18.98/5.88 WORST_CASE(Omega(n^1), O(n^1)) 18.98/5.89 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 18.98/5.89 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 18.98/5.89 18.98/5.89 18.98/5.89 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 18.98/5.89 18.98/5.89 (0) CpxTRS 18.98/5.89 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 18.98/5.89 (2) CpxWeightedTrs 18.98/5.89 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 18.98/5.89 (4) CpxTypedWeightedTrs 18.98/5.89 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 18.98/5.89 (6) CpxTypedWeightedCompleteTrs 18.98/5.89 (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 18.98/5.89 (8) CpxRNTS 18.98/5.89 (9) CompleteCoflocoProof [FINISHED, 491 ms] 18.98/5.89 (10) BOUNDS(1, n^1) 18.98/5.89 (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 18.98/5.89 (12) CpxTRS 18.98/5.89 (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 18.98/5.89 (14) typed CpxTrs 18.98/5.89 (15) OrderProof [LOWER BOUND(ID), 0 ms] 18.98/5.89 (16) typed CpxTrs 18.98/5.89 (17) RewriteLemmaProof [LOWER BOUND(ID), 274 ms] 18.98/5.89 (18) BEST 18.98/5.89 (19) proven lower bound 18.98/5.89 (20) LowerBoundPropagationProof [FINISHED, 0 ms] 18.98/5.89 (21) BOUNDS(n^1, INF) 18.98/5.89 (22) typed CpxTrs 18.98/5.89 (23) RewriteLemmaProof [LOWER BOUND(ID), 55 ms] 18.98/5.89 (24) typed CpxTrs 18.98/5.89 18.98/5.89 18.98/5.89 ---------------------------------------- 18.98/5.89 18.98/5.89 (0) 18.98/5.89 Obligation: 18.98/5.89 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 18.98/5.89 18.98/5.89 18.98/5.89 The TRS R consists of the following rules: 18.98/5.89 18.98/5.89 le(0, y) -> true 18.98/5.89 le(s(x), 0) -> false 18.98/5.89 le(s(x), s(y)) -> le(x, y) 18.98/5.89 minus(x, 0) -> x 18.98/5.89 minus(s(x), s(y)) -> minus(x, y) 18.98/5.89 mod(0, y) -> 0 18.98/5.89 mod(s(x), 0) -> 0 18.98/5.89 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) 18.98/5.89 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) 18.98/5.89 if_mod(false, s(x), s(y)) -> s(x) 18.98/5.89 18.98/5.89 S is empty. 18.98/5.89 Rewrite Strategy: INNERMOST 18.98/5.89 ---------------------------------------- 18.98/5.89 18.98/5.89 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 18.98/5.89 Transformed relative TRS to weighted TRS 18.98/5.89 ---------------------------------------- 18.98/5.89 18.98/5.89 (2) 18.98/5.89 Obligation: 18.98/5.89 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 18.98/5.89 18.98/5.89 18.98/5.89 The TRS R consists of the following rules: 18.98/5.89 18.98/5.89 le(0, y) -> true [1] 18.98/5.89 le(s(x), 0) -> false [1] 18.98/5.89 le(s(x), s(y)) -> le(x, y) [1] 18.98/5.89 minus(x, 0) -> x [1] 18.98/5.89 minus(s(x), s(y)) -> minus(x, y) [1] 18.98/5.89 mod(0, y) -> 0 [1] 18.98/5.89 mod(s(x), 0) -> 0 [1] 18.98/5.89 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) [1] 18.98/5.89 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) [1] 18.98/5.89 if_mod(false, s(x), s(y)) -> s(x) [1] 18.98/5.89 18.98/5.89 Rewrite Strategy: INNERMOST 18.98/5.89 ---------------------------------------- 18.98/5.89 18.98/5.89 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 18.98/5.89 Infered types. 18.98/5.89 ---------------------------------------- 18.98/5.89 18.98/5.89 (4) 18.98/5.89 Obligation: 18.98/5.89 Runtime Complexity Weighted TRS with Types. 18.98/5.89 The TRS R consists of the following rules: 18.98/5.89 18.98/5.89 le(0, y) -> true [1] 18.98/5.89 le(s(x), 0) -> false [1] 18.98/5.89 le(s(x), s(y)) -> le(x, y) [1] 18.98/5.89 minus(x, 0) -> x [1] 18.98/5.89 minus(s(x), s(y)) -> minus(x, y) [1] 18.98/5.89 mod(0, y) -> 0 [1] 18.98/5.89 mod(s(x), 0) -> 0 [1] 18.98/5.89 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) [1] 18.98/5.89 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) [1] 18.98/5.89 if_mod(false, s(x), s(y)) -> s(x) [1] 18.98/5.89 18.98/5.89 The TRS has the following type information: 18.98/5.89 le :: 0:s -> 0:s -> true:false 18.98/5.89 