11.71/3.82 WORST_CASE(Omega(n^2), O(n^2)) 11.88/3.83 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 11.88/3.83 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 11.88/3.83 11.88/3.83 11.88/3.83 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). 11.88/3.83 11.88/3.83 (0) CpxTRS 11.88/3.83 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 11.88/3.83 (2) CpxWeightedTrs 11.88/3.83 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 11.88/3.83 (4) CpxTypedWeightedTrs 11.88/3.83 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 11.88/3.83 (6) CpxTypedWeightedCompleteTrs 11.88/3.83 (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 11.88/3.83 (8) CpxRNTS 11.88/3.83 (9) CompleteCoflocoProof [FINISHED, 162 ms] 11.88/3.83 (10) BOUNDS(1, n^2) 11.88/3.83 (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 11.88/3.83 (12) CpxTRS 11.88/3.83 (13) SlicingProof [LOWER BOUND(ID), 0 ms] 11.88/3.83 (14) CpxTRS 11.88/3.83 (15) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 11.88/3.83 (16) typed CpxTrs 11.88/3.83 (17) OrderProof [LOWER BOUND(ID), 0 ms] 11.88/3.83 (18) typed CpxTrs 11.88/3.83 (19) RewriteLemmaProof [LOWER BOUND(ID), 301 ms] 11.88/3.83 (20) BEST 11.88/3.83 (21) proven lower bound 11.88/3.83 (22) LowerBoundPropagationProof [FINISHED, 0 ms] 11.88/3.83 (23) BOUNDS(n^1, INF) 11.88/3.83 (24) typed CpxTrs 11.88/3.83 (25) RewriteLemmaProof [LOWER BOUND(ID), 8 ms] 11.88/3.83 (26) proven lower bound 11.88/3.83 (27) LowerBoundPropagationProof [FINISHED, 0 ms] 11.88/3.83 (28) BOUNDS(n^2, INF) 11.88/3.83 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (0) 11.88/3.83 Obligation: 11.88/3.83 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, n^2). 11.88/3.83 11.88/3.83 11.88/3.83 The TRS R consists of the following rules: 11.88/3.83 11.88/3.83 naiverev(Cons(x, xs)) -> app(naiverev(xs), Cons(x, Nil)) 11.88/3.83 app(Cons(x, xs), ys) -> Cons(x, app(xs, ys)) 11.88/3.83 notEmpty(Cons(x, xs)) -> True 11.88/3.83 notEmpty(Nil) -> False 11.88/3.83 naiverev(Nil) -> Nil 11.88/3.83 app(Nil, ys) -> ys 11.88/3.83 goal(xs) -> naiverev(xs) 11.88/3.83 11.88/3.83 S is empty. 11.88/3.83 Rewrite Strategy: INNERMOST 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 11.88/3.83 Transformed relative TRS to weighted TRS 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (2) 11.88/3.83 Obligation: 11.88/3.83 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). 11.88/3.83 11.88/3.83 11.88/3.83 The TRS R consists of the following rules: 11.88/3.83 11.88/3.83 naiverev(Cons(x, xs)) -> app(naiverev(xs), Cons(x, Nil)) [1] 11.88/3.83 app(Cons(x, xs), ys) -> Cons(x, app(xs, ys)) [1] 11.88/3.83 notEmpty(Cons(x, xs)) -> True [1] 11.88/3.83 notEmpty(Nil) -> False [1] 11.88/3.83 naiverev(Nil) -> Nil [1] 11.88/3.83 app(Nil, ys) -> ys [1] 11.88/3.83 goal(xs) -> naiverev(xs) [1] 11.88/3.83 11.88/3.83 Rewrite Strategy: INNERMOST 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 11.88/3.83 Infered types. 