1133.74/291.58 WORST_CASE(Omega(n^1), ?) 1135.17/291.89 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 1135.17/291.89 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1135.17/291.89 1135.17/291.89 1135.17/291.89 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). 1135.17/291.89 1135.17/291.89 (0) CpxRelTRS 1135.17/291.89 (1) STerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 179 ms] 1135.17/291.89 (2) CpxRelTRS 1135.17/291.89 (3) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 1135.17/291.89 (4) CpxRelTRS 1135.17/291.89 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 1135.17/291.89 (6) typed CpxTrs 1135.17/291.89 (7) OrderProof [LOWER BOUND(ID), 0 ms] 1135.17/291.89 (8) typed CpxTrs 1135.17/291.89 (9) RewriteLemmaProof [LOWER BOUND(ID), 273 ms] 1135.17/291.89 (10) typed CpxTrs 1135.17/291.89 (11) RewriteLemmaProof [LOWER BOUND(ID), 53 ms] 1135.17/291.89 (12) BEST 1135.17/291.89 (13) proven lower bound 1135.17/291.89 (14) LowerBoundPropagationProof [FINISHED, 0 ms] 1135.17/291.89 (15) BOUNDS(n^1, INF) 1135.17/291.89 (16) typed CpxTrs 1135.17/291.89 (17) RewriteLemmaProof [LOWER BOUND(ID), 28 ms] 1135.17/291.89 (18) typed CpxTrs 1135.17/291.89 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (0) 1135.17/291.89 Obligation: 1135.17/291.89 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). 1135.17/291.89 1135.17/291.89 1135.17/291.89 The TRS R consists of the following rules: 1135.17/291.89 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 1135.17/291.89 The (relative) TRS S consists of the following rules: 1135.17/291.89 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0, S(y)) -> False 1135.17/291.89 !EQ(S(x), 0) -> False 1135.17/291.89 !EQ(0, 0) -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0, S(y)) -> True 1135.17/291.89 <(x, 0) -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Rewrite Strategy: INNERMOST 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (1) STerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) 1135.17/291.89 proved termination of relative rules 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (2) 1135.17/291.89 Obligation: 1135.17/291.89 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). 1135.17/291.89 1135.17/291.89 1135.17/291.89 The TRS R consists of the following rules: 1135.17/291.89 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 1135.17/291.89 The (relative) TRS S consists of the following rules: 1135.17/291.89 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0, S(y)) -> False 1135.17/291.89 !EQ(S(x), 0) -> False 1135.17/291.89 !EQ(0, 0) -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0, S(y)) -> True 1135.17/291.89 <(x, 0) -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Rewrite Strategy: INNERMOST 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (3) RenamingProof (BOTH BOUNDS(ID, ID)) 1135.17/291.89 Renamed function symbols to avoid clashes with predefined symbol. 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (4) 1135.17/291.89 Obligation: 1135.17/291.89 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). 1135.17/291.89 1135.17/291.89 1135.17/291.89 The TRS R consists of the following rules: 1135.17/291.89 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 1135.17/291.89 The (relative) TRS S consists of the following rules: 1135.17/291.89 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0', S(y)) -> False 1135.17/291.89 !EQ(S(x), 0') -> False 1135.17/291.89 !EQ(0', 0') -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0', S(y)) -> True 1135.17/291.89 <(x, 0') -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Rewrite Strategy: INNERMOST 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 1135.17/291.89 Infered types. 