0 :: 0:s 18.98/5.89 true :: true:false 18.98/5.89 s :: 0:s -> 0:s 18.98/5.89 false :: true:false 18.98/5.89 minus :: 0:s -> 0:s -> 0:s 18.98/5.89 mod :: 0:s -> 0:s -> 0:s 18.98/5.89 if_mod :: true:false -> 0:s -> 0:s -> 0:s 18.98/5.89 18.98/5.89 Rewrite Strategy: INNERMOST 18.98/5.89 ---------------------------------------- 18.98/5.89 18.98/5.89 (5) CompletionProof (UPPER BOUND(ID)) 18.98/5.89 The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: 18.98/5.89 18.98/5.89 minus(v0, v1) -> null_minus [0] 18.98/5.89 if_mod(v0, v1, v2) -> null_if_mod [0] 18.98/5.89 le(v0, v1) -> null_le [0] 18.98/5.89 mod(v0, v1) -> null_mod [0] 18.98/5.89 18.98/5.89 And the following fresh constants: null_minus, null_if_mod, null_le, null_mod 18.98/5.89 18.98/5.89 ---------------------------------------- 18.98/5.89 18.98/5.89 (6) 18.98/5.89 Obligation: 18.98/5.89 Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: 18.98/5.89 18.98/5.89 Runtime Complexity Weighted TRS with Types. 18.98/5.89 The TRS R consists of the following rules: 18.98/5.89 18.98/5.89 le(0, y) -> true [1] 18.98/5.89 le(s(x), 0) -> false [1] 18.98/5.89 le(s(x), s(y)) -> le(x, y) [1] 18.98/5.89 minus(x, 0) -> x [1] 18.98/5.89 minus(s(x), s(y)) -> minus(x, y) [1] 18.98/5.90 mod(0, y) -> 0 [1] 18.98/5.90 mod(s(x), 0) -> 0 [1] 18.98/5.90 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) [1] 18.98/5.90 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) [1] 18.98/5.90 if_mod(false, s(x), s(y)) -> s(x) [1] 18.98/5.90 minus(v0, v1) -> null_minus [0] 18.98/5.90 if_mod(v0, v1, v2) -> null_if_mod [0] 18.98/5.90 le(v0, v1) -> null_le [0] 18.98/5.90 mod(v0, v1) -> null_mod [0] 18.98/5.90 18.98/5.90 The TRS has the following type information: 18.98/5.90 le :: 0:s:null_minus:null_if_mod:null_mod -> 0:s:null_minus:null_if_mod:null_mod -> true:false:null_le 18.98/5.90 0 :: 0:s:null_minus:null_if_mod:null_mod 18.98/5.90 true :: true:false:null_le 18.98/5.90 s :: 0:s:null_minus:null_if_mod:null_mod -> 0:s:null_minus:null_if_mod:null_mod 18.98/5.90 false :: true:false:null_le 18.98/5.90 minus :: 0:s:null_minus:null_if_mod:null_mod -> 0:s:null_minus:null_if_mod:null_mod -> 0:s:null_minus:null_if_mod:null_mod 18.98/5.90 mod :: 0:s:null_minus:null_if_mod:null_mod -> 0:s:null_minus:null_if_mod:null_mod -> 0:s:null_minus:null_if_mod:null_mod 18.98/5.90 if_mod :: true:false:null_le -> 0:s:null_minus:null_if_mod:null_mod -> 0:s:null_minus:null_if_mod:null_mod -> 0:s:null_minus:null_if_mod:null_mod 18.98/5.90 null_minus :: 0:s:null_minus:null_if_mod:null_mod 18.98/5.90 null_if_mod :: 0:s:null_minus:null_if_mod:null_mod 18.98/5.90 null_le :: true:false:null_le 18.98/5.90 null_mod :: 0:s:null_minus:null_if_mod:null_mod 18.98/5.90 18.98/5.90 Rewrite Strategy: INNERMOST 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 18.98/5.90 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 18.98/5.90 The constant constructors are abstracted as follows: 18.98/5.90 18.98/5.90 0 => 0 18.98/5.90 true => 2 18.98/5.90 false => 1 18.98/5.90 null_minus => 0 18.98/5.90 null_if_mod => 0 18.98/5.90 null_le => 0 18.98/5.90 null_mod => 0 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (8) 18.98/5.90 Obligation: 18.98/5.90 Complexity RNTS consisting of the following rules: 18.98/5.90 18.98/5.90 if_mod(z, z', z'') -{ 1 }-> mod(minus(x, y), 1 + y) :|: z = 2, z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y 18.98/5.90 if_mod(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 18.98/5.90 if_mod(z, z', z'') -{ 1 }-> 1 + x :|: z' = 1 + x, z = 1, x >= 0, y >= 0, z'' = 1 + y 18.98/5.90 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 18.98/5.90 le(z, z') -{ 1 }-> 2 :|: y >= 0, z = 0, z' = y 18.98/5.90 le(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 18.98/5.90 le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 18.98/5.90 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 18.98/5.90 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 18.98/5.90 minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 18.98/5.90 mod(z, z') -{ 1 }-> if_mod(le(y, x), 1 + x, 1 + y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 18.98/5.90 mod(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y 18.98/5.90 mod(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 18.98/5.90 mod(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 18.98/5.90 18.98/5.90 Only complete derivations are relevant for the runtime complexity. 