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (4) 11.88/3.83 Obligation: 11.88/3.83 Runtime Complexity Weighted TRS with Types. 11.88/3.83 The TRS R consists of the following rules: 11.88/3.83 11.88/3.83 naiverev(Cons(x, xs)) -> app(naiverev(xs), Cons(x, Nil)) [1] 11.88/3.83 app(Cons(x, xs), ys) -> Cons(x, app(xs, ys)) [1] 11.88/3.83 notEmpty(Cons(x, xs)) -> True [1] 11.88/3.83 notEmpty(Nil) -> False [1] 11.88/3.83 naiverev(Nil) -> Nil [1] 11.88/3.83 app(Nil, ys) -> ys [1] 11.88/3.83 goal(xs) -> naiverev(xs) [1] 11.88/3.83 11.88/3.83 The TRS has the following type information: 11.88/3.83 naiverev :: Cons:Nil -> Cons:Nil 11.88/3.83 Cons :: a -> Cons:Nil -> Cons:Nil 11.88/3.83 app :: Cons:Nil -> Cons:Nil -> Cons:Nil 11.88/3.83 Nil :: Cons:Nil 11.88/3.83 notEmpty :: Cons:Nil -> True:False 11.88/3.83 True :: True:False 11.88/3.83 False :: True:False 11.88/3.83 goal :: Cons:Nil -> Cons:Nil 11.88/3.83 11.88/3.83 Rewrite Strategy: INNERMOST 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (5) CompletionProof (UPPER BOUND(ID)) 11.88/3.83 The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: 11.88/3.83 none 11.88/3.83 11.88/3.83 And the following fresh constants: const 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (6) 11.88/3.83 Obligation: 11.88/3.83 Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: 11.88/3.83 11.88/3.83 Runtime Complexity Weighted TRS with Types. 11.88/3.83 The TRS R consists of the following rules: 11.88/3.83 11.88/3.83 naiverev(Cons(x, xs)) -> app(naiverev(xs), Cons(x, Nil)) [1] 11.88/3.83 app(Cons(x, xs), ys) -> Cons(x, app(xs, ys)) [1] 11.88/3.83 notEmpty(Cons(x, xs)) -> True [1] 11.88/3.83 notEmpty(Nil) -> False [1] 11.88/3.83 naiverev(Nil) -> Nil [1] 11.88/3.83 app(Nil, ys) -> ys [1] 11.88/3.83 goal(xs) -> naiverev(xs) [1] 11.88/3.83 11.88/3.83 The TRS has the following type information: 11.88/3.83 naiverev :: Cons:Nil -> Cons:Nil 11.88/3.83 Cons :: a -> Cons:Nil -> Cons:Nil 11.88/3.83 app :: Cons:Nil -> Cons:Nil -> Cons:Nil 11.88/3.83 Nil :: Cons:Nil 11.88/3.83 notEmpty :: Cons:Nil -> True:False 11.88/3.83 True :: True:False 11.88/3.83 False :: True:False 11.88/3.83 goal :: Cons:Nil -> Cons:Nil 11.88/3.83 const :: a 11.88/3.83 11.88/3.83 Rewrite Strategy: INNERMOST 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 11.88/3.83 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 11.88/3.83 The constant constructors are abstracted as follows: 11.88/3.83 11.88/3.83 Nil => 0 11.88/3.83 True => 1 11.88/3.83 False => 0 11.88/3.83 const => 0 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (8) 11.88/3.83 Obligation: 11.88/3.83 Complexity RNTS consisting of