1010.25/291.52 WORST_CASE(Omega(n^2), ?) 1010.25/291.53 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 1010.25/291.53 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1010.25/291.53 1010.25/291.53 1010.25/291.53 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 1010.25/291.53 1010.25/291.53 (0) CpxTRS 1010.25/291.53 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 1010.25/291.53 (2) CpxTRS 1010.25/291.53 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 1010.25/291.53 (4) typed CpxTrs 1010.25/291.53 (5) OrderProof [LOWER BOUND(ID), 0 ms] 1010.25/291.53 (6) typed CpxTrs 1010.25/291.53 (7) RewriteLemmaProof [LOWER BOUND(ID), 273 ms] 1010.25/291.53 (8) BEST 1010.25/291.53 (9) proven lower bound 1010.25/291.53 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 1010.25/291.53 (11) BOUNDS(n^1, INF) 1010.25/291.53 (12) typed CpxTrs 1010.25/291.53 (13) RewriteLemmaProof [LOWER BOUND(ID), 67 ms] 1010.25/291.53 (14) typed CpxTrs 1010.25/291.53 (15) RewriteLemmaProof [LOWER BOUND(ID), 55 ms] 1010.25/291.53 (16) BEST 1010.25/291.53 (17) proven lower bound 1010.25/291.53 (18) LowerBoundPropagationProof [FINISHED, 0 ms] 1010.25/291.53 (19) BOUNDS(n^2, INF) 1010.25/291.53 (20) typed CpxTrs 1010.25/291.53 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (0) 1010.25/291.53 Obligation: 1010.25/291.53 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 1010.25/291.53 1010.25/291.53 1010.25/291.53 The TRS R consists of the following rules: 1010.25/291.53 1010.25/291.53 lt(0, s(x)) -> true 1010.25/291.53 lt(x, 0) -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0, y) -> 0 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0, y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0), s(0)) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 S is empty. 1010.25/291.53 Rewrite Strategy: INNERMOST 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 1010.25/291.53 Renamed function symbols to avoid clashes with predefined symbol. 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (2) 1010.25/291.53 Obligation: 1010.25/291.53 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 1010.25/291.53 1010.25/291.53 1010.25/291.53 The TRS R consists of the following rules: 1010.25/291.53 1010.25/291.53 lt(0', s(x)) -> true 1010.25/291.53 lt(x, 0') -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0', y) -> 0' 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0', y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0'), s(0')) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 S is empty. 1010.25/291.53 Rewrite Strategy: INNERMOST 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 1010.25/291.53 Infered types. 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (4) 1010.25/291.53 Obligation: 1010.25/291.53 Innermost TRS: 1010.25/291.53 Rules: 1010.25/291.53 lt(0', s(x)) -> true 1010.25/291.53 lt(x, 0') -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0', y) -> 0' 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0', y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0'), s(0')) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 Types: 1010.25/291.53 lt :: 0':s -> 0':s -> true:false 1010.25/291.53 0' :: 0':s 1010.25/291.53 s :: 0':s -> 0':s 1010.25/291.53 true :: true:false 1010.25/291.53 false :: true:false 1010.25/291.53 times :: 0':s -> 0':s -> 0':s 1010.25/291.53 plus :: 0':s -> 0':s -> 0':s 1010.25/291.53 fac :: 0':s -> 0':s 1010.25/291.53 loop :: 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 hole_true:false1_0 :: true:false 1010.25/291.53 hole_0':s2_0 :: 0':s 1010.25/291.53 gen_0':s3_0 :: Nat -> 0':s 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (5) OrderProof (LOWER BOUND(ID)) 1010.25/291.53 Heuristically decided to analyse the following defined symbols: 1010.25/291.53 lt, times, plus, loop 1010.25/291.53 1010.25/291.53 They will be analysed ascendingly in the following order: 1010.25/291.53 lt < loop 1010.25/291.53 plus < times 1010.25/291.53 times < loop 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (6) 1010.25/291.53 Obligation: 1010.25/291.53 Innermost TRS: 