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (9) CompleteCoflocoProof (FINISHED) 18.98/5.90 Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: 18.98/5.90 18.98/5.90 eq(start(V1, V, V14),0,[le(V1, V, Out)],[V1 >= 0,V >= 0]). 18.98/5.90 eq(start(V1, V, V14),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). 18.98/5.90 eq(start(V1, V, V14),0,[mod(V1, V, Out)],[V1 >= 0,V >= 0]). 18.98/5.90 eq(start(V1, V, V14),0,[fun(V1, V, V14, Out)],[V1 >= 0,V >= 0,V14 >= 0]). 18.98/5.90 eq(le(V1, V, Out),1,[],[Out = 2,V2 >= 0,V1 = 0,V = V2]). 18.98/5.90 eq(le(V1, V, Out),1,[],[Out = 1,V3 >= 0,V1 = 1 + V3,V = 0]). 18.98/5.90 eq(le(V1, V, Out),1,[le(V4, V5, Ret)],[Out = Ret,V = 1 + V5,V4 >= 0,V5 >= 0,V1 = 1 + V4]). 18.98/5.90 eq(minus(V1, V, Out),1,[],[Out = V6,V6 >= 0,V1 = V6,V = 0]). 18.98/5.90 eq(minus(V1, V, Out),1,[minus(V7, V8, Ret1)],[Out = Ret1,V = 1 + V8,V7 >= 0,V8 >= 0,V1 = 1 + V7]). 18.98/5.90 eq(mod(V1, V, Out),1,[],[Out = 0,V9 >= 0,V1 = 0,V = V9]). 18.98/5.90 eq(mod(V1, V, Out),1,[],[Out = 0,V10 >= 0,V1 = 1 + V10,V = 0]). 18.98/5.90 eq(mod(V1, V, Out),1,[le(V11, V12, Ret0),fun(Ret0, 1 + V12, 1 + V11, Ret2)],[Out = Ret2,V = 1 + V11,V12 >= 0,V11 >= 0,V1 = 1 + V12]). 18.98/5.90 eq(fun(V1, V, V14, Out),1,[minus(V15, V13, Ret01),mod(Ret01, 1 + V13, Ret3)],[Out = Ret3,V1 = 2,V = 1 + V15,V15 >= 0,V13 >= 0,V14 = 1 + V13]). 18.98/5.90 eq(fun(V1, V, V14, Out),1,[],[Out = 1 + V16,V = 1 + V16,V1 = 1,V16 >= 0,V17 >= 0,V14 = 1 + V17]). 18.98/5.90 eq(minus(V1, V, Out),0,[],[Out = 0,V19 >= 0,V18 >= 0,V1 = V19,V = V18]). 18.98/5.90 eq(fun(V1, V, V14, Out),0,[],[Out = 0,V21 >= 0,V14 = V22,V20 >= 0,V1 = V21,V = V20,V22 >= 0]). 18.98/5.90 eq(le(V1, V, Out),0,[],[Out = 0,V24 >= 0,V23 >= 0,V1 = V24,V = V23]). 18.98/5.90 eq(mod(V1, V, Out),0,[],[Out = 0,V25 >= 0,V26 >= 0,V1 = V25,V = V26]). 18.98/5.90 input_output_vars(le(V1,V,Out),[V1,V],[Out]). 18.98/5.90 input_output_vars(minus(V1,V,Out),[V1,V],[Out]). 18.98/5.90 input_output_vars(mod(V1,V,Out),[V1,V],[Out]). 18.98/5.90 input_output_vars(fun(V1,V,V14,Out),[V1,V,V14],[Out]). 18.98/5.90 18.98/5.90 18.98/5.90 CoFloCo proof output: 18.98/5.90 Preprocessing Cost Relations 18.98/5.90 ===================================== 18.98/5.90 18.98/5.90 #### Computed strongly connected components 18.98/5.90 0. recursive : [minus/3] 18.98/5.90 1. recursive : [le/3] 18.98/5.90 2. recursive : [fun/4,(mod)/3] 18.98/5.90 3. non_recursive : [start/3] 18.98/5.90 18.98/5.90 #### Obtained direct recursion through partial evaluation 18.98/5.90 0. SCC is partially evaluated into minus/3 18.98/5.90 1. SCC is partially evaluated into le/3 18.98/5.90 2. SCC is partially evaluated into (mod)/3 18.98/5.90 3. SCC is partially evaluated into start/3 18.98/5.90 18.98/5.90 Control-Flow Refinement of Cost Relations 18.98/5.90 ===================================== 18.98/5.90 18.98/5.90 ### Specialization of cost equations minus/3 18.98/5.90 * CE 9 is refined into CE [20] 18.98/5.90 * CE 7 is refined into CE [21] 18.98/5.90 * CE 8 is refined into CE [22] 18.98/5.90 18.98/5.90 18.98/5.90 ### Cost equations --> "Loop" of minus/3 18.98/5.90 * CEs [22] --> Loop 14 18.98/5.90 * CEs [20] --> Loop 15 18.98/5.90 * CEs [21] --> Loop 16 18.98/5.90 18.98/5.90 ### Ranking functions of CR minus(V1,V,Out) 18.98/5.90 * RF of phase [14]: [V,V1] 18.98/5.90 18.98/5.90 #### Partial ranking functions of CR minus(V1,V,Out) 18.98/5.90 * Partial RF of phase [14]: 18.98/5.90 - RF of loop [14:1]: 18.98/5.90 V 18.98/5.90 V1 18.98/5.90 18.98/5.90 18.98/5.90 ### Specialization