y) -> s(add(X, Y)) 3.31/1.68 prod(0, X) -> 0 3.31/1.68 prod(s(X), Y) -> add(Y, prod(X, Y)) 3.31/1.68 if(true, X, Y) -> X 3.31/1.68 if(false, X, Y) -> Y 3.31/1.68 zero(0) -> true 3.31/1.68 zero(s(X)) -> false 3.31/1.68 p(s(X)) -> X 3.31/1.68 3.31/1.68 S is empty. 3.31/1.68 Rewrite Strategy: INNERMOST 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.31/1.68 Transformed a relative TRS into a decreasing-loop problem. 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (2) 3.31/1.68 Obligation: 3.31/1.68 Analyzing the following TRS for decreasing loops: 3.31/1.68 3.31/1.68 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.31/1.68 3.31/1.68 3.31/1.68 The TRS R consists of the following rules: 3.31/1.68 3.31/1.68 fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) 3.31/1.68 add(0, X) -> X 3.31/1.68 add(s(X), Y) -> s(add(X, Y)) 3.31/1.68 prod(0, X) -> 0 3.31/1.68 prod(s(X), Y) -> add(Y, prod(X, Y)) 3.31/1.68 if(true, X, Y) -> X 3.31/1.68 if(false, X, Y) -> Y 3.31/1.68 zero(0) -> true 3.31/1.68 zero(s(X)) -> false 3.31/1.68 p(s(X)) -> X 3.31/1.68 3.31/1.68 S is empty. 3.31/1.68 Rewrite Strategy: INNERMOST 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.31/1.68 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.31/1.68 3.31/1.68 The rewrite sequence 3.31/1.68 3.31/1.68 add(s(X), Y) ->^+ s(add(X, Y)) 3.31/1.68 3.31/1.68 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.31/1.68 3.31/1.68 The pumping substitution is [X / s(X)]. 3.31/1.68 3.31/1.68 The result substitution is [ ]. 3.31/1.68 3.31/1.68 3.31/1.68 3.31/1.68 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (4) 3.31/1.68 Complex Obligation (BEST) 3.31/1.68 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (5) 3.31/1.68 Obligation: 3.31/1.68 Proved the lower bound n^1 for the following obligation: 3.31/1.68 3.31/1.68 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.31/1.68 3.31/1.68 3.31/1.68 The TRS R consists of the following rules: 3.31/1.68 3.31/1.68 fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) 3.31/1.68 add(0, X) -> X 3.31/1.68 add(s(X), Y) -> s(add(X, Y)) 3.31/1.68 prod(0, X) -> 0 3.31/1.68 prod(s(X), Y) -> add(Y, prod(X, Y)) 3.31/1.68 if(true, X, Y) -> X 3.31/1.68 if(false, X, Y) -> Y 3.31/1.68 zero(0) -> true 3.31/1.68 zero(s(X)) -> false 3.31/1.68 p(s(X)) -> X 3.31/1.68 3.31/1.68 S is empty. 3.31/1.68 Rewrite Strategy: INNERMOST 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (6) LowerBoundPropagationProof (FINISHED) 3.31/1.68 Propagated lower bound. 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (7) 3.31/1.68 BOUNDS(n^1, INF) 3.31/1.68 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (8) 3.31/1.68 Obligation: 3.31/1.68 Analyzing the following TRS for decreasing loops: 3.31/1.68 3.31/1.68 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 3.31/1.68 3.31/1.68 3.31/1.68 The TRS R consists of the following rules: 3.31/1.68 3.31/1.68 fact(X) -> if(zero(X), s(0), prod(X, fact(p(X)))) 3.31/1.68 add(0, X) -> X 3.31/1.68 add(s(X), Y) -> s(add(X, Y)) 3.31/1.68 prod(0, X) -> 0 3.31/1.68 prod(s(X), Y) -> add(Y, prod(X, Y)) 3.31/1.68 if(true, X, Y) -> X 3.31/1.68 if(false, X, Y) -> Y 3.31/1.68 zero(0) -> true 3.31/1.68 zero(s(X)) -> false 3.31/1.68 p(s(X)) -> X 3.31/1.68 3.31/1.68 S is empty. 3.31/1.68 Rewrite Strategy: INNERMOST 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (9) InfiniteLowerBoundProof (FINISHED) 3.31/1.68 The following loop proves infinite runtime complexity: 3.31/1.68 3.31/1.68 The rewrite sequence 3.31/1.68 3.31/1.68 fact(X) ->^+ if(zero(X), s(0), prod(X, fact(p(X)))) 3.31/1.68 3.31/1.68 gives rise to a decreasing loop by considering the right hand sides subterm at position [2,1]. 3.31/1.68 3.31/1.68 The pumping substitution is [ ]. 3.31/1.68 3.31/1.68 The result substitution is [X / p(X)]. 3.31/1.68 3.31/1.68 3.31/1.68 3.31/1.68 3.31/1.68 ---------------------------------------- 3.31/1.68 3.31/1.68 (10) 3.31/1.68 BOUNDS(INF, INF) 3.31/1.71 EOF