3.36/1.59 WORST_CASE(Omega(n^1), O(n^1)) 3.36/1.60 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.36/1.60 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.36/1.60 3.36/1.60 3.36/1.60 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.36/1.60 3.36/1.60 (0) CpxTRS 3.36/1.60 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.36/1.60 (2) CpxTRS 3.36/1.60 (3) CpxTrsMatchBoundsTAProof [FINISHED, 38 ms] 3.36/1.60 (4) BOUNDS(1, n^1) 3.36/1.60 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.36/1.60 (6) TRS for Loop Detection 3.36/1.60 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.36/1.60 (8) BEST 3.36/1.60 (9) proven lower bound 3.36/1.60 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.36/1.60 (11) BOUNDS(n^1, INF) 3.36/1.60 (12) TRS for Loop Detection 3.36/1.60 3.36/1.60 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (0) 3.36/1.60 Obligation: 3.36/1.60 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.36/1.60 3.36/1.60 3.36/1.60 The TRS R consists of the following rules: 3.36/1.60 3.36/1.60 addlist(Cons(x, xs'), Cons(S(0), xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Cons(S(0), xs'), Cons(x, xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Nil, ys) -> Nil 3.36/1.60 notEmpty(Cons(x, xs)) -> True 3.36/1.60 notEmpty(Nil) -> False 3.36/1.60 goal(xs, ys) -> addlist(xs, ys) 3.36/1.60 3.36/1.60 S is empty. 3.36/1.60 Rewrite Strategy: INNERMOST 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.36/1.60 transformed relative TRS to TRS 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (2) 3.36/1.60 Obligation: 3.36/1.60 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.36/1.60 3.36/1.60 3.36/1.60 The TRS R consists of the following rules: 3.36/1.60 3.36/1.60 addlist(Cons(x, xs'), Cons(S(0), xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Cons(S(0), xs'), Cons(x, xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Nil, ys) -> Nil 3.36/1.60 notEmpty(Cons(x, xs)) -> True 3.36/1.60 notEmpty(Nil) -> False 3.36/1.60 goal(xs, ys) -> addlist(xs, ys) 3.36/1.60 3.36/1.60 S is empty. 3.36/1.60 Rewrite Strategy: INNERMOST 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.36/1.60 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. 3.36/1.60 3.36/1.60 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.36/1.60 final states : [1, 2, 3] 3.36/1.60 transitions: 3.36/1.60 Cons0(0, 0) -> 0 3.36/1.60 S0(0) -> 0 3.36/1.60 00() -> 0 3.36/1.60 Nil0() -> 0 3.36/1.60 True0() -> 0 3.36/1.60 False0() -> 0 3.36/1.60 addlist0(0, 0) -> 1 3.36/1.60 notEmpty0(0) -> 2 3.36/1.60 goal0(0, 0) -> 3 3.36/1.60 S1(0) -> 4 3.36/1.60 addlist1(0, 0) -> 5 3.36/1.60 Cons1(4, 5) -> 1 3.36/1.60 Nil1() -> 1 3.36/1.60 True1() -> 2 3.36/1.60 False1() -> 2 3.36/1.60 addlist1(0, 0) -> 3 3.36/1.60 Cons1(4, 5) -> 3 3.36/1.60 Cons1(4, 5) -> 5 3.36/1.60 Nil1() -> 3 3.36/1.60 Nil1() -> 5 3.36/1.60 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (4) 3.36/1.60 BOUNDS(1, n^1) 3.36/1.60 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.36/1.60 Transformed a relative TRS into a decreasing-loop problem. 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (6) 3.36/1.60 Obligation: 3.36/1.60 Analyzing the following TRS for decreasing loops: 3.36/1.60 3.36/1.60 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.36/1.60 3.36/1.60 3.36/1.60 The TRS R consists of the following rules: 3.36/1.60 3.36/1.60 addlist(Cons(x, xs'), Cons(S(0), xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Cons(S(0), xs'), Cons(x, xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Nil, ys) -> Nil 3.36/1.60 notEmpty(Cons(x, xs)) -> True 3.36/1.60 notEmpty(Nil) -> False 3.36/1.60 goal(xs, ys) -> addlist(xs, ys) 3.36/1.60 3.36/1.60 S is empty. 3.36/1.60 Rewrite Strategy: INNERMOST 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.36/1.60 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.36/1.60 3.36/1.60 The rewrite sequence 3.36/1.60 3.36/1.60 addlist(Cons(x, xs'), Cons(S(0), xs)) ->^+ Cons(S(x), addlist(xs', xs)) 3.36/1.60 3.36/1.60 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.36/1.60 3.36/1.60 The pumping substitution is [xs' / Cons(x, xs'), xs / Cons(S(0), xs)]. 3.36/1.60 3.36/1.60 The result substitution is [ ]. 3.36/1.60 3.36/1.60 3.36/1.60 3.36/1.60 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (8) 3.36/1.60 Complex Obligation (BEST) 3.36/1.60 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (9) 3.36/1.60 Obligation: 3.36/1.60 Proved the lower bound n^1 for the following obligation: 3.36/1.60 3.36/1.60 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.36/1.60 3.36/1.60 3.36/1.60 The TRS R consists of the following rules: 3.36/1.60 3.36/1.60 addlist(Cons(x, xs'), Cons(S(0), xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Cons(S(0), xs'), Cons(x, xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Nil, ys) -> Nil 3.36/1.60 notEmpty(Cons(x, xs)) -> True 3.36/1.60 notEmpty(Nil) -> False 3.36/1.60 goal(xs, ys) -> addlist(xs, ys) 3.36/1.60 3.36/1.60 S is empty. 3.36/1.60 Rewrite Strategy: INNERMOST 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (10) LowerBoundPropagationProof (FINISHED) 3.36/1.60 Propagated lower bound. 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (11) 3.36/1.60 BOUNDS(n^1, INF) 3.36/1.60 3.36/1.60 ---------------------------------------- 3.36/1.60 3.36/1.60 (12) 3.36/1.60 Obligation: 3.36/1.60 Analyzing the following TRS for decreasing loops: 3.36/1.60 3.36/1.60 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.36/1.60 3.36/1.60 3.36/1.60 The TRS R consists of the following rules: 3.36/1.60 3.36/1.60 addlist(Cons(x, xs'), Cons(S(0), xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Cons(S(0), xs'), Cons(x, xs)) -> Cons(S(x), addlist(xs', xs)) 3.36/1.60 addlist(Nil, ys) -> Nil 3.36/1.60 notEmpty(Cons(x, xs)) -> True 3.36/1.60 notEmpty(Nil) -> False 3.36/1.60 goal(xs, ys) -> addlist(xs, ys) 3.36/1.60 3.36/1.60 S is empty. 3.36/1.60 Rewrite Strategy: INNERMOST 3.36/1.61 EOF