of cost equations le/3 18.98/5.90 * CE 19 is refined into CE [23] 18.98/5.90 * CE 17 is refined into CE [24] 18.98/5.90 * CE 16 is refined into CE [25] 18.98/5.90 * CE 18 is refined into CE [26] 18.98/5.90 18.98/5.90 18.98/5.90 ### Cost equations --> "Loop" of le/3 18.98/5.90 * CEs [26] --> Loop 17 18.98/5.90 * CEs [23] --> Loop 18 18.98/5.90 * CEs [24] --> Loop 19 18.98/5.90 * CEs [25] --> Loop 20 18.98/5.90 18.98/5.90 ### Ranking functions of CR le(V1,V,Out) 18.98/5.90 * RF of phase [17]: [V,V1] 18.98/5.90 18.98/5.90 #### Partial ranking functions of CR le(V1,V,Out) 18.98/5.90 * Partial RF of phase [17]: 18.98/5.90 - RF of loop [17:1]: 18.98/5.90 V 18.98/5.90 V1 18.98/5.90 18.98/5.90 18.98/5.90 ### Specialization of cost equations (mod)/3 18.98/5.90 * CE 11 is refined into CE [27,28] 18.98/5.90 * CE 14 is refined into CE [29] 18.98/5.90 * CE 10 is refined into CE [30,31,32,33,34] 18.98/5.90 * CE 13 is refined into CE [35] 18.98/5.90 * CE 15 is refined into CE [36] 18.98/5.90 * CE 12 is refined into CE [37,38,39,40] 18.98/5.90 18.98/5.90 18.98/5.90 ### Cost equations --> "Loop" of (mod)/3 18.98/5.90 * CEs [40] --> Loop 21 18.98/5.90 * CEs [39] --> Loop 22 18.98/5.90 * CEs [37] --> Loop 23 18.98/5.90 * CEs [38] --> Loop 24 18.98/5.90 * CEs [28] --> Loop 25 18.98/5.90 * CEs [30] --> Loop 26 18.98/5.90 * CEs [29] --> Loop 27 18.98/5.90 * CEs [27] --> Loop 28 18.98/5.90 * CEs [31] --> Loop 29 18.98/5.90 * CEs [32,33,34,35,36] --> Loop 30 18.98/5.90 18.98/5.90 ### Ranking functions of CR mod(V1,V,Out) 18.98/5.90 * RF of phase [21]: [V1-1,V1-V+1] 18.98/5.90 * RF of phase [23]: [V1] 18.98/5.90 18.98/5.90 #### Partial ranking functions of CR mod(V1,V,Out) 18.98/5.90 * Partial RF of phase [21]: 18.98/5.90 - RF of loop [21:1]: 18.98/5.90 V1-1 18.98/5.90 V1-V+1 18.98/5.90 * Partial RF of phase [23]: 18.98/5.90 - RF of loop [23:1]: 18.98/5.90 V1 18.98/5.90 18.98/5.90 18.98/5.90 ### Specialization of cost equations start/3 18.98/5.90 * CE 3 is refined into CE [41,42,43,44,45,46,47,48] 18.98/5.90 * CE 1 is refined into CE [49] 18.98/5.90 * CE 2 is refined into CE [50] 18.98/5.90 * CE 4 is refined into CE [51,52,53,54,55] 18.98/5.90 * CE 5 is refined into CE [56,57,58] 18.98/5.90 * CE 6 is refined into CE [59,60,61,62,63,64,65] 18.98/5.90 18.98/5.90 18.98/5.90 ### Cost equations --> "Loop" of start/3 18.98/5.90 * CEs [62] --> Loop 31 18.98/5.90 * CEs [52,56,61] --> Loop 32 18.98/5.90 * CEs [45] --> Loop 33 18.98/5.90 * CEs [41,42,43,44,46,47,48] --> Loop 34 18.98/5.90 * CEs [60] --> Loop 35 18.98/5.90 * CEs [50] --> Loop 36 18.98/5.90 * CEs [49,51,53,54,55,57,58,59,63,64,65] --> Loop 37 18.98/5.90 18.98/5.90 ### Ranking functions of CR start(V1,V,V14) 18.98/5.90 18.98/5.90 #### Partial ranking functions of CR start(V1,V,V14) 18.98/5.90 18.98/5.90 18.98/5.90 Computing Bounds 18.98/5.90 ===================================== 18.98/5.90 18.98/5.90 #### Cost of chains of minus(V1,V,Out): 18.98/5.90 * Chain [[14],16]: 1*it(14)+1 18.98/5.90 Such that:it(14) =< V 18.98/5.90 18.98/5.90 with precondition: [V1=Out+V,V>=1,V1>=V] 18.98/5.90 18.98/5.90 * Chain [[14],15]: 1*it(14)+0 18.98/5.90 Such that:it(14) =< V 18.98/5.90 18.98/5.90 with precondition: [Out=0,V1>=1,V>=1] 18.98/5.90 18.98/5.90 * Chain [16]: 1 18.98/5.90 with precondition: [V=0,V1=Out,V1>=0] 18.98/5.90 18.98/5.90 * Chain [15]: 0 18.98/5.90 with precondition: [Out=0,V1>=0,V>=0] 18.98/5.90 18.98/5.90 18.98/5.90 #### Cost of chains of le(V1,V,Out): 18.98/5.90 * Chain [[17],20]: 1*it(17)+1 18.98/5.90 Such that:it(17) =< V1 18.98/5.90 18.98/5.90 with precondition: [Out=2,V1>=1,V>=V1] 18.98/5.90 18.98/5.90 * Chain [[17],19]: 1*it(17)+1 18.98/5.90 Such that:it(17) =< V 18.98/5.90 18.98/5.90 with precondition: [Out=1,V>=1,V1>=V+1] 18.98/5.90 18.98/5.90 * Chain [[17],18]: 1*it(17)+0 18.98/5.90 Such that:it(17) =< V 18.98/5.90 18.98/5.90 with precondition: [Out=0,V1>=1,V>=1] 18.98/5.90 18.98/5.90 * Chain [20]: 1 18.98/5.90 with precondition: [V1=0,Out=2,V>=0] 