1010.25/291.53 Rules: 1010.25/291.53 lt(0', s(x)) -> true 1010.25/291.53 lt(x, 0') -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0', y) -> 0' 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0', y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0'), s(0')) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 Types: 1010.25/291.53 lt :: 0':s -> 0':s -> true:false 1010.25/291.53 0' :: 0':s 1010.25/291.53 s :: 0':s -> 0':s 1010.25/291.53 true :: true:false 1010.25/291.53 false :: true:false 1010.25/291.53 times :: 0':s -> 0':s -> 0':s 1010.25/291.53 plus :: 0':s -> 0':s -> 0':s 1010.25/291.53 fac :: 0':s -> 0':s 1010.25/291.53 loop :: 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 hole_true:false1_0 :: true:false 1010.25/291.53 hole_0':s2_0 :: 0':s 1010.25/291.53 gen_0':s3_0 :: Nat -> 0':s 1010.25/291.53 1010.25/291.53 1010.25/291.53 Generator Equations: 1010.25/291.53 gen_0':s3_0(0) <=> 0' 1010.25/291.53 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1010.25/291.53 1010.25/291.53 1010.25/291.53 The following defined symbols remain to be analysed: 1010.25/291.53 lt, times, plus, loop 1010.25/291.53 1010.25/291.53 They will be analysed ascendingly in the following order: 1010.25/291.53 lt < loop 1010.25/291.53 plus < times 1010.25/291.53 times < loop 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (7) RewriteLemmaProof (LOWER BOUND(ID)) 1010.25/291.53 Proved the following rewrite lemma: 1010.25/291.53 lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) 1010.25/291.53 1010.25/291.53 Induction Base: 1010.25/291.53 lt(gen_0':s3_0(0), gen_0':s3_0(+(1, 0))) ->_R^Omega(1) 1010.25/291.53 true 1010.25/291.53 1010.25/291.53 Induction Step: 1010.25/291.53 lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) 1010.25/291.53 lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) ->_IH 1010.25/291.53 true 1010.25/291.53 1010.25/291.53 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (8) 1010.25/291.53 Complex Obligation (BEST) 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (9) 1010.25/291.53 Obligation: 1010.25/291.53 Proved the lower bound n^1 for the following obligation: 1010.25/291.53 1010.25/291.53 Innermost TRS: 1010.25/291.53 Rules: 1010.25/291.53 lt(0', s(x)) -> true 1010.25/291.53 lt(x, 0') -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0', y) -> 0' 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0', y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0'), s(0')) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 Types: 1010.25/291.53 lt :: 0':s -> 0':s -> true:false 1010.25/291.53 0' :: 0':s 1010.25/291.53 s :: 0':s -> 0':s 1010.25/291.53 true :: true:false 1010.25/291.53 false :: true:false 1010.25/291.53 times :: 0':s -> 0':s -> 0':s 1010.25/291.53 plus :: 0':s -> 0':s -> 0':s 1010.25/291.53 fac :: 0':s -> 0':s 1010.25/291.53 loop :: 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 hole_true:false1_0 :: true:false 1010.25/291.53 hole_0':s2_0 :: 0':s 1010.25/291.53 gen_0':s3_0 :: Nat -> 0':s 1010.25/291.53 1010.25/291.53 1010.25/291.53 Generator Equations: 1010.25/291.53 gen_0':s3_0(0) <=> 0' 1010.25/291.53 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1010.25/291.53 1010.25/291.53 1010.25/291.53 The following defined symbols remain to be analysed: 1010.25/291.53 lt, times, plus, loop 1010.25/291.53 1010.25/291.53 They will be analysed ascendingly in the following order: 1010.25/291.53 lt < loop 1010.25/291.53 plus < times 1010.25/291.53 times < loop 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (10) LowerBoundPropagationProof (FINISHED) 1010.25/291.53 Propagated lower bound. 