1094.32/291.53 WORST_CASE(Omega(n^1), ?) 1097.00/292.14 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 1097.00/292.14 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1097.00/292.14 1097.00/292.14 1097.00/292.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1097.00/292.14 1097.00/292.14 (0) CpxTRS 1097.00/292.14 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 1097.00/292.14 (2) CpxTRS 1097.00/292.14 (3) SlicingProof [LOWER BOUND(ID), 0 ms] 1097.00/292.14 (4) CpxTRS 1097.00/292.14 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 1097.00/292.14 (6) typed CpxTrs 1097.00/292.14 (7) OrderProof [LOWER BOUND(ID), 0 ms] 1097.00/292.14 (8) typed CpxTrs 1097.00/292.14 (9) RewriteLemmaProof [LOWER BOUND(ID), 296 ms] 1097.00/292.14 (10) BEST 1097.00/292.14 (11) proven lower bound 1097.00/292.14 (12) LowerBoundPropagationProof [FINISHED, 0 ms] 1097.00/292.14 (13) BOUNDS(n^1, INF) 1097.00/292.14 (14) typed CpxTrs 1097.00/292.14 (15) RewriteLemmaProof [LOWER BOUND(ID), 386 ms] 1097.00/292.14 (16) BOUNDS(1, INF) 1097.00/292.14 1097.00/292.14 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (0) 1097.00/292.14 Obligation: 1097.00/292.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1097.00/292.14 1097.00/292.14 1097.00/292.14 The TRS R consists of the following rules: 1097.00/292.14 1097.00/292.14 numbers -> d(0) 1097.00/292.14 d(x) -> if(le(x, nr), x) 1097.00/292.14 if(true, x) -> cons(x, d(s(x))) 1097.00/292.14 if(false, x) -> nil 1097.00/292.14 le(0, y) -> true 1097.00/292.14 le(s(x), 0) -> false 1097.00/292.14 le(s(x), s(y)) -> le(x, y) 1097.00/292.14 nr -> ack(s(s(s(s(s(s(0)))))), 0) 1097.00/292.14 ack(0, x) -> s(x) 1097.00/292.14 ack(s(x), 0) -> ack(x, s(0)) 1097.00/292.14 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1097.00/292.14 1097.00/292.14 S is empty. 1097.00/292.14 Rewrite Strategy: INNERMOST 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 1097.00/292.14 Renamed function symbols to avoid clashes with predefined symbol. 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (2) 1097.00/292.14 Obligation: 1097.00/292.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1097.00/292.14 1097.00/292.14 1097.00/292.14 The TRS R consists of the following rules: 1097.00/292.14 1097.00/292.14 numbers -> d(0') 1097.00/292.14 d(x) -> if(le(x, nr), x) 1097.00/292.14 if(true, x) -> cons(x, d(s(x))) 1097.00/292.14 if(false, x) -> nil 1097.00/292.14 le(0', y) -> true 1097.00/292.14 le(s(x), 0') -> false 1097.00/292.14 le(s(x), s(y)) -> le(x, y) 1097.00/292.14 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1097.00/292.14 ack(0', x) -> s(x) 1097.00/292.14 ack(s(x), 0') -> ack(x, s(0')) 1097.00/292.14 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1097.00/292.14 1097.00/292.14 S is empty. 