18.98/5.90 18.98/5.90 * Chain [19]: 1 18.98/5.90 with precondition: [V=0,Out=1,V1>=1] 18.98/5.90 18.98/5.90 * Chain [18]: 0 18.98/5.90 with precondition: [Out=0,V1>=0,V>=0] 18.98/5.90 18.98/5.90 18.98/5.90 #### Cost of chains of mod(V1,V,Out): 18.98/5.90 * Chain [[23],30]: 6*it(23)+1*s(5)+2 18.98/5.90 Such that:s(5) =< 1 18.98/5.90 aux(2) =< V1 18.98/5.90 it(23) =< aux(2) 18.98/5.90 18.98/5.90 with precondition: [V=1,Out=0,V1>=1] 18.98/5.90 18.98/5.90 * Chain [[23],26]: 4*it(23)+2 18.98/5.90 Such that:it(23) =< V1 18.98/5.90 18.98/5.90 with precondition: [V=1,Out=0,V1>=2] 18.98/5.90 18.98/5.90 * Chain [[23],24,30]: 4*it(23)+1*s(5)+5 18.98/5.90 Such that:s(5) =< 1 18.98/5.90 it(23) =< V1 18.98/5.90 18.98/5.90 with precondition: [V=1,Out=0,V1>=2] 18.98/5.90 18.98/5.90 * Chain [[21],30]: 8*it(21)+1*s(5)+2 18.98/5.90 Such that:s(5) =< V 18.98/5.90 aux(6) =< V1 18.98/5.90 it(21) =< aux(6) 18.98/5.90 18.98/5.90 with precondition: [Out=0,V>=2,V1>=V] 18.98/5.90 18.98/5.90 * Chain [[21],29]: 4*it(21)+2*s(11)+2 18.98/5.90 Such that:it(21) =< V1-V+1 18.98/5.90 aux(7) =< V1 18.98/5.90 it(21) =< aux(7) 18.98/5.90 s(11) =< aux(7) 18.98/5.90 18.98/5.90 with precondition: [Out=0,V>=2,V1>=V+1] 18.98/5.90 18.98/5.90 * Chain [[21],28]: 4*it(21)+2*s(11)+3 18.98/5.90 Such that:it(21) =< V1-V+1 18.98/5.90 aux(8) =< V1 18.98/5.90 it(21) =< aux(8) 18.98/5.90 s(11) =< aux(8) 18.98/5.90 18.98/5.90 with precondition: [Out=1,V>=2,V1>=V+1] 18.98/5.90 18.98/5.90 * Chain [[21],25]: 4*it(21)+2*s(11)+1*s(13)+3 18.98/5.90 Such that:aux(4) =< V1 18.98/5.90 it(21) =< V1-V+1 18.98/5.90 aux(5) =< V1-Out 18.98/5.90 s(13) =< Out 18.98/5.90 it(21) =< aux(4) 18.98/5.90 s(12) =< aux(4) 18.98/5.90 it(21) =< aux(5) 18.98/5.90 s(12) =< aux(5) 18.98/5.90 s(11) =< s(12) 18.98/5.90 18.98/5.90 with precondition: [Out>=2,V>=Out+1,V1>=Out+V] 18.98/5.90 18.98/5.90 * Chain [[21],22,30]: 4*it(21)+3*s(5)+2*s(11)+5 18.98/5.90 Such that:aux(4) =< V1 18.98/5.90 aux(10) =< V 18.98/5.90 aux(11) =< V1-V 18.98/5.90 it(21) =< aux(11) 18.98/5.90 s(5) =< aux(10) 18.98/5.90 it(21) =< aux(4) 18.98/5.90 s(12) =< aux(4) 18.98/5.90 s(12) =< aux(11) 18.98/5.90 s(11) =< s(12) 18.98/5.90 18.98/5.90 with precondition: [Out=0,V>=2,V1>=2*V] 18.98/5.90 18.98/5.90 * Chain [30]: 2*s(3)+1*s(5)+2 18.98/5.90 Such that:s(5) =< V 18.98/5.90 aux(1) =< V1 18.98/5.90 s(3) =< aux(1) 18.98/5.90 18.98/5.90 with precondition: [Out=0,V1>=0,V>=0] 18.98/5.90 18.98/5.90 * Chain [29]: 2 18.98/5.90 with precondition: [V1=1,Out=0,V>=2] 18.98/5.90 18.98/5.90 * Chain [28]: 3 18.98/5.90 with precondition: [V1=1,Out=1,V>=2] 18.98/5.90 18.98/5.90 * Chain [27]: 1 18.98/5.90 with precondition: [V=0,Out=0,V1>=1] 18.98/5.90 18.98/5.90 * Chain [26]: 2 18.98/5.90 with precondition: [V=1,Out=0,V1>=1] 18.98/5.90 18.98/5.90 * Chain [25]: 1*s(13)+3 18.98/5.90 Such that:s(13) =< V1 18.98/5.90 18.98/5.90 with precondition: [V1=Out,V1>=2,V>=V1+1] 18.98/5.90 18.98/5.90 * Chain [24,30]: 1*s(5)+5 18.98/5.90 Such that:s(5) =< 1 18.98/5.90 18.98/5.90 with precondition: [V=1,Out=0,V1>=1] 18.98/5.90 18.98/5.90 * Chain [22,30]: 3*s(5)+5 18.98/5.90 Such that:aux(10) =< V 18.98/5.90 s(5) =< aux(10) 18.98/5.90 18.98/5.90 with precondition: [Out=0,V>=2,V1>=V] 18.98/5.90 18.98/5.90 18.98/5.90 #### Cost of chains of start(V1,V,V14): 18.98/5.90 * Chain [37]: 12*s(41)+19*s(43)+12*s(47)+4*s(51)+2*s(53)+5 18.98/5.90 Such that:s(46) =< V1-V 18.98/5.90 aux(17) =< V1 18.98/5.90 aux(18) =< V1-V+1 18.98/5.90 aux(19) =< V 18.98/5.90 s(43) =< aux(17) 18.98/5.90 s(47) =< aux(18) 18.98/5.90 s(41) =< aux(19) 18.98/5.90 s(51) =< s(46) 18.98/5.90 s(51) =< aux(17) 18.98/5.90 s(52) =< aux(17) 18.98/5.90 s(52) =< s(46) 18.98/5.90 s(53) =< s(52) 18.98/5.90 s(47) =< aux(17) 18.98/5.90 18.98/5.90 with precondition: [V1>=0,V>=0] 18.98/5.90 18.98/5.90 * Chain [36]: 1 18.98/5.90 with precondition: [V1=1,V>=1,V14>=1] 18.98/5.90 18.98/5.90 * Chain [35]: 3 18.98/5.90 with precondition: [V1=1,V>=2] 18.98/5.90 18.98/5.90 * Chain [34]: 