3.78/1.88 WORST_CASE(Omega(n^1), O(n^1)) 3.78/1.89 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.78/1.89 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.78/1.89 3.78/1.89 3.78/1.89 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.78/1.89 3.78/1.89 (0) CpxTRS 3.78/1.89 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.78/1.89 (2) CpxTRS 3.78/1.89 (3) CpxTrsMatchBoundsTAProof [FINISHED, 132 ms] 3.78/1.89 (4) BOUNDS(1, n^1) 3.78/1.89 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.78/1.89 (6) TRS for Loop Detection 3.78/1.89 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.78/1.89 (8) BEST 3.78/1.89 (9) proven lower bound 3.78/1.89 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.78/1.89 (11) BOUNDS(n^1, INF) 3.78/1.89 (12) TRS for Loop Detection 3.78/1.89 3.78/1.89 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (0) 3.78/1.89 Obligation: 3.78/1.89 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.78/1.89 3.78/1.89 3.78/1.89 The TRS R consists of the following rules: 3.78/1.89 3.78/1.89 @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) 3.78/1.89 @(Nil, ys) -> ys 3.78/1.89 game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) 3.78/1.89 game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) 3.78/1.89 equal(Capture, Capture) -> True 3.78/1.89 equal(Capture, Swap) -> False 3.78/1.89 equal(Swap, Capture) -> False 3.78/1.89 equal(Swap, Swap) -> True 3.78/1.89 game(p1, p2, Nil) -> @(p1, p2) 3.78/1.89 goal(p1, p2, moves) -> game(p1, p2, moves) 3.78/1.89 3.78/1.89 S is empty. 3.78/1.89 Rewrite Strategy: INNERMOST 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.78/1.89 transformed relative TRS to TRS 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (2) 3.78/1.89 Obligation: 3.78/1.89 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.78/1.89 3.78/1.89 3.78/1.89 The TRS R consists of the following rules: 3.78/1.89 3.78/1.89 @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) 3.78/1.89 @(Nil, ys) -> ys 3.78/1.89 game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) 3.78/1.89 game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) 3.78/1.89 equal(Capture, Capture) -> True 3.78/1.89 equal(Capture, Swap) -> False 3.78/1.89 equal(Swap, Capture) -> False 3.78/1.89 equal(Swap, Swap) -> True 3.78/1.89 game(p1, p2, Nil) -> @(p1, p2) 3.78/1.89 goal(p1, p2, moves) -> game(p1, p2, moves) 3.78/1.89 3.78/1.89 S is empty. 3.78/1.89 Rewrite Strategy: INNERMOST 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.78/1.89 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 3.78/1.89 3.78/1.89 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.78/1.89 final states : [1, 2, 3, 4] 3.78/1.89 transitions: 3.78/1.89 Cons0(0, 0) -> 0 3.78/1.89 Nil0() -> 0 3.78/1.89 Capture0() -> 0 3.78/1.89 Swap0() -> 0 3.78/1.89 True0() -> 0 3.78/1.89 False0() -> 0 3.78/1.89 @0(0, 0) -> 1 3.78/1.89 game0(0, 0, 0) -> 2 3.78/1.89 equal0(0, 0) -> 3 3.78/1.89 goal0(0, 0, 0) -> 4 3.78/1.89 @1(0, 0) -> 5 3.78/1.89 Cons1(0, 5) -> 1 3.78/1.89 Cons1(0, 0) -> 6 3.78/1.89 game1(6, 0, 0) -> 2 3.78/1.89 game1(0, 0, 0) -> 2 3.78/1.89 True1() -> 3 3.78/1.89 False1() -> 3 3.78/1.89 @1(0, 0) -> 2 3.78/1.89 game1(0, 0, 0) -> 4 3.78/1.89 Cons1(0, 5) -> 2 3.78/1.89 Cons1(0, 5) -> 5 3.78/1.89 Cons1(0, 6) -> 6 3.78/1.89 game1(6, 0, 0) -> 4 3.78/1.89 game1(0, 6, 0) -> 2 3.78/1.89 @1(6, 0) -> 2 3.78/1.89 @1(0, 0) -> 4 3.78/1.89 Cons1(0, 5) -> 4 3.78/1.89 @2(0, 0) -> 7 3.78/1.89 Cons2(0, 7) -> 2 3.78/1.89 @2(6, 0) -> 7 3.78/1.89 game1(6, 6, 0) -> 2 3.78/1.89 game1(0, 6, 0) -> 4 3.78/1.89 @1(0, 6) -> 2 3.78/1.89 @1(6, 0) -> 4 3.78/1.89 @1(0, 6) -> 5 3.78/1.89 Cons2(0, 7) -> 4 3.78/1.89 game1(6, 6, 0) -> 4 3.78/1.89 @1(6, 6) -> 2 3.78/1.89 @1(0, 6) -> 4 3.78/1.89 Cons1(0, 5) -> 7 3.78/1.89 Cons2(0, 7) -> 7 3.78/1.89 @2(0, 6) -> 7 3.78/1.89 @2(6, 6) -> 7 3.78/1.89 @1(6, 6) -> 4 3.78/1.89 0 -> 1 3.78/1.89 0 -> 2 3.78/1.89 0 -> 5 3.78/1.89 0 -> 4 3.78/1.89 0 -> 7 3.78/1.89 6 -> 2 3.78/1.89 6 -> 4 3.78/1.89 6 -> 5 3.78/1.89 6 -> 7 3.78/1.89 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (4) 3.78/1.89 BOUNDS(1, n^1) 3.78/1.89 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.78/1.89 Transformed a relative TRS into a decreasing-loop problem. 