1097.00/292.14 Rewrite Strategy: INNERMOST 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (3) SlicingProof (LOWER BOUND(ID)) 1097.00/292.14 Sliced the following arguments: 1097.00/292.14 cons/0 1097.00/292.14 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (4) 1097.00/292.14 Obligation: 1097.00/292.14 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1097.00/292.14 1097.00/292.14 1097.00/292.14 The TRS R consists of the following rules: 1097.00/292.14 1097.00/292.14 numbers -> d(0') 1097.00/292.14 d(x) -> if(le(x, nr), x) 1097.00/292.14 if(true, x) -> cons(d(s(x))) 1097.00/292.14 if(false, x) -> nil 1097.00/292.14 le(0', y) -> true 1097.00/292.14 le(s(x), 0') -> false 1097.00/292.14 le(s(x), s(y)) -> le(x, y) 1097.00/292.14 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1097.00/292.14 ack(0', x) -> s(x) 1097.00/292.14 ack(s(x), 0') -> ack(x, s(0')) 1097.00/292.14 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1097.00/292.14 1097.00/292.14 S is empty. 1097.00/292.14 Rewrite Strategy: INNERMOST 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 1097.00/292.14 Infered types. 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (6) 1097.00/292.14 Obligation: 1097.00/292.14 Innermost TRS: 1097.00/292.14 Rules: 1097.00/292.14 numbers -> d(0') 1097.00/292.14 d(x) -> if(le(x, nr), x) 1097.00/292.14 if(true, x) -> cons(d(s(x))) 1097.00/292.14 if(false, x) -> nil 1097.00/292.14 le(0', y) -> true 1097.00/292.14 le(s(x), 0') -> false 1097.00/292.14 le(s(x), s(y)) -> le(x, y) 1097.00/292.14 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1097.00/292.14 ack(0', x) -> s(x) 1097.00/292.14 ack(s(x), 0') -> ack(x, s(0')) 1097.00/292.14 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1097.00/292.14 1097.00/292.14 Types: 1097.00/292.14 numbers :: cons:nil 1097.00/292.14 d :: 0':s -> cons:nil 1097.00/292.14 0' :: 0':s 1097.00/292.14 if :: true:false -> 0':s -> cons:nil 1097.00/292.14 le :: 0':s -> 0':s -> true:false 1097.00/292.14 nr :: 0':s 1097.00/292.14 true :: true:false 1097.00/292.14 cons :: cons:nil -> cons:nil 1097.00/292.14 s :: 0':s -> 0':s 1097.00/292.14 false :: true:false 1097.00/292.14 nil :: cons:nil 1097.00/292.14 ack :: 0':s -> 0':s -> 0':s 1097.00/292.14 hole_cons:nil1_0 :: cons:nil 1097.00/292.14 hole_0':s2_0 :: 0':s 1097.00/292.14 hole_true:false3_0 :: true:false 1097.00/292.14 gen_cons:nil4_0 :: Nat -> cons:nil 1097.00/292.14 gen_0':s5_0 :: Nat -> 0':s 1097.00/292.14 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (7) OrderProof (LOWER BOUND(ID)) 1097.00/292.14 Heuristically decided to analyse the following defined symbols: 1097.00/292.14 d, le, ack 1097.00/292.14 1097.00/292.14 They will be analysed ascendingly in the following order: 1097.00/292.14 le < d 1097.00/292.14 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (8) 1097.00/292.14 Obligation: 1097.00/292.14 Innermost TRS: 1097.00/292.14 Rules: 1097.00/292.14 numbers -> d(0') 1097.00/292.14 d(x) -> if(le(x, nr), x) 1097.00/292.14 if(true, x) -> cons(d(s(x))) 1097.00/292.14 if(false, x) -> nil 1097.00/292.14 le(0', y) -> true 1097.00/292.14 le(s(x), 0') -> false 1097.00/292.14 le(s(x), s(y)) -> le(x, y) 1097.00/292.14 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1097.00/292.14 ack(0', x) -> s(x) 1097.00/292.14 ack(s(x), 0') -> ack(x, s(0')) 1097.00/292.14 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1097.00/292.14 1097.00/292.14 Types: 1097.00/292.14 numbers :: cons:nil 1097.00/292.14 d :: 0':s -> cons:nil 1097.00/292.14 0' :: 0':s 1097.00/292.14 if :: true:false -> 0':s -> cons:nil 1097.00/292.14 le :: 0':s -> 0':s -> true:false 1097.00/292.14 nr :: 0':s 1097.00/292.14 true :: true:false 1097.00/292.14 cons :: cons:nil -> cons:nil 1097.00/292.14 s :: 0':s -> 0':s 1097.00/292.14 false :: true:false 1097.00/292.14 nil :: cons:nil 1097.00/292.14 ack :: 0':s -> 0':s -> 0':s 1097.00/292.14 hole_cons:nil1_0 :: cons:nil 1097.00/292.14 hole_0':s2_0 :: 0':s 1097.00/292.14 hole_true:false3_0 :: true:false 1097.00/292.14 gen_cons:nil4_0 :: Nat -> cons:nil 1097.00/292.14 gen_0':s5_0 :: Nat -> 0':s 1097.00/292.14 1097.00/292.14 1097.00/292.14 Generator Equations: 1097.00/292.14 gen_cons:nil4_0(0) <=> nil 1097.00/292.14 gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) 1097.00/292.14 gen_0':s5_0(0) <=> 0' 1097.00/292.14 gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) 1097.00/292.14 1097.00/292.14 1097.00/292.14 The following defined symbols remain to be analysed: 1097.00/292.14 le, d, ack 1097.00/292.14 1097.00/292.14 They will be analysed ascendingly in the following order: 1097.00/292.14 le < d 1097.00/292.14 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (9) RewriteLemmaProof (LOWER BOUND(ID)) 1097.00/292.14 Proved the following rewrite lemma: 1097.00/292.14 le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) -> true, rt in Omega(1 + n7_0) 1097.00/292.14 1097.00/292.14 Induction Base: 1097.00/292.14 le(gen_0':s5_0(0), gen_0':s5_0(0)) ->_R^Omega(1) 1097.00/292.14 true 1097.00/292.14 1097.00/292.14 Induction Step: 1097.00/292.14 le(gen_0':s5_0(+(n7_0, 1)), gen_0':s5_0(+(n7_0, 1))) ->_R^Omega(1) 1097.00/292.14 le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) ->_IH 1097.00/292.14 true 1097.00/292.14 1097.00/292.14 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (10) 1097.00/292.14 Complex Obligation (BEST) 1097.00/292.14 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (11) 1097.00/292.14 Obligation: 1097.00/292.14 Proved the lower bound n^1 for the following obligation: 1097.00/292.14 1097.00/292.14 Innermost TRS: 1097.00/292.14 Rules: 1097.00/292.14 numbers -> d(0') 1097.00/292.14 d(x) -> if(le(x, nr), x) 1097.00/292.14 if(true, x) -> cons(d(s(x))) 1097.00/292.14 if(false, x) -> nil 1097.00/292.14 le(0', y) -> true 1097.00/292.14 le(s(x), 0') -> false 1097.00/292.14 le(s(x), s(y)) -> le(x, y) 1097.00/292.14 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1097.00/292.14 ack(0', x) -> s(x) 1097.00/292.14 ack(s(x), 0') -> ack(x, s(0')) 1097.00/292.14 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1097.00/292.14 1097.00/292.14 Types: 1097.00/292.14 numbers :: cons:nil 1097.00/292.14 d :: 0':s -> cons:nil 1097.00/292.14 0' :: 0':s 1097.00/292.14 if :: true:false -> 0':s -> cons:nil 1097.00/292.14 le :: 0':s -> 0':s -> true:false 1097.00/292.14 nr :: 0':s 1097.00/292.14 true :: true:false 1097.00/292.14 cons :: cons:nil -> cons:nil 1097.00/292.14 s :: 0':s -> 0':s 1097.00/292.14 false :: true:false 1097.00/292.14 nil :: cons:nil 1097.00/292.14 ack :: 0':s -> 0':s -> 0':s 1097.00/292.14 hole_cons:nil1_0 :: cons:nil 1097.00/292.14 hole_0':s2_0 :: 0':s 1097.00/292.14 hole_true:false3_0 :: true:false 1097.00/292.14 gen_cons:nil4_0 :: Nat -> cons:nil 1097.00/292.14 gen_0':s5_0 :: Nat -> 0':s 1097.00/292.14 1097.00/292.14 1097.00/292.14 Generator Equations: 1097.00/292.14 gen_cons:nil4_0(0) <=> nil 1097.00/292.14 gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) 1097.00/292.14 gen_0':s5_0(0) <=> 0' 1097.00/292.14 gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) 1097.00/292.14 1097.00/292.14 1097.00/292.14 The following defined symbols remain to be analysed: 1097.00/292.14 le, d, ack 1097.00/292.14 1097.00/292.14 They will be analysed ascendingly in the following order: 1097.00/292.14 le < d 1097.00/292.14 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (12) LowerBoundPropagationProof (FINISHED) 1097.00/292.14 Propagated lower bound. 