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (6) 1135.17/291.89 Obligation: 1135.17/291.89 Innermost TRS: 1135.17/291.89 Rules: 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0', S(y)) -> False 1135.17/291.89 !EQ(S(x), 0') -> False 1135.17/291.89 !EQ(0', 0') -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0', S(y)) -> True 1135.17/291.89 <(x, 0') -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Types: 1135.17/291.89 remove :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 !EQ :: S:0' -> S:0' -> True:False 1135.17/291.89 Nil :: Cons:Nil 1135.17/291.89 minsort :: Cons:Nil -> Cons:Nil 1135.17/291.89 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 < :: S:0' -> S:0' -> True:False 1135.17/291.89 notEmpty :: Cons:Nil -> True:False 1135.17/291.89 True :: True:False 1135.17/291.89 False :: True:False 1135.17/291.89 goal :: Cons:Nil -> Cons:Nil 1135.17/291.89 S :: S:0' -> S:0' 1135.17/291.89 0' :: S:0' 1135.17/291.89 hole_Cons:Nil1_0 :: Cons:Nil 1135.17/291.89 hole_S:0'2_0 :: S:0' 1135.17/291.89 hole_True:False3_0 :: True:False 1135.17/291.89 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1135.17/291.89 gen_S:0'5_0 :: Nat -> S:0' 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (7) OrderProof (LOWER BOUND(ID)) 1135.17/291.89 Heuristically decided to analyse the following defined symbols: 1135.17/291.89 remove, !EQ, minsort, appmin, < 1135.17/291.89 1135.17/291.89 They will be analysed ascendingly in the following order: 1135.17/291.89 !EQ < remove 1135.17/291.89 remove < appmin 1135.17/291.89 minsort = appmin 1135.17/291.89 < < appmin 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (8) 1135.17/291.89 Obligation: 1135.17/291.89 Innermost TRS: 1135.17/291.89 Rules: 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0', S(y)) -> False 1135.17/291.89 !EQ(S(x), 0') -> False 1135.17/291.89 !EQ(0', 0') -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0', S(y)) -> True 1135.17/291.89 <(x, 0') -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Types: 1135.17/291.89 remove :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 !EQ :: S:0' -> S:0' -> True:False 1135.17/291.89 Nil :: Cons:Nil 1135.17/291.89 minsort :: Cons:Nil -> Cons:Nil 1135.17/291.89 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 < :: S:0' -> S:0' -> True:False 1135.17/291.89 notEmpty :: Cons:Nil -> True:False 1135.17/291.89 True :: True:False 1135.17/291.89 False :: True:False 1135.17/291.89 goal :: Cons:Nil -> Cons:Nil 1135.17/291.89 S :: S:0' -> S:0' 1135.17/291.89 0' :: S:0' 1135.17/291.89 hole_Cons:Nil1_0 :: Cons:Nil 1135.17/291.89 hole_S:0'2_0 :: S:0' 1135.17/291.89 hole_True:False3_0 :: True:False 1135.17/291.89 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1135.17/291.89 gen_S:0'5_0 :: Nat -> S:0' 1135.17/291.89 1135.17/291.89 1135.17/291.89 Generator Equations: 1135.17/291.89 gen_Cons:Nil4_0(0) <=> Nil 1135.17/291.89 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1135.17/291.89 gen_S:0'5_0(0) <=> 0' 1135.17/291.89 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1135.17/291.89 1135.17/291.89 1135.17/291.89 The following defined symbols remain to be analysed: 1135.17/291.89 !EQ, remove, minsort, appmin, < 1135.17/291.89 1135.17/291.89 They will be analysed ascendingly in the following order: 1135.17/291.89 !EQ < remove 1135.17/291.89 remove < appmin 1135.17/291.89 minsort = appmin 1135.17/291.89 < < appmin 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (9) RewriteLemmaProof (LOWER BOUND(ID)) 1135.17/291.89 Proved the following rewrite lemma: 1135.17/291.89 !