the following rules: 11.88/3.83 11.88/3.83 app(z, z') -{ 1 }-> ys :|: z' = ys, ys >= 0, z = 0 11.88/3.83 app(z, z') -{ 1 }-> 1 + x + app(xs, ys) :|: z = 1 + x + xs, xs >= 0, z' = ys, ys >= 0, x >= 0 11.88/3.83 goal(z) -{ 1 }-> naiverev(xs) :|: xs >= 0, z = xs 11.88/3.83 naiverev(z) -{ 1 }-> app(naiverev(xs), 1 + x + 0) :|: z = 1 + x + xs, xs >= 0, x >= 0 11.88/3.83 naiverev(z) -{ 1 }-> 0 :|: z = 0 11.88/3.83 notEmpty(z) -{ 1 }-> 1 :|: z = 1 + x + xs, xs >= 0, x >= 0 11.88/3.83 notEmpty(z) -{ 1 }-> 0 :|: z = 0 11.88/3.83 11.88/3.83 Only complete derivations are relevant for the runtime complexity. 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (9) CompleteCoflocoProof (FINISHED) 11.88/3.83 Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: 11.88/3.83 11.88/3.83 eq(start(V, V3),0,[naiverev(V, Out)],[V >= 0]). 11.88/3.83 eq(start(V, V3),0,[app(V, V3, Out)],[V >= 0,V3 >= 0]). 11.88/3.83 eq(start(V, V3),0,[notEmpty(V, Out)],[V >= 0]). 11.88/3.83 eq(start(V, V3),0,[goal(V, Out)],[V >= 0]). 11.88/3.83 eq(naiverev(V, Out),1,[naiverev(V1, Ret0),app(Ret0, 1 + V2 + 0, Ret)],[Out = Ret,V = 1 + V1 + V2,V1 >= 0,V2 >= 0]). 11.88/3.83 eq(app(V, V3, Out),1,[app(V5, V6, Ret1)],[Out = 1 + Ret1 + V4,V = 1 + V4 + V5,V5 >= 0,V3 = V6,V6 >= 0,V4 >= 0]). 11.88/3.83 eq(notEmpty(V, Out),1,[],[Out = 1,V = 1 + V7 + V8,V8 >= 0,V7 >= 0]). 11.88/3.83 eq(notEmpty(V, Out),1,[],[Out = 0,V = 0]). 11.88/3.83 eq(naiverev(V, Out),1,[],[Out = 0,V = 0]). 11.88/3.83 eq(app(V, V3, Out),1,[],[Out = V9,V3 = V9,V9 >= 0,V = 0]). 11.88/3.83 eq(goal(V, Out),1,[naiverev(V10, Ret2)],[Out = Ret2,V10 >= 0,V = V10]). 11.88/3.83 input_output_vars(naiverev(V,Out),[V],[Out]). 11.88/3.83 input_output_vars(app(V,V3,Out),[V,V3],[Out]). 11.88/3.83 input_output_vars(notEmpty(V,Out),[V],[Out]). 11.88/3.83 input_output_vars(goal(V,Out),[V],[Out]). 11.88/3.83 11.88/3.83 11.88/3.83 CoFloCo proof output: 11.88/3.83 Preprocessing Cost Relations 11.88/3.83 ===================================== 11.88/3.83 11.88/3.83 #### Computed strongly connected components 11.88/3.83 0. recursive : [app/3] 11.88/3.83 1. recursive [non_tail] : [naiverev/2] 11.88/3.83 2. non_recursive : [goal/2] 11.88/3.83 3. non_recursive : [notEmpty/2] 11.88/3.83 4. non_recursive : [start/2] 11.88/3.83 11.88/3.83 #### Obtained direct recursion through partial evaluation 11.88/3.83 0. SCC is partially evaluated into app/3 11.88/3.83 1. SCC is partially evaluated into naiverev/2 11.88/3.83 2. SCC is completely evaluated into other SCCs 11.88/3.83 3. SCC is partially evaluated into notEmpty/2 11.88/3.83 4. SCC is partially evaluated into start/2 11.88/3.83 11.88/3.83 Control-Flow Refinement of Cost Relations 11.88/3.83 ===================================== 11.88/3.83 11.88/3.83 ### Specialization of cost equations app/3 11.88/3.83 * CE 8 is