36*s(66)+11*s(69)+21*s(78)+12*s(90)+4*s(94)+2*s(96)+18*s(97)+7 18.98/5.90 Such that:s(89) =< V-2*V14 18.98/5.90 aux(24) =< 1 18.98/5.90 aux(25) =< V 18.98/5.90 aux(26) =< V-2*V14+1 18.98/5.90 aux(27) =< V-V14 18.98/5.90 aux(28) =< V14 18.98/5.90 s(90) =< aux(26) 18.98/5.90 s(97) =< aux(27) 18.98/5.90 s(78) =< aux(28) 18.98/5.90 s(66) =< aux(25) 18.98/5.90 s(69) =< aux(24) 18.98/5.90 s(94) =< s(89) 18.98/5.90 s(94) =< aux(27) 18.98/5.90 s(95) =< aux(27) 18.98/5.90 s(95) =< s(89) 18.98/5.90 s(96) =< s(95) 18.98/5.90 s(90) =< aux(27) 18.98/5.90 18.98/5.90 with precondition: [V1=2,V>=1,V14>=1] 18.98/5.90 18.98/5.90 * Chain [33]: 1*s(111)+5 18.98/5.90 Such that:s(111) =< V14 18.98/5.90 18.98/5.90 with precondition: [V1=2,V=V14+1,V>=3] 18.98/5.90 18.98/5.90 * Chain [32]: 1 18.98/5.90 with precondition: [V=0,V1>=0] 18.98/5.90 18.98/5.90 * Chain [31]: 3*s(114)+14*s(115)+5 18.98/5.90 Such that:s(112) =< 1 18.98/5.90 s(113) =< V1 18.98/5.90 s(114) =< s(112) 18.98/5.90 s(115) =< s(113) 18.98/5.90 18.98/5.90 with precondition: [V=1,V1>=1] 18.98/5.90 18.98/5.90 18.98/5.90 Closed-form bounds of start(V1,V,V14): 18.98/5.90 ------------------------------------- 18.98/5.90 * Chain [37] with precondition: [V1>=0,V>=0] 18.98/5.90 - Upper bound: 21*V1+12*V+5+nat(V1-V+1)*12+nat(V1-V)*4 18.98/5.90 - Complexity: n 18.98/5.90 * Chain [36] with precondition: [V1=1,V>=1,V14>=1] 18.98/5.90 - Upper bound: 1 18.98/5.90 - Complexity: constant 18.98/5.90 * Chain [35] with precondition: [V1=1,V>=2] 18.98/5.90 - Upper bound: 3 18.98/5.90 - Complexity: constant 18.98/5.90 * Chain [34] with precondition: [V1=2,V>=1,V14>=1] 18.98/5.90 - Upper bound: 36*V+21*V14+18+nat(V-2*V14+1)*12+nat(V-V14)*20+nat(V-2*V14)*4 18.98/5.90 - Complexity: n 18.98/5.90 * Chain [33] with precondition: [V1=2,V=V14+1,V>=3] 18.98/5.90 - Upper bound: V14+5 18.98/5.90 - Complexity: n 18.98/5.90 * Chain [32] with precondition: [V=0,V1>=0] 18.98/5.90 - Upper bound: 1 18.98/5.90 - Complexity: constant 18.98/5.90 * Chain [31] with precondition: [V=1,V1>=1] 18.98/5.90 - Upper bound: 14*V1+8 18.98/5.90 - Complexity: n 18.98/5.90 18.98/5.90 ### Maximum cost of start(V1,V,V14): max([14*V1+2+max([3,7*V1+12*V+nat(V1-V+1)*12+nat(V1-V)*4]),36*V+13+nat(V14)*20+nat(V-2*V14+1)*12+nat(V-V14)*20+nat(V-2*V14)*4+(nat(V14)+2)])+3 18.98/5.90 Asymptotic class: n 18.98/5.90 * Total analysis performed in 408 ms. 18.98/5.90 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (10) 18.98/5.90 BOUNDS(1, n^1) 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (11) RenamingProof (BOTH BOUNDS(ID, ID)) 18.98/5.90 Renamed function symbols to avoid clashes with predefined symbol. 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (12) 18.98/5.90 Obligation: 18.98/5.90 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 18.98/5.90 18.98/5.90 18.98/5.90 The TRS R consists of the following rules: 18.98/5.90 18.98/5.90 le(0', y) -> true 18.98/5.90 le(s(x), 0') -> false 18.98/5.90 le(s(x), s(y)) -> le(x, y) 18.98/5.90 minus(x, 0') -> x 18.98/5.90 minus(s(x), s(y)) -> minus(x, y) 18.98/5.90 mod(0', y) -> 0' 18.98/5.90 mod(s(x), 0') -> 0' 18.98/5.90 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) 18.98/5.90 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) 18.98/5.90 if_mod(false, s(x), s(y)) -> s(x) 18.98/5.90 18.98/5.90 S is empty. 18.98/5.90 Rewrite Strategy: INNERMOST 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 18.98/5.90 Infered types. 