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (11) 1010.25/291.53 BOUNDS(n^1, INF) 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (12) 1010.25/291.53 Obligation: 1010.25/291.53 Innermost TRS: 1010.25/291.53 Rules: 1010.25/291.53 lt(0', s(x)) -> true 1010.25/291.53 lt(x, 0') -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0', y) -> 0' 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0', y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0'), s(0')) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 Types: 1010.25/291.53 lt :: 0':s -> 0':s -> true:false 1010.25/291.53 0' :: 0':s 1010.25/291.53 s :: 0':s -> 0':s 1010.25/291.53 true :: true:false 1010.25/291.53 false :: true:false 1010.25/291.53 times :: 0':s -> 0':s -> 0':s 1010.25/291.53 plus :: 0':s -> 0':s -> 0':s 1010.25/291.53 fac :: 0':s -> 0':s 1010.25/291.53 loop :: 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 hole_true:false1_0 :: true:false 1010.25/291.53 hole_0':s2_0 :: 0':s 1010.25/291.53 gen_0':s3_0 :: Nat -> 0':s 1010.25/291.53 1010.25/291.53 1010.25/291.53 Lemmas: 1010.25/291.53 lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) 1010.25/291.53 1010.25/291.53 1010.25/291.53 Generator Equations: 1010.25/291.53 gen_0':s3_0(0) <=> 0' 1010.25/291.53 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1010.25/291.53 1010.25/291.53 1010.25/291.53 The following defined symbols remain to be analysed: 1010.25/291.53 plus, times, loop 1010.25/291.53 1010.25/291.53 They will be analysed ascendingly in the following order: 1010.25/291.53 plus < times 1010.25/291.53 times < loop 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (13) RewriteLemmaProof (LOWER BOUND(ID)) 1010.25/291.53 Proved the following rewrite lemma: 1010.25/291.53 plus(gen_0':s3_0(n305_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n305_0, b)), rt in Omega(1 + n305_0) 1010.25/291.53 1010.25/291.53 Induction Base: 1010.25/291.53 plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 1010.25/291.53 gen_0':s3_0(b) 1010.25/291.53 1010.25/291.53 Induction Step: 1010.25/291.53 plus(gen_0':s3_0(+(n305_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) 1010.25/291.53 s(plus(gen_0':s3_0(n305_0), gen_0':s3_0(b))) ->_IH 1010.25/291.53 s(gen_0':s3_0(+(b, c306_0))) 1010.25/291.53 1010.25/291.53 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (14) 1010.25/291.53 Obligation: 1010.25/291.53 Innermost TRS: 1010.25/291.53 Rules: 1010.25/291.53 lt(0', s(x)) -> true 1010.25/291.53 lt(x, 0') -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0', y) -> 0' 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0', y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0'), s(0')) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 Types: 1010.25/291.53 lt :: 0':s -> 0':s -> true:false 1010.25/291.53 0' :: 0':s 1010.25/291.53 s :: 0':s -> 0':s 1010.25/291.53 true :: true:false 1010.25/291.53 false :: true:false 1010.25/291.53 times :: 0':s -> 0':s -> 0':s 1010.25/291.53 plus :: 0':s -> 0':s -> 0':s 1010.25/291.53 fac :: 0':s -> 0':s 1010.25/291.53 loop :: 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 hole_true:false1_0 :: true:false 1010.25/291.53 hole_0':s2_0 :: 0':s 1010.25/291.53 gen_0':s3_0 :: Nat -> 0':s 1010.25/291.53 1010.25/291.53 1010.25/291.53 Lemmas: 1010.25/291.53 lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) 1010.25/291.53 plus(gen_0':s3_0(n305_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n305_0, b)), rt in Omega(1 + n305_0) 1010.25/291.53 1010.25/291.53 1010.25/291.53 Generator Equations: 1010.25/291.53 gen_0':s3_0(0) <=> 0' 1010.25/291.53 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1010.25/291.53 1010.25/291.53 1010.25/291.53 The following defined symbols remain to be analysed: 1010.25/291.53 times, loop 1010.25/291.53 1010.25/291.53 They will be analysed ascendingly in the following order: 1010.25/291.53 times < loop 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (15) RewriteLemmaProof (LOWER BOUND(ID)) 1010.25/291.53 Proved the following rewrite lemma: 1010.25/291.53 times(gen_0':s3_0(n912_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n912_0, b)), rt in Omega(1 + b*n912_0 + n912_0) 1010.25/291.53 1010.25/291.53 Induction Base: 1010.25/291.53 times(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 1010.25/291.53 0' 1010.25/291.53 1010.25/291.53 Induction Step: 1010.25/291.53 times(gen_0':s3_0(+(n912_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) 1010.25/291.53 plus(gen_0':s3_0(b), times(gen_0':s3_0(n912_0), gen_0':s3_0(b))) ->_IH 1010.25/291.53 