refined into CE [11] 11.88/3.83 * CE 7 is refined into CE [12] 11.88/3.83 11.88/3.83 11.88/3.83 ### Cost equations --> "Loop" of app/3 11.88/3.83 * CEs [12] --> Loop 8 11.88/3.83 * CEs [11] --> Loop 9 11.88/3.83 11.88/3.83 ### Ranking functions of CR app(V,V3,Out) 11.88/3.83 * RF of phase [8]: [V] 11.88/3.83 11.88/3.83 #### Partial ranking functions of CR app(V,V3,Out) 11.88/3.83 * Partial RF of phase [8]: 11.88/3.83 - RF of loop [8:1]: 11.88/3.83 V 11.88/3.83 11.88/3.83 11.88/3.83 ### Specialization of cost equations naiverev/2 11.88/3.83 * CE 6 is refined into CE [13] 11.88/3.83 * CE 5 is refined into CE [14,15] 11.88/3.83 11.88/3.83 11.88/3.83 ### Cost equations --> "Loop" of naiverev/2 11.88/3.83 * CEs [15] --> Loop 10 11.88/3.83 * CEs [14] --> Loop 11 11.88/3.83 * CEs [13] --> Loop 12 11.88/3.83 11.88/3.83 ### Ranking functions of CR naiverev(V,Out) 11.88/3.83 * RF of phase [10]: [V] 11.88/3.83 11.88/3.83 #### Partial ranking functions of CR naiverev(V,Out) 11.88/3.83 * Partial RF of phase [10]: 11.88/3.83 - RF of loop [10:1]: 11.88/3.83 V 11.88/3.83 11.88/3.83 11.88/3.83 ### Specialization of cost equations notEmpty/2 11.88/3.83 * CE 9 is refined into CE [16] 11.88/3.83 * CE 10 is refined into CE [17] 11.88/3.83 11.88/3.83 11.88/3.83 ### Cost equations --> "Loop" of notEmpty/2 11.88/3.83 * CEs [16] --> Loop 13 11.88/3.83 * CEs [17] --> Loop 14 11.88/3.83 11.88/3.83 ### Ranking functions of CR notEmpty(V,Out) 11.88/3.83 11.88/3.83 #### Partial ranking functions of CR notEmpty(V,Out) 11.88/3.83 11.88/3.83 11.88/3.83 ### Specialization of cost equations start/2 11.88/3.83 * CE 1 is refined into CE [18,19] 11.88/3.83 * CE 2 is refined into CE [20,21] 11.88/3.83 * CE 3 is refined into CE [22,23] 11.88/3.83 * CE 4 is refined into CE [24,25] 11.88/3.83 11.88/3.83 11.88/3.83 ### Cost equations --> "Loop" of start/2 11.88/3.83 * CEs [19,21,23,25] --> Loop 15 11.88/3.83 * CEs [18,20,22,24] --> Loop 16 11.88/3.83 11.88/3.83 ### Ranking functions of CR start(V,V3) 11.88/3.83 11.88/3.83 #### Partial ranking functions of CR start(V,V3) 11.88/3.83 11.88/3.83 11.88/3.83 Computing Bounds 11.88/3.83 ===================================== 11.88/3.83 11.88/3.83 #### Cost of chains of app(V,V3,Out): 11.88/3.83 * Chain [[8],9]: 1*it(8)+1 11.88/3.83 Such that:it(8) =< -V3+Out 11.88/3.83 11.88/3.83 with precondition: [V+V3=Out,V>=1,V3>=0] 11.88/3.83 11.88/3.83 * Chain [9]: 1 11.88/3.83 with precondition: [V=0,V3=Out,V3>=0] 11.88/3.83 11.88/3.83 11.88/3.83 #### Cost of chains of naiverev(V,Out): 11.88/3.83 * Chain [[10],11,12]: 2*it(10)+1*s(3)+3 11.88/3.83 Such that:aux(3) =< Out 11.88/3.83 it(10) =< aux(3) 11.88/3.83 s(3) =< it(10)*aux(3) 11.88/3.83 11.88/3.83 with precondition: [Out=V,Out>=2] 11.88/3.83 11.88/3.83 * Chain [12]: 1 11.88/3.83 with precondition: [V=0,Out=0] 