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (14) 18.98/5.90 Obligation: 18.98/5.90 Innermost TRS: 18.98/5.90 Rules: 18.98/5.90 le(0', y) -> true 18.98/5.90 le(s(x), 0') -> false 18.98/5.90 le(s(x), s(y)) -> le(x, y) 18.98/5.90 minus(x, 0') -> x 18.98/5.90 minus(s(x), s(y)) -> minus(x, y) 18.98/5.90 mod(0', y) -> 0' 18.98/5.90 mod(s(x), 0') -> 0' 18.98/5.90 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) 18.98/5.90 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) 18.98/5.90 if_mod(false, s(x), s(y)) -> s(x) 18.98/5.90 18.98/5.90 Types: 18.98/5.90 le :: 0':s -> 0':s -> true:false 18.98/5.90 0' :: 0':s 18.98/5.90 true :: true:false 18.98/5.90 s :: 0':s -> 0':s 18.98/5.90 false :: true:false 18.98/5.90 minus :: 0':s -> 0':s -> 0':s 18.98/5.90 mod :: 0':s -> 0':s -> 0':s 18.98/5.90 if_mod :: true:false -> 0':s -> 0':s -> 0':s 18.98/5.90 hole_true:false1_0 :: true:false 18.98/5.90 hole_0':s2_0 :: 0':s 18.98/5.90 gen_0':s3_0 :: Nat -> 0':s 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (15) OrderProof (LOWER BOUND(ID)) 18.98/5.90 Heuristically decided to analyse the following defined symbols: 18.98/5.90 le, minus, mod 18.98/5.90 18.98/5.90 They will be analysed ascendingly in the following order: 18.98/5.90 le < mod 18.98/5.90 minus < mod 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (16) 18.98/5.90 Obligation: 18.98/5.90 Innermost TRS: 18.98/5.90 Rules: 18.98/5.90 le(0', y) -> true 18.98/5.90 le(s(x), 0') -> false 18.98/5.90 le(s(x), s(y)) -> le(x, y) 18.98/5.90 minus(x, 0') -> x 18.98/5.90 minus(s(x), s(y)) -> minus(x, y) 18.98/5.90 mod(0', y) -> 0' 18.98/5.90 mod(s(x), 0') -> 0' 18.98/5.90 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) 18.98/5.90 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) 18.98/5.90 if_mod(false, s(x), s(y)) -> s(x) 18.98/5.90 18.98/5.90 Types: 18.98/5.90 le :: 0':s -> 0':s -> true:false 18.98/5.90 0' :: 0':s 18.98/5.90 true :: true:false 18.98/5.90 s :: 0':s -> 0':s 18.98/5.90 false :: true:false 18.98/5.90 minus :: 0':s -> 0':s -> 0':s 18.98/5.90 mod :: 0':s -> 0':s -> 0':s 18.98/5.90 if_mod :: true:false -> 0':s -> 0':s -> 0':s 18.98/5.90 hole_true:false1_0 :: true:false 18.98/5.90 hole_0':s2_0 :: 0':s 18.98/5.90 gen_0':s3_0 :: Nat -> 0':s 18.98/5.90 18.98/5.90 18.98/5.90 Generator Equations: 18.98/5.90 gen_0':s3_0(0) <=> 0' 18.98/5.90 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 18.98/5.90 18.98/5.90 18.98/5.90 The following defined symbols remain to be analysed: 18.98/5.90 le, minus, mod 18.98/5.90 18.98/5.90 They will be analysed ascendingly in the following order: 18.98/5.90 le < mod 18.98/5.90 minus < mod 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (17) RewriteLemmaProof (LOWER BOUND(ID)) 18.98/5.90 Proved the following rewrite lemma: 18.98/5.90 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 18.98/5.90 18.98/5.90 Induction Base: 18.98/5.90 le(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 18.98/5.90 true 18.98/5.90 18.98/5.90 Induction Step: 18.98/5.90 le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 18.98/5.90 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 18.98/5.90 true 18.98/5.90 18.98/5.90 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (18) 18.98/5.90 Complex Obligation (BEST) 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (19) 18.98/5.90 Obligation: 18.98/5.90 Proved the lower bound n^1 for the following obligation: 18.98/5.90 18.98/5.90 Innermost TRS: 18.98/5.90 Rules: 18.98/5.90 le(0', y) -> true 18.98/5.90 le(s(x), 0') -> false 18.98/5.90 le(s(x), s(y)) -> le(x, y) 18.98/5.90 minus(x, 0') -> x 18.98/5.90 minus(s(x), s(y)) -> minus(x, y) 18.98/5.90 mod(0', y) -> 0' 18.98/5.90 mod(s(x), 0') -> 0' 18.98/5.90 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) 18.98/5.90 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) 18.98/5.90 if_mod(false, s(x), s(y)) -> s(x) 18.98/5.90 18.98/5.90 Types: 18.98/5.90 le :: 0':s -> 0':s -> true:false 18.98/5.90 0' :: 0':s 18.98/5.90 true :: true:false 18.98/5.90 s :: 0':s -> 0':s 18.98/5.90 false :: true:false 18.98/5.90 minus :: 0':s -> 0':s -> 0':s 18.98/5.90 mod :: 0':s -> 0':s -> 0':s 18.98/5.90 if_mod :: true:false -> 0':s -> 0':s -> 0':s 18.98/5.90 hole_true:false1_0 :: true:false 18.98/5.90 hole_0':s2_0 :: 0':s 18.98/5.90 gen_0':s3_0 :: Nat -> 0':s 18.98/5.90 18.98/5.90 18.98/5.90 Generator Equations: 18.98/5.90 gen_0':s3_0(0) <=> 0' 18.98/5.90 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 18.98/5.90 18.98/5.90 18.98/5.90 The following defined symbols remain to be analysed: 18.98/5.90 le, minus, mod 18.98/5.90 18.98/5.90 They will be analysed ascendingly in the following order: 18.98/5.90 le < mod 18.98/5.90 minus < mod 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (20) LowerBoundPropagationProof (FINISHED) 18.98/5.90 Propagated lower bound. 