1113.31/291.83 WORST_CASE(Omega(n^1), ?) 1113.37/291.87 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 1113.37/291.87 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1113.37/291.87 1113.37/291.87 1113.37/291.87 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.37/291.87 1113.37/291.87 (0) CpxTRS 1113.37/291.87 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 1113.37/291.87 (2) TRS for Loop Detection 1113.37/291.87 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 1113.37/291.87 (4) BEST 1113.37/291.87 (5) proven lower bound 1113.37/291.87 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 1113.37/291.87 (7) BOUNDS(n^1, INF) 1113.37/291.87 (8) TRS for Loop Detection 1113.37/291.87 1113.37/291.87 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (0) 1113.37/291.87 Obligation: 1113.37/291.87 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.37/291.87 1113.37/291.87 1113.37/291.87 The TRS R consists of the following rules: 1113.37/291.87 1113.37/291.87 eq(0, 0) -> true 1113.37/291.87 eq(0, s(x)) -> false 1113.37/291.87 eq(s(x), 0) -> false 1113.37/291.87 eq(s(x), s(y)) -> eq(x, y) 1113.37/291.87 le(0, y) -> true 1113.37/291.87 le(s(x), 0) -> false 1113.37/291.87 le(s(x), s(y)) -> le(x, y) 1113.37/291.87 app(nil, y) -> y 1113.37/291.87 app(add(n, x), y) -> add(n, app(x, y)) 1113.37/291.87 min(nil) -> 0 1113.37/291.87 min(add(n, x)) -> minIter(add(n, x), add(n, x), 0) 1113.37/291.87 minIter(nil, add(n, y), m) -> minIter(add(n, y), add(n, y), s(m)) 1113.37/291.87 minIter(add(n, x), y, m) -> if_min(le(n, m), x, y, m) 1113.37/291.87 if_min(true, x, y, m) -> m 1113.37/291.87 if_min(false, x, y, m) -> minIter(x, y, m) 1113.37/291.87 head(add(n, x)) -> n 1113.37/291.87 tail(add(n, x)) -> x 1113.37/291.87 tail(nil) -> nil 1113.37/291.87 null(nil) -> true 1113.37/291.87 null(add(n, x)) -> false 1113.37/291.87 rm(n, nil) -> nil 1113.37/291.87 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 1113.37/291.87 if_rm(true, n, add(m, x)) -> rm(n, x) 1113.37/291.87 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 1113.37/291.87 minsort(nil, nil) -> nil 1113.37/291.87 minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) 1113.37/291.87 if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) 1113.37/291.87 if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) 1113.37/291.87 1113.37/291.87 S is empty. 1113.37/291.87 Rewrite Strategy: INNERMOST 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 1113.37/291.87 Transformed a relative TRS into a decreasing-loop problem. 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (2) 1113.37/291.87 Obligation: 1113.37/291.87 Analyzing the following TRS for decreasing loops: 1113.37/291.87 1113.37/291.87 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.37/291.87 1113.37/291.87 1113.37/291.87 The TRS R consists of the following rules: 1113.37/291.87 1113.37/291.87 eq(0, 0) -> true 1113.37/291.87 eq(0, s(x)) -> false 1113.37/291.87 eq(s(x), 0) -> false 1113.37/291.87 eq(s(x), s(y)) -> eq(x, y) 1113.37/291.87 le(0, y) -> true 1113.37/291.87 le(s(x), 0) -> false 1113.37/291.87 le(s(x), s(y)) -> le(x, y) 1113.37/291.87 app(nil, y) -> y 1113.37/291.87 app(add(n, x), y) -> add(n, app(x, y)) 1113.37/291.87 min(nil) -> 0 1113.37/291.87 min(add(n, x)) -> minIter(add(n, x), add(n, x), 0) 1113.37/291.87 minIter(nil, add(n, y), m) -> minIter(add(n, y), add(n, y), s(m)) 1113.37/291.87 minIter(add(n, x), y, m) -> if_min(le(n, m), x, y, m) 1113.37/291.87 if_min(true, x, y, m) -> m 1113.37/291.87 if_min(false, x, y, m) -> minIter(x, y, m) 1113.37/291.87 head(add(n, x)) -> n 1113.37/291.87 tail(add(n, x)) -> x 1113.37/291.87 tail(nil) -> nil 1113.37/291.87 null(nil) -> true 1113.37/291.87 null(add(n, x)) -> false 1113.37/291.87 rm(n, nil) -> nil 1113.37/291.87 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 1113.37/291.87 if_rm(true, n, add(m, x)) -> rm(n, x) 1113.37/291.87 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 1113.37/291.87 minsort(nil, nil) -> nil 1113.37/291.87 minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) 1113.37/291.87 if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) 1113.37/291.87 if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) 1113.37/291.87 1113.37/291.87 S is empty. 