11.88/3.83 11.88/3.83 * Chain [11,12]: 3 11.88/3.83 with precondition: [V=Out,V>=1] 11.88/3.83 11.88/3.83 11.88/3.83 #### Cost of chains of notEmpty(V,Out): 11.88/3.83 * Chain [14]: 1 11.88/3.83 with precondition: [V=0,Out=0] 11.88/3.83 11.88/3.83 * Chain [13]: 1 11.88/3.83 with precondition: [Out=1,V>=1] 11.88/3.83 11.88/3.83 11.88/3.83 #### Cost of chains of start(V,V3): 11.88/3.83 * Chain [16]: 2 11.88/3.83 with precondition: [V=0] 11.88/3.83 11.88/3.83 * Chain [15]: 5*s(8)+2*s(9)+4 11.88/3.83 Such that:aux(4) =< V 11.88/3.83 s(8) =< aux(4) 11.88/3.83 s(9) =< s(8)*aux(4) 11.88/3.83 11.88/3.83 with precondition: [V>=1] 11.88/3.83 11.88/3.83 11.88/3.83 Closed-form bounds of start(V,V3): 11.88/3.83 ------------------------------------- 11.88/3.83 * Chain [16] with precondition: [V=0] 11.88/3.83 - Upper bound: 2 11.88/3.83 - Complexity: constant 11.88/3.83 * Chain [15] with precondition: [V>=1] 11.88/3.83 - Upper bound: 5*V+4+2*V*V 11.88/3.83 - Complexity: n^2 11.88/3.83 11.88/3.83 ### Maximum cost of start(V,V3): 5*V+2+2*V*V+2 11.88/3.83 Asymptotic class: n^2 11.88/3.83 * Total analysis performed in 99 ms. 11.88/3.83 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (10) 11.88/3.83 BOUNDS(1, n^2) 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (11) RenamingProof (BOTH BOUNDS(ID, ID)) 11.88/3.83 Renamed function symbols to avoid clashes with predefined symbol. 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (12) 11.88/3.83 Obligation: 11.88/3.83 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 11.88/3.83 11.88/3.83 11.88/3.83 The TRS R consists of the following rules: 11.88/3.83 11.88/3.83 naiverev(Cons(x, xs)) -> app(naiverev(xs), Cons(x, Nil)) 11.88/3.83 app(Cons(x, xs), ys) -> Cons(x, app(xs, ys)) 11.88/3.83 notEmpty(Cons(x, xs)) -> True 11.88/3.83 notEmpty(Nil) -> False 11.88/3.83 naiverev(Nil) -> Nil 11.88/3.83 app(Nil, ys) -> ys 11.88/3.83 goal(xs) -> naiverev(xs) 11.88/3.83 11.88/3.83 S is empty. 11.88/3.83 Rewrite Strategy: INNERMOST 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (13) SlicingProof (LOWER BOUND(ID)) 11.88/3.83 Sliced the following arguments: 11.88/3.83 Cons/0 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (14) 11.88/3.83 Obligation: 11.88/3.83 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 11.88/3.83 11.88/3.83 11.88/3.83 The TRS R consists of the following rules: 11.88/3.83 11.88/3.83 naiverev(Cons(xs)) -> app(naiverev(xs), Cons(Nil)) 11.88/3.83 app(Cons(xs), ys) -> Cons(app(xs, ys)) 11.88/3.83 notEmpty(Cons(xs)) -> True 11.88/3.83 notEmpty(Nil) -> False 11.88/3.83 naiverev(Nil) -> Nil 11.88/3.83 app(Nil, ys) -> ys 11.88/3.83 goal(xs) -> naiverev(xs) 11.88/3.83 11.88/3.83 S is empty. 11.88/3.83 Rewrite Strategy: INNERMOST 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (15) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 11.88/3.83 Infered types. 