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (21) 18.98/5.90 BOUNDS(n^1, INF) 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (22) 18.98/5.90 Obligation: 18.98/5.90 Innermost TRS: 18.98/5.90 Rules: 18.98/5.90 le(0', y) -> true 18.98/5.90 le(s(x), 0') -> false 18.98/5.90 le(s(x), s(y)) -> le(x, y) 18.98/5.90 minus(x, 0') -> x 18.98/5.90 minus(s(x), s(y)) -> minus(x, y) 18.98/5.90 mod(0', y) -> 0' 18.98/5.90 mod(s(x), 0') -> 0' 18.98/5.90 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) 18.98/5.90 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) 18.98/5.90 if_mod(false, s(x), s(y)) -> s(x) 18.98/5.90 18.98/5.90 Types: 18.98/5.90 le :: 0':s -> 0':s -> true:false 18.98/5.90 0' :: 0':s 18.98/5.90 true :: true:false 18.98/5.90 s :: 0':s -> 0':s 18.98/5.90 false :: true:false 18.98/5.90 minus :: 0':s -> 0':s -> 0':s 18.98/5.90 mod :: 0':s -> 0':s -> 0':s 18.98/5.90 if_mod :: true:false -> 0':s -> 0':s -> 0':s 18.98/5.90 hole_true:false1_0 :: true:false 18.98/5.90 hole_0':s2_0 :: 0':s 18.98/5.90 gen_0':s3_0 :: Nat -> 0':s 18.98/5.90 18.98/5.90 18.98/5.90 Lemmas: 18.98/5.90 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 18.98/5.90 18.98/5.90 18.98/5.90 Generator Equations: 18.98/5.90 gen_0':s3_0(0) <=> 0' 18.98/5.90 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 18.98/5.90 18.98/5.90 18.98/5.90 The following defined symbols remain to be analysed: 18.98/5.90 minus, mod 18.98/5.90 18.98/5.90 They will be analysed ascendingly in the following order: 18.98/5.90 minus < mod 18.98/5.90 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (23) RewriteLemmaProof (LOWER BOUND(ID)) 18.98/5.90 Proved the following rewrite lemma: 18.98/5.90 minus(gen_0':s3_0(n294_0), gen_0':s3_0(n294_0)) -> gen_0':s3_0(0), rt in Omega(1 + n294_0) 18.98/5.90 18.98/5.90 Induction Base: 18.98/5.90 minus(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 18.98/5.90 gen_0':s3_0(0) 18.98/5.90 18.98/5.90 Induction Step: 18.98/5.90 minus(gen_0':s3_0(+(n294_0, 1)), gen_0':s3_0(+(n294_0, 1))) ->_R^Omega(1) 18.98/5.90 minus(gen_0':s3_0(n294_0), gen_0':s3_0(n294_0)) ->_IH 18.98/5.90 gen_0':s3_0(0) 18.98/5.90 18.98/5.90 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 18.98/5.90 ---------------------------------------- 18.98/5.90 18.98/5.90 (24) 18.98/5.90 Obligation: 18.98/5.90 Innermost TRS: 18.98/5.90 Rules: 18.98/5.90 le(0', y) -> true 18.98/5.90 le(s(x), 0') -> false 18.98/5.90 le(s(x), s(y)) -> le(x, y) 18.98/5.90 minus(x, 0') -> x 18.98/5.90 minus(s(x), s(y)) -> minus(x, y) 18.98/5.90 mod(0', y) -> 0' 18.98/5.90 mod(s(x), 0') -> 0' 18.98/5.90 mod(s(x), s(y)) -> if_mod(le(y, x), s(x), s(y)) 18.98/5.90 if_mod(true, s(x), s(y)) -> mod(minus(x, y), s(y)) 18.98/5.90 if_mod(false, s(x), s(y)) -> s(x) 18.98/5.90 18.98/5.90 Types: 18.98/5.90 le :: 0':s -> 0':s -> true:false 18.98/5.90 0' :: 0':s 18.98/5.90 true :: true:false 18.98/5.90 s :: 0':s -> 0':s 18.98/5.90 false :: true:false 18.98/5.90 minus :: 0':s -> 0':s -> 0':s 18.98/5.90 mod :: 0':s -> 0':s -> 0':s 18.98/5.90 if_mod :: true:false -> 0':s -> 0':s -> 0':s 18.98/5.90 hole_true:false1_0 :: true:false 18.98/5.90 hole_0':s2_0 :: 0':s 18.98/5.90 gen_0':s3_0 :: Nat -> 0':s 18.98/5.90 18.98/5.90 18.98/5.90 Lemmas: 18.98/5.90 le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 18.98/5.90 minus(gen_0':s3_0(n294_0), gen_0':s3_0(n294_0)) -> gen_0':s3_0(0), rt in Omega(1 + n294_0) 18.98/5.90 18.98/5.90 18.98/5.90 Generator Equations: 18.98/5.90 gen_0':s3_0(0) <=> 0' 18.98/5.90 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 18.98/5.90 18.98/5.90 18.98/5.90 The following defined symbols remain to be analysed: 18.98/5.90 mod 18.98/5.92 EOF