1113.37/291.87 Rewrite Strategy: INNERMOST 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (3) DecreasingLoopProof (LOWER BOUND(ID)) 1113.37/291.87 The following loop(s) give(s) rise to the lower bound Omega(n^1): 1113.37/291.87 1113.37/291.87 The rewrite sequence 1113.37/291.87 1113.37/291.87 le(s(x), s(y)) ->^+ le(x, y) 1113.37/291.87 1113.37/291.87 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 1113.37/291.87 1113.37/291.87 The pumping substitution is [x / s(x), y / s(y)]. 1113.37/291.87 1113.37/291.87 The result substitution is [ ]. 1113.37/291.87 1113.37/291.87 1113.37/291.87 1113.37/291.87 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (4) 1113.37/291.87 Complex Obligation (BEST) 1113.37/291.87 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (5) 1113.37/291.87 Obligation: 1113.37/291.87 Proved the lower bound n^1 for the following obligation: 1113.37/291.87 1113.37/291.87 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.37/291.87 1113.37/291.87 1113.37/291.87 The TRS R consists of the following rules: 1113.37/291.87 1113.37/291.87 eq(0, 0) -> true 1113.37/291.87 eq(0, s(x)) -> false 1113.37/291.87 eq(s(x), 0) -> false 1113.37/291.87 eq(s(x), s(y)) -> eq(x, y) 1113.37/291.87 le(0, y) -> true 1113.37/291.87 le(s(x), 0) -> false 1113.37/291.87 le(s(x), s(y)) -> le(x, y) 1113.37/291.87 app(nil, y) -> y 1113.37/291.87 app(add(n, x), y) -> add(n, app(x, y)) 1113.37/291.87 min(nil) -> 0 1113.37/291.87 min(add(n, x)) -> minIter(add(n, x), add(n, x), 0) 1113.37/291.87 minIter(nil, add(n, y), m) -> minIter(add(n, y), add(n, y), s(m)) 1113.37/291.87 minIter(add(n, x), y, m) -> if_min(le(n, m), x, y, m) 1113.37/291.87 if_min(true, x, y, m) -> m 1113.37/291.87 if_min(false, x, y, m) -> minIter(x, y, m) 1113.37/291.87 head(add(n, x)) -> n 1113.37/291.87 tail(add(n, x)) -> x 1113.37/291.87 tail(nil) -> nil 1113.37/291.87 null(nil) -> true 1113.37/291.87 null(add(n, x)) -> false 1113.37/291.87 rm(n, nil) -> nil 1113.37/291.87 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 1113.37/291.87 if_rm(true, n, add(m, x)) -> rm(n, x) 1113.37/291.87 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 1113.37/291.87 minsort(nil, nil) -> nil 1113.37/291.87 minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) 1113.37/291.87 if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) 1113.37/291.87 if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) 1113.37/291.87 1113.37/291.87 S is empty. 1113.37/291.87 Rewrite Strategy: INNERMOST 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (6) LowerBoundPropagationProof (FINISHED) 1113.37/291.87 Propagated lower bound. 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (7) 1113.37/291.87 BOUNDS(n^1, INF) 1113.37/291.87 1113.37/291.87 ---------------------------------------- 1113.37/291.87 1113.37/291.87 (8) 1113.37/291.87 Obligation: 1113.37/291.87 Analyzing the following TRS for decreasing loops: 1113.37/291.87 1113.37/291.87 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.37/291.87 1113.37/291.87 1113.37/291.87 The TRS R consists of the following rules: 1113.37/291.87 1113.37/291.87 eq(0, 0) -> true 1113.37/291.87 eq(0, s(x)) -> false 1113.37/291.87 eq(s(x), 0) -> false 1113.37/291.87 eq(s(x), s(y)) -> eq(x, y) 1113.37/291.87 le(0, y) -> true 1113.37/291.87 le(s(x), 0) -> false 1113.37/291.87 le(s(x), s(y)) -> le(x, y) 1113.37/291.87 app(nil, y) -> y 1113.37/291.87 app(add(n, x), y) -> add(n, app(x, y)) 1113.37/291.87 min(nil) -> 0 1113.37/291.87 min(add(n, x)) -> minIter(add(n, x), add(n, x), 0) 1113.37/291.87 minIter(nil, add(n, y), m) -> minIter(add(n, y), add(n, y), s(m)) 1113.37/291.87 minIter(add(n, x), y, m) -> if_min(le(n, m), x, y, m) 1113.37/291.87 if_min(true, x, y, m) -> m 1113.37/291.87 if_min(false, x, y, m) -> minIter(x, y, m) 1113.37/291.87 head(add(n, x)) -> n 1113.37/291.87 tail(add(n, x)) -> x 1113.37/291.87 tail(nil) -> nil 1113.37/291.87 null(nil) -> true 1113.37/291.87 null(add(n, x)) -> false 1113.37/291.87 rm(n, nil) -> nil 1113.37/291.87 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 1113.37/291.87 if_rm(true, n, add(m, x)) -> rm(n, x) 1113.37/291.87 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 1113.37/291.87 minsort(nil, nil) -> nil 1113.37/291.87 minsort(add(n, x), y) -> if_minsort(eq(n, min(add(n, x))), add(n, x), y) 1113.37/291.87 if_minsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil)) 1113.37/291.87 if_minsort(false, add(n, x), y) -> minsort(x, add(n, y)) 1113.37/291.87 1113.37/291.87 S is empty. 1113.37/291.87 Rewrite Strategy: INNERMOST 1113.58/291.96 EOF