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (16) 11.88/3.83 Obligation: 11.88/3.83 Innermost TRS: 11.88/3.83 Rules: 11.88/3.83 naiverev(Cons(xs)) -> app(naiverev(xs), Cons(Nil)) 11.88/3.83 app(Cons(xs), ys) -> Cons(app(xs, ys)) 11.88/3.83 notEmpty(Cons(xs)) -> True 11.88/3.83 notEmpty(Nil) -> False 11.88/3.83 naiverev(Nil) -> Nil 11.88/3.83 app(Nil, ys) -> ys 11.88/3.83 goal(xs) -> naiverev(xs) 11.88/3.83 11.88/3.83 Types: 11.88/3.83 naiverev :: Cons:Nil -> Cons:Nil 11.88/3.83 Cons :: Cons:Nil -> Cons:Nil 11.88/3.83 app :: Cons:Nil -> Cons:Nil -> Cons:Nil 11.88/3.83 Nil :: Cons:Nil 11.88/3.83 notEmpty :: Cons:Nil -> True:False 11.88/3.83 True :: True:False 11.88/3.83 False :: True:False 11.88/3.83 goal :: Cons:Nil -> Cons:Nil 11.88/3.83 hole_Cons:Nil1_0 :: Cons:Nil 11.88/3.83 hole_True:False2_0 :: True:False 11.88/3.83 gen_Cons:Nil3_0 :: Nat -> Cons:Nil 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (17) OrderProof (LOWER BOUND(ID)) 11.88/3.83 Heuristically decided to analyse the following defined symbols: 11.88/3.83 naiverev, app 11.88/3.83 11.88/3.83 They will be analysed ascendingly in the following order: 11.88/3.83 app < naiverev 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (18) 11.88/3.83 Obligation: 11.88/3.83 Innermost TRS: 11.88/3.83 Rules: 11.88/3.83 naiverev(Cons(xs)) -> app(naiverev(xs), Cons(Nil)) 11.88/3.83 app(Cons(xs), ys) -> Cons(app(xs, ys)) 11.88/3.83 notEmpty(Cons(xs)) -> True 11.88/3.83 notEmpty(Nil) -> False 11.88/3.83 naiverev(Nil) -> Nil 11.88/3.83 app(Nil, ys) -> ys 11.88/3.83 goal(xs) -> naiverev(xs) 11.88/3.83 11.88/3.83 Types: 11.88/3.83 naiverev :: Cons:Nil -> Cons:Nil 11.88/3.83 Cons :: Cons:Nil -> Cons:Nil 11.88/3.83 app :: Cons:Nil -> Cons:Nil -> Cons:Nil 11.88/3.83 Nil :: Cons:Nil 11.88/3.83 notEmpty :: Cons:Nil -> True:False 11.88/3.83 True :: True:False 11.88/3.83 False :: True:False 11.88/3.83 goal :: Cons:Nil -> Cons:Nil 11.88/3.83 hole_Cons:Nil1_0 :: Cons:Nil 11.88/3.83 hole_True:False2_0 :: True:False 11.88/3.83 gen_Cons:Nil3_0 :: Nat -> Cons:Nil 11.88/3.83 11.88/3.83 11.88/3.83 Generator Equations: 11.88/3.83 gen_Cons:Nil3_0(0) <=> Nil 11.88/3.83 gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) 11.88/3.83 11.88/3.83 11.88/3.83 The following defined symbols remain to be analysed: 11.88/3.83 app, naiverev 11.88/3.83 11.88/3.83 They will be analysed ascendingly in the following order: 11.88/3.83 app < naiverev 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (19) RewriteLemmaProof (LOWER BOUND(ID)) 11.88/3.83 Proved the following rewrite lemma: 11.88/3.83 app(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) -> gen_Cons:Nil3_0(+(n5_0, b)), rt in Omega(1 + n5_0) 11.88/3.83 11.88/3.83 Induction Base: 11.88/3.83 