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) 1135.17/291.89 1135.17/291.89 Induction Base: 1135.17/291.89 !EQ(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) 1135.17/291.89 False 1135.17/291.89 1135.17/291.89 Induction Step: 1135.17/291.89 !EQ(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) ->_R^Omega(0) 1135.17/291.89 !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) ->_IH 1135.17/291.89 False 1135.17/291.89 1135.17/291.89 We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (10) 1135.17/291.89 Obligation: 1135.17/291.89 Innermost TRS: 1135.17/291.89 Rules: 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0', S(y)) -> False 1135.17/291.89 !EQ(S(x), 0') -> False 1135.17/291.89 !EQ(0', 0') -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0', S(y)) -> True 1135.17/291.89 <(x, 0') -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Types: 1135.17/291.89 remove :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 !EQ :: S:0' -> S:0' -> True:False 1135.17/291.89 Nil :: Cons:Nil 1135.17/291.89 minsort :: Cons:Nil -> Cons:Nil 1135.17/291.89 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 < :: S:0' -> S:0' -> True:False 1135.17/291.89 notEmpty :: Cons:Nil -> True:False 1135.17/291.89 True :: True:False 1135.17/291.89 False :: True:False 1135.17/291.89 goal :: Cons:Nil -> Cons:Nil 1135.17/291.89 S :: S:0' -> S:0' 1135.17/291.89 0' :: S:0' 1135.17/291.89 hole_Cons:Nil1_0 :: Cons:Nil 1135.17/291.89 hole_S:0'2_0 :: S:0' 1135.17/291.89 hole_True:False3_0 :: True:False 1135.17/291.89 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1135.17/291.89 gen_S:0'5_0 :: Nat -> S:0' 1135.17/291.89 1135.17/291.89 1135.17/291.89 Lemmas: 1135.17/291.89 !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) 1135.17/291.89 1135.17/291.89 1135.17/291.89 Generator Equations: 1135.17/291.89 gen_Cons:Nil4_0(0) <=> Nil 1135.17/291.89 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1135.17/291.89 gen_S:0'5_0(0) <=> 0' 1135.17/291.89 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1135.17/291.89 1135.17/291.89 1135.17/291.89 The following defined symbols remain to be analysed: 1135.17/291.89 remove, minsort, appmin, < 1135.17/291.89 1135.17/291.89 They will be analysed ascendingly in the following order: 1135.17/291.89 remove < appmin 1135.17/291.89 minsort = appmin 1135.17/291.89 < < appmin 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (11) RewriteLemmaProof (LOWER BOUND(ID)) 1135.17/291.89 Proved the following rewrite lemma: 1135.17/291.89 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(n316_0)) -> gen_Cons:Nil4_0(n316_0), rt in Omega(1 + n316_0) 1135.17/291.89 1135.17/291.89 Induction Base: 1135.17/291.89 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(0)) ->_R^Omega(1) 1135.17/291.89 Nil 1135.17/291.89 1135.17/291.89 Induction Step: 1135.17/291.89 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(n316_0, 1))) ->_R^Omega(1) 1135.17/291.89 remove[Ite][True][Ite](!EQ(gen_S:0'5_0(1), 0'), gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(n316_0))) ->_R^Omega(0) 1135.17/291.89 remove[Ite][True][Ite](False, gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(n316_0))) ->_R^Omega(0) 1135.17/291.89 Cons(0', remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(n316_0))) ->_IH 1135.17/291.89 Cons(0', gen_Cons:Nil4_0(c317_0)) 1135.17/291.89 1135.17/291.89 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (12) 1135.17/291.89 Complex Obligation (BEST) 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (13) 1135.17/291.89 Obligation: 1135.17/291.89 Proved the lower bound n^1 for the following obligation: 1135.17/291.89 1135.17/291.89 Innermost TRS: 1135.17/291.89 Rules: 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0', S(y)) -> False 1135.17/291.89 !EQ(S(x), 0') -> False 1135.17/291.89 !EQ(0', 0') -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0', S(y)) -> True 