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (6) 3.78/1.89 Obligation: 3.78/1.89 Analyzing the following TRS for decreasing loops: 3.78/1.89 3.78/1.89 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.78/1.89 3.78/1.89 3.78/1.89 The TRS R consists of the following rules: 3.78/1.89 3.78/1.89 @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) 3.78/1.89 @(Nil, ys) -> ys 3.78/1.89 game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) 3.78/1.89 game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) 3.78/1.89 equal(Capture, Capture) -> True 3.78/1.89 equal(Capture, Swap) -> False 3.78/1.89 equal(Swap, Capture) -> False 3.78/1.89 equal(Swap, Swap) -> True 3.78/1.89 game(p1, p2, Nil) -> @(p1, p2) 3.78/1.89 goal(p1, p2, moves) -> game(p1, p2, moves) 3.78/1.89 3.78/1.89 S is empty. 3.78/1.89 Rewrite Strategy: INNERMOST 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.78/1.89 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.78/1.89 3.78/1.89 The rewrite sequence 3.78/1.89 3.78/1.89 game(p1, Cons(x', xs'), Cons(Capture, xs)) ->^+ game(Cons(x', p1), xs', xs) 3.78/1.89 3.78/1.89 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 3.78/1.89 3.78/1.89 The pumping substitution is [xs' / Cons(x', xs'), xs / Cons(Capture, xs)]. 3.78/1.89 3.78/1.89 The result substitution is [p1 / Cons(x', p1)]. 3.78/1.89 3.78/1.89 3.78/1.89 3.78/1.89 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (8) 3.78/1.89 Complex Obligation (BEST) 3.78/1.89 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (9) 3.78/1.89 Obligation: 3.78/1.89 Proved the lower bound n^1 for the following obligation: 3.78/1.89 3.78/1.89 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.78/1.89 3.78/1.89 3.78/1.89 The TRS R consists of the following rules: 3.78/1.89 3.78/1.89 @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) 3.78/1.89 @(Nil, ys) -> ys 3.78/1.89 game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) 3.78/1.89 game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) 3.78/1.89 equal(Capture, Capture) -> True 3.78/1.89 equal(Capture, Swap) -> False 3.78/1.89 equal(Swap, Capture) -> False 3.78/1.89 equal(Swap, Swap) -> True 3.78/1.89 game(p1, p2, Nil) -> @(p1, p2) 3.78/1.89 goal(p1, p2, moves) -> game(p1, p2, moves) 3.78/1.89 3.78/1.89 S is empty. 3.78/1.89 Rewrite Strategy: INNERMOST 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (10) LowerBoundPropagationProof (FINISHED) 3.78/1.89 Propagated lower bound. 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (11) 3.78/1.89 BOUNDS(n^1, INF) 3.78/1.89 3.78/1.89 ---------------------------------------- 3.78/1.89 3.78/1.89 (12) 3.78/1.89 Obligation: 3.78/1.89 Analyzing the following TRS for decreasing loops: 3.78/1.89 3.78/1.89 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.78/1.89 3.78/1.89 3.78/1.89 The TRS R consists of the following rules: 3.78/1.89 3.78/1.89 @(Cons(x, xs), ys) -> Cons(x, @(xs, ys)) 3.78/1.89 @(Nil, ys) -> ys 3.78/1.89 game(p1, Cons(x', xs'), Cons(Capture, xs)) -> game(Cons(x', p1), xs', xs) 3.78/1.89 game(p1, p2, Cons(Swap, xs)) -> game(p2, p1, xs) 3.78/1.89 equal(Capture, Capture) -> True 3.78/1.89 equal(Capture, Swap) -> False 3.78/1.89 equal(Swap, Capture) -> False 3.78/1.89 equal(Swap, Swap) -> True 3.78/1.89 game(p1, p2, Nil) -> @(p1, p2) 3.78/1.89 goal(p1, p2, moves) -> game(p1, p2, moves) 3.78/1.89 3.78/1.89 S is empty. 3.78/1.89 Rewrite Strategy: INNERMOST 3.88/1.94 EOF