plus(gen_0':s3_0(b), gen_0':s3_0(*(c913_0, b))) ->_L^Omega(1 + b) 1010.25/291.53 gen_0':s3_0(+(b, *(n912_0, b))) 1010.25/291.53 1010.25/291.53 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (16) 1010.25/291.53 Complex Obligation (BEST) 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (17) 1010.25/291.53 Obligation: 1010.25/291.53 Proved the lower bound n^2 for the following obligation: 1010.25/291.53 1010.25/291.53 Innermost TRS: 1010.25/291.53 Rules: 1010.25/291.53 lt(0', s(x)) -> true 1010.25/291.53 lt(x, 0') -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0', y) -> 0' 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0', y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0'), s(0')) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 Types: 1010.25/291.53 lt :: 0':s -> 0':s -> true:false 1010.25/291.53 0' :: 0':s 1010.25/291.53 s :: 0':s -> 0':s 1010.25/291.53 true :: true:false 1010.25/291.53 false :: true:false 1010.25/291.53 times :: 0':s -> 0':s -> 0':s 1010.25/291.53 plus :: 0':s -> 0':s -> 0':s 1010.25/291.53 fac :: 0':s -> 0':s 1010.25/291.53 loop :: 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 hole_true:false1_0 :: true:false 1010.25/291.53 hole_0':s2_0 :: 0':s 1010.25/291.53 gen_0':s3_0 :: Nat -> 0':s 1010.25/291.53 1010.25/291.53 1010.25/291.53 Lemmas: 1010.25/291.53 lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) 1010.25/291.53 plus(gen_0':s3_0(n305_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n305_0, b)), rt in Omega(1 + n305_0) 1010.25/291.53 1010.25/291.53 1010.25/291.53 Generator Equations: 1010.25/291.53 gen_0':s3_0(0) <=> 0' 1010.25/291.53 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1010.25/291.53 1010.25/291.53 1010.25/291.53 The following defined symbols remain to be analysed: 1010.25/291.53 times, loop 1010.25/291.53 1010.25/291.53 They will be analysed ascendingly in the following order: 1010.25/291.53 times < loop 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (18) LowerBoundPropagationProof (FINISHED) 1010.25/291.53 Propagated lower bound. 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (19) 1010.25/291.53 BOUNDS(n^2, INF) 1010.25/291.53 1010.25/291.53 ---------------------------------------- 1010.25/291.53 1010.25/291.53 (20) 1010.25/291.53 Obligation: 1010.25/291.53 Innermost TRS: 1010.25/291.53 Rules: 1010.25/291.53 lt(0', s(x)) -> true 1010.25/291.53 lt(x, 0') -> false 1010.25/291.53 lt(s(x), s(y)) -> lt(x, y) 1010.25/291.53 times(0', y) -> 0' 1010.25/291.53 times(s(x), y) -> plus(y, times(x, y)) 1010.25/291.53 plus(0', y) -> y 1010.25/291.53 plus(s(x), y) -> s(plus(x, y)) 1010.25/291.53 fac(x) -> loop(x, s(0'), s(0')) 1010.25/291.53 loop(x, c, y) -> if(lt(x, c), x, c, y) 1010.25/291.53 if(false, x, c, y) -> loop(x, s(c), times(y, s(c))) 1010.25/291.53 if(true, x, c, y) -> y 1010.25/291.53 1010.25/291.53 Types: 1010.25/291.53 lt :: 0':s -> 0':s -> true:false 1010.25/291.53 0' :: 0':s 1010.25/291.53 s :: 0':s -> 0':s 1010.25/291.53 true :: true:false 1010.25/291.53 false :: true:false 1010.25/291.53 times :: 0':s -> 0':s -> 0':s 1010.25/291.53 plus :: 0':s -> 0':s -> 0':s 1010.25/291.53 fac :: 0':s -> 0':s 1010.25/291.53 loop :: 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 if :: true:false -> 0':s -> 0':s -> 0':s -> 0':s 1010.25/291.53 hole_true:false1_0 :: true:false 1010.25/291.53 hole_0':s2_0 :: 0':s 1010.25/291.53 gen_0':s3_0 :: Nat -> 0':s 1010.25/291.53 1010.25/291.53 1010.25/291.53 Lemmas: 1010.25/291.53 lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) -> true, rt in Omega(1 + n5_0) 1010.25/291.53 plus(gen_0':s3_0(n305_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n305_0, b)), rt in Omega(1 + n305_0) 1010.25/291.53 times(gen_0':s3_0(n912_0), gen_0':s3_0(b)) -> gen_0':s3_0(*(n912_0, b)), rt in Omega(1 + b*n912_0 + n912_0) 1010.25/291.53 1010.25/291.53 1010.25/291.53 Generator Equations: 1010.25/291.53 gen_0':s3_0(0) <=> 0' 1010.25/291.53 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 1010.25/291.53 1010.25/291.53 1010.25/291.53 The following defined symbols remain to be analysed: 1010.25/291.53 loop 1010.46/291.59 EOF