1135.17/291.89 <(x, 0') -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Types: 1135.17/291.89 remove :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 !EQ :: S:0' -> S:0' -> True:False 1135.17/291.89 Nil :: Cons:Nil 1135.17/291.89 minsort :: Cons:Nil -> Cons:Nil 1135.17/291.89 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 < :: S:0' -> S:0' -> True:False 1135.17/291.89 notEmpty :: Cons:Nil -> True:False 1135.17/291.89 True :: True:False 1135.17/291.89 False :: True:False 1135.17/291.89 goal :: Cons:Nil -> Cons:Nil 1135.17/291.89 S :: S:0' -> S:0' 1135.17/291.89 0' :: S:0' 1135.17/291.89 hole_Cons:Nil1_0 :: Cons:Nil 1135.17/291.89 hole_S:0'2_0 :: S:0' 1135.17/291.89 hole_True:False3_0 :: True:False 1135.17/291.89 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1135.17/291.89 gen_S:0'5_0 :: Nat -> S:0' 1135.17/291.89 1135.17/291.89 1135.17/291.89 Lemmas: 1135.17/291.89 !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) 1135.17/291.89 1135.17/291.89 1135.17/291.89 Generator Equations: 1135.17/291.89 gen_Cons:Nil4_0(0) <=> Nil 1135.17/291.89 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1135.17/291.89 gen_S:0'5_0(0) <=> 0' 1135.17/291.89 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1135.17/291.89 1135.17/291.89 1135.17/291.89 The following defined symbols remain to be analysed: 1135.17/291.89 remove, minsort, appmin, < 1135.17/291.89 1135.17/291.89 They will be analysed ascendingly in the following order: 1135.17/291.89 remove < appmin 1135.17/291.89 minsort = appmin 1135.17/291.89 < < appmin 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (14) LowerBoundPropagationProof (FINISHED) 1135.17/291.89 Propagated lower bound. 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (15) 1135.17/291.89 BOUNDS(n^1, INF) 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (16) 1135.17/291.89 Obligation: 1135.17/291.89 Innermost TRS: 1135.17/291.89 Rules: 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0', S(y)) -> False 1135.17/291.89 !EQ(S(x), 0') -> False 1135.17/291.89 !EQ(0', 0') -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0', S(y)) -> True 1135.17/291.89 <(x, 0') -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Types: 1135.17/291.89 remove :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 !EQ :: S:0' -> S:0' -> True:False 1135.17/291.89 Nil :: Cons:Nil 1135.17/291.89 minsort :: Cons:Nil -> Cons:Nil 1135.17/291.89 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 < :: S:0' -> S:0' -> True:False 1135.17/291.89 notEmpty :: Cons:Nil -> True:False 1135.17/291.89 True :: True:False 1135.17/291.89 False :: True:False 1135.17/291.89 goal :: Cons:Nil -> Cons:Nil 1135.17/291.89 S :: S:0' -> S:0' 1135.17/291.89 0' :: S:0' 1135.17/291.89 hole_Cons:Nil1_0 :: Cons:Nil 1135.17/291.89 hole_S:0'2_0 :: S:0' 1135.17/291.89 hole_True:False3_0 :: True:False 1135.17/291.89 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1135.17/291.89 gen_S:0'5_0 :: Nat -> S:0' 1135.17/291.89 1135.17/291.89 1135.17/291.89 Lemmas: 1135.17/291.89 !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) 1135.17/291.89 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(n316_0)) -> gen_Cons:Nil4_0(n316_0), rt in Omega(1 + n316_0) 1135.17/291.89 1135.17/291.89 1135.17/291.89 Generator Equations: 1135.17/291.89 gen_Cons:Nil4_0(0) <=> Nil 1135.17/291.89 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1135.17/291.89 gen_S:0'5_0(0) <=> 0' 1135.17/291.89 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1135.17/291.89 1135.17/291.89 1135.17/291.89 The following defined symbols remain to be analysed: 1135.17/291.89 <, minsort, appmin 1135.17/291.89 1135.17/291.89 They will be analysed ascendingly in the