app(gen_Cons:Nil3_0(0), gen_Cons:Nil3_0(b)) ->_R^Omega(1) 11.88/3.83 gen_Cons:Nil3_0(b) 11.88/3.83 11.88/3.83 Induction Step: 11.88/3.83 app(gen_Cons:Nil3_0(+(n5_0, 1)), gen_Cons:Nil3_0(b)) ->_R^Omega(1) 11.88/3.83 Cons(app(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b))) ->_IH 11.88/3.83 Cons(gen_Cons:Nil3_0(+(b, c6_0))) 11.88/3.83 11.88/3.83 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (20) 11.88/3.83 Complex Obligation (BEST) 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (21) 11.88/3.83 Obligation: 11.88/3.83 Proved the lower bound n^1 for the following obligation: 11.88/3.83 11.88/3.83 Innermost TRS: 11.88/3.83 Rules: 11.88/3.83 naiverev(Cons(xs)) -> app(naiverev(xs), Cons(Nil)) 11.88/3.83 app(Cons(xs), ys) -> Cons(app(xs, ys)) 11.88/3.83 notEmpty(Cons(xs)) -> True 11.88/3.83 notEmpty(Nil) -> False 11.88/3.83 naiverev(Nil) -> Nil 11.88/3.83 app(Nil, ys) -> ys 11.88/3.83 goal(xs) -> naiverev(xs) 11.88/3.83 11.88/3.83 Types: 11.88/3.83 naiverev :: Cons:Nil -> Cons:Nil 11.88/3.83 Cons :: Cons:Nil -> Cons:Nil 11.88/3.83 app :: Cons:Nil -> Cons:Nil -> Cons:Nil 11.88/3.83 Nil :: Cons:Nil 11.88/3.83 notEmpty :: Cons:Nil -> True:False 11.88/3.83 True :: True:False 11.88/3.83 False :: True:False 11.88/3.83 goal :: Cons:Nil -> Cons:Nil 11.88/3.83 hole_Cons:Nil1_0 :: Cons:Nil 11.88/3.83 hole_True:False2_0 :: True:False 11.88/3.83 gen_Cons:Nil3_0 :: Nat -> Cons:Nil 11.88/3.83 11.88/3.83 11.88/3.83 Generator Equations: 11.88/3.83 gen_Cons:Nil3_0(0) <=> Nil 11.88/3.83 gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) 11.88/3.83 11.88/3.83 11.88/3.83 The following defined symbols remain to be analysed: 11.88/3.83 app, naiverev 11.88/3.83 11.88/3.83 They will be analysed ascendingly in the following order: 11.88/3.83 app < naiverev 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (22) LowerBoundPropagationProof (FINISHED) 11.88/3.83 Propagated lower bound. 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (23) 11.88/3.83 BOUNDS(n^1, INF) 11.88/3.83 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (24) 11.88/3.83 Obligation: 11.88/3.83 Innermost TRS: 11.88/3.83 Rules: 11.88/3.83 naiverev(Cons(xs)) -> app(naiverev(xs), Cons(Nil)) 11.88/3.83 app(Cons(xs), ys) -> Cons(app(xs, ys)) 11.88/3.83 notEmpty(Cons(xs)) -> True 11.88/3.83 notEmpty(Nil) -> False 11.88/3.83 naiverev(Nil) -> Nil 11.88/3.83 app(Nil, ys) -> ys 11.88/3.83 goal(xs) -> naiverev(xs) 11.88/3.83 11.88/3.83 Types: 11.88/3.83 naiverev :: Cons:Nil -> Cons:Nil 11.88/3.83 Cons :: Cons:Nil -> Cons:Nil 11.88/3.83 app :: Cons:Nil -> Cons:Nil -> Cons:Nil 11.88/3.83 Nil :: Cons:Nil 11.88/3.83 notEmpty :: Cons:Nil -> True:False 11.88/3.83 True :: True:False 11.88/3.83 False :: True:False 11.88/3.83 goal :: Cons:Nil -> Cons:Nil 11.88/3.83 hole_Cons:Nil1_0 :: Cons:Nil 11.88/3.83 