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (13) 1097.00/292.14 BOUNDS(n^1, INF) 1097.00/292.14 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (14) 1097.00/292.14 Obligation: 1097.00/292.14 Innermost TRS: 1097.00/292.14 Rules: 1097.00/292.14 numbers -> d(0') 1097.00/292.14 d(x) -> if(le(x, nr), x) 1097.00/292.14 if(true, x) -> cons(d(s(x))) 1097.00/292.14 if(false, x) -> nil 1097.00/292.14 le(0', y) -> true 1097.00/292.14 le(s(x), 0') -> false 1097.00/292.14 le(s(x), s(y)) -> le(x, y) 1097.00/292.14 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1097.00/292.14 ack(0', x) -> s(x) 1097.00/292.14 ack(s(x), 0') -> ack(x, s(0')) 1097.00/292.14 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1097.00/292.14 1097.00/292.14 Types: 1097.00/292.14 numbers :: cons:nil 1097.00/292.14 d :: 0':s -> cons:nil 1097.00/292.14 0' :: 0':s 1097.00/292.14 if :: true:false -> 0':s -> cons:nil 1097.00/292.14 le :: 0':s -> 0':s -> true:false 1097.00/292.14 nr :: 0':s 1097.00/292.14 true :: true:false 1097.00/292.14 cons :: cons:nil -> cons:nil 1097.00/292.14 s :: 0':s -> 0':s 1097.00/292.14 false :: true:false 1097.00/292.14 nil :: cons:nil 1097.00/292.14 ack :: 0':s -> 0':s -> 0':s 1097.00/292.14 hole_cons:nil1_0 :: cons:nil 1097.00/292.14 hole_0':s2_0 :: 0':s 1097.00/292.14 hole_true:false3_0 :: true:false 1097.00/292.14 gen_cons:nil4_0 :: Nat -> cons:nil 1097.00/292.14 gen_0':s5_0 :: Nat -> 0':s 1097.00/292.14 1097.00/292.14 1097.00/292.14 Lemmas: 1097.00/292.14 le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) -> true, rt in Omega(1 + n7_0) 1097.00/292.14 1097.00/292.14 1097.00/292.14 Generator Equations: 1097.00/292.14 gen_cons:nil4_0(0) <=> nil 1097.00/292.14 gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) 1097.00/292.14 gen_0':s5_0(0) <=> 0' 1097.00/292.14 gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) 1097.00/292.14 1097.00/292.14 1097.00/292.14 The following defined symbols remain to be analysed: 1097.00/292.14 d, ack 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (15) RewriteLemmaProof (LOWER BOUND(ID)) 1097.00/292.14 Proved the following rewrite lemma: 1097.00/292.14 ack(gen_0':s5_0(1), gen_0':s5_0(+(1, n934_0))) -> *6_0, rt in Omega(n934_0) 1097.00/292.14 1097.00/292.14 Induction Base: 1097.00/292.14 ack(gen_0':s5_0(1), gen_0':s5_0(+(1, 0))) 1097.00/292.14 1097.00/292.14 Induction Step: 1097.00/292.14 ack(gen_0':s5_0(1), gen_0':s5_0(+(1, +(n934_0, 1)))) ->_R^Omega(1) 1097.00/292.14 ack(gen_0':s5_0(0), ack(s(gen_0':s5_0(0)), gen_0':s5_0(+(1, n934_0)))) ->_IH 1097.00/292.14 ack(gen_0':s5_0(0), *6_0) 1097.00/292.14 1097.00/292.14 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1097.00/292.14 ---------------------------------------- 1097.00/292.14 1097.00/292.14 (16) 1097.00/292.14 BOUNDS(1, INF) 1097.20/292.25 EOF