following order: 1135.17/291.89 minsort = appmin 1135.17/291.89 < < appmin 1135.17/291.89 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (17) RewriteLemmaProof (LOWER BOUND(ID)) 1135.17/291.89 Proved the following rewrite lemma: 1135.17/291.89 <(gen_S:0'5_0(n819_0), gen_S:0'5_0(+(1, n819_0))) -> True, rt in Omega(0) 1135.17/291.89 1135.17/291.89 Induction Base: 1135.17/291.89 <(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) 1135.17/291.89 True 1135.17/291.89 1135.17/291.89 Induction Step: 1135.17/291.89 <(gen_S:0'5_0(+(n819_0, 1)), gen_S:0'5_0(+(1, +(n819_0, 1)))) ->_R^Omega(0) 1135.17/291.89 <(gen_S:0'5_0(n819_0), gen_S:0'5_0(+(1, n819_0))) ->_IH 1135.17/291.89 True 1135.17/291.89 1135.17/291.89 We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). 1135.17/291.89 ---------------------------------------- 1135.17/291.89 1135.17/291.89 (18) 1135.17/291.89 Obligation: 1135.17/291.89 Innermost TRS: 1135.17/291.89 Rules: 1135.17/291.89 remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) 1135.17/291.89 remove(x, Nil) -> Nil 1135.17/291.89 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1135.17/291.89 minsort(Nil) -> Nil 1135.17/291.89 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1135.17/291.89 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1135.17/291.89 notEmpty(Cons(x, xs)) -> True 1135.17/291.89 notEmpty(Nil) -> False 1135.17/291.89 goal(xs) -> minsort(xs) 1135.17/291.89 !EQ(S(x), S(y)) -> !EQ(x, y) 1135.17/291.89 !EQ(0', S(y)) -> False 1135.17/291.89 !EQ(S(x), 0') -> False 1135.17/291.89 !EQ(0', 0') -> True 1135.17/291.89 <(S(x), S(y)) -> <(x, y) 1135.17/291.89 <(0', S(y)) -> True 1135.17/291.89 <(x, 0') -> False 1135.17/291.89 remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1135.17/291.89 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1135.17/291.89 remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs 1135.17/291.89 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1135.17/291.89 1135.17/291.89 Types: 1135.17/291.89 remove :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 remove[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1135.17/291.89 !EQ :: S:0' -> S:0' -> True:False 1135.17/291.89 Nil :: Cons:Nil 1135.17/291.89 minsort :: Cons:Nil -> Cons:Nil 1135.17/291.89 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1135.17/291.89 < :: S:0' -> S:0' -> True:False 1135.17/291.89 notEmpty :: Cons:Nil -> True:False 1135.17/291.89 True :: True:False 1135.17/291.89 False :: True:False 1135.17/291.89 goal :: Cons:Nil -> Cons:Nil 1135.17/291.89 S :: S:0' -> S:0' 1135.17/291.89 0' :: S:0' 1135.17/291.89 hole_Cons:Nil1_0 :: Cons:Nil 1135.17/291.89 hole_S:0'2_0 :: S:0' 1135.17/291.89 hole_True:False3_0 :: True:False 1135.17/291.89 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1135.17/291.89 gen_S:0'5_0 :: Nat -> S:0' 1135.17/291.89 1135.17/291.89 1135.17/291.89 Lemmas: 1135.17/291.89 !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) 1135.17/291.89 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(n316_0)) -> gen_Cons:Nil4_0(n316_0), rt in Omega(1 + n316_0) 1135.17/291.89 <(gen_S:0'5_0(n819_0), gen_S:0'5_0(+(1, n819_0))) -> True, rt in Omega(0) 1135.17/291.89 1135.17/291.89 1135.17/291.89 Generator Equations: 1135.17/291.89 gen_Cons:Nil4_0(0) <=> Nil 1135.17/291.89 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1135.17/291.89 gen_S:0'5_0(0) <=> 0' 1135.17/291.89 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1135.17/291.89 1135.17/291.89 1135.17/291.89 The following defined symbols remain to be analysed: 1135.17/291.89 appmin, minsort 1135.17/291.89 1135.17/291.89 They will be analysed ascendingly in the following order: 1135.17/291.89 minsort = appmin 1135.50/291.98 EOF