hole_True:False2_0 :: True:False 11.88/3.83 gen_Cons:Nil3_0 :: Nat -> Cons:Nil 11.88/3.83 11.88/3.83 11.88/3.83 Lemmas: 11.88/3.83 app(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) -> gen_Cons:Nil3_0(+(n5_0, b)), rt in Omega(1 + n5_0) 11.88/3.83 11.88/3.83 11.88/3.83 Generator Equations: 11.88/3.83 gen_Cons:Nil3_0(0) <=> Nil 11.88/3.83 gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) 11.88/3.83 11.88/3.83 11.88/3.83 The following defined symbols remain to be analysed: 11.88/3.83 naiverev 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (25) RewriteLemmaProof (LOWER BOUND(ID)) 11.88/3.83 Proved the following rewrite lemma: 11.88/3.83 naiverev(gen_Cons:Nil3_0(n489_0)) -> gen_Cons:Nil3_0(n489_0), rt in Omega(1 + n489_0 + n489_0^2) 11.88/3.83 11.88/3.83 Induction Base: 11.88/3.83 naiverev(gen_Cons:Nil3_0(0)) ->_R^Omega(1) 11.88/3.83 Nil 11.88/3.83 11.88/3.83 Induction Step: 11.88/3.83 naiverev(gen_Cons:Nil3_0(+(n489_0, 1))) ->_R^Omega(1) 11.88/3.83 app(naiverev(gen_Cons:Nil3_0(n489_0)), Cons(Nil)) ->_IH 11.88/3.83 app(gen_Cons:Nil3_0(c490_0), Cons(Nil)) ->_L^Omega(1 + n489_0) 11.88/3.83 gen_Cons:Nil3_0(+(n489_0, +(0, 1))) 11.88/3.83 11.88/3.83 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (26) 11.88/3.83 Obligation: 11.88/3.83 Proved the lower bound n^2 for the following obligation: 11.88/3.83 11.88/3.83 Innermost TRS: 11.88/3.83 Rules: 11.88/3.83 naiverev(Cons(xs)) -> app(naiverev(xs), Cons(Nil)) 11.88/3.83 app(Cons(xs), ys) -> Cons(app(xs, ys)) 11.88/3.83 notEmpty(Cons(xs)) -> True 11.88/3.83 notEmpty(Nil) -> False 11.88/3.83 naiverev(Nil) -> Nil 11.88/3.83 app(Nil, ys) -> ys 11.88/3.83 goal(xs) -> naiverev(xs) 11.88/3.83 11.88/3.83 Types: 11.88/3.83 naiverev :: Cons:Nil -> Cons:Nil 11.88/3.83 Cons :: Cons:Nil -> Cons:Nil 11.88/3.83 app :: Cons:Nil -> Cons:Nil -> Cons:Nil 11.88/3.83 Nil :: Cons:Nil 11.88/3.83 notEmpty :: Cons:Nil -> True:False 11.88/3.83 True :: True:False 11.88/3.83 False :: True:False 11.88/3.83 goal :: Cons:Nil -> Cons:Nil 11.88/3.83 hole_Cons:Nil1_0 :: Cons:Nil 11.88/3.83 hole_True:False2_0 :: True:False 11.88/3.83 gen_Cons:Nil3_0 :: Nat -> Cons:Nil 11.88/3.83 11.88/3.83 11.88/3.83 Lemmas: 11.88/3.83 app(gen_Cons:Nil3_0(n5_0), gen_Cons:Nil3_0(b)) -> gen_Cons:Nil3_0(+(n5_0, b)), rt in Omega(1 + n5_0) 11.88/3.83 11.88/3.83 11.88/3.83 Generator Equations: 11.88/3.83 gen_Cons:Nil3_0(0) <=> Nil 11.88/3.83 gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) 11.88/3.83 11.88/3.83 11.88/3.83 The following defined symbols remain to be analysed: 11.88/3.83 naiverev 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (27) LowerBoundPropagationProof (FINISHED) 11.88/3.83 Propagated lower bound. 11.88/3.83 ---------------------------------------- 11.88/3.83 11.88/3.83 (28) 11.88/3.83 BOUNDS(n^2, INF) 11.90/3.88 EOF