7.41/2.80 WORST_CASE(NON_POLY, ?) 7.41/2.80 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 7.41/2.80 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 7.41/2.80 7.41/2.80 7.41/2.80 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). 7.41/2.80 7.41/2.80 (0) CpxRelTRS 7.41/2.80 (1) STerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 445 ms] 7.41/2.80 (2) CpxRelTRS 7.41/2.80 (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 3 ms] 7.41/2.80 (4) TRS for Loop Detection 7.41/2.80 (5) InfiniteLowerBoundProof [FINISHED, 459 ms] 7.41/2.80 (6) BOUNDS(INF, INF) 7.41/2.80 7.41/2.80 7.41/2.80 ---------------------------------------- 7.41/2.80 7.41/2.80 (0) 7.41/2.80 Obligation: 7.41/2.80 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). 7.41/2.80 7.41/2.80 7.41/2.80 The TRS R consists of the following rules: 7.41/2.80 7.41/2.80 head(Cons(x, xs)) -> x 7.41/2.80 factor(Cons(RPar, xs)) -> xs 7.41/2.80 factor(Cons(Div, xs)) -> xs 7.41/2.80 factor(Cons(Mul, xs)) -> xs 7.41/2.80 factor(Cons(Plus, xs)) -> xs 7.41/2.80 factor(Cons(Minus, xs)) -> xs 7.41/2.80 factor(Cons(Val(int), xs)) -> xs 7.41/2.80 factor(Cons(LPar, xs)) -> factor[Ite][True][Let](Cons(LPar, xs), expr(Cons(LPar, xs))) 7.41/2.80 member(x', Cons(x, xs)) -> member[Ite][True][Ite](eqAlph(x, x'), x', Cons(x, xs)) 7.41/2.80 member(x, Nil) -> False 7.41/2.80 atom(Cons(x, xs)) -> xs 7.41/2.80 atom(Nil) -> Nil 7.41/2.80 eqAlph(RPar, RPar) -> True 7.41/2.80 eqAlph(RPar, LPar) -> False 7.41/2.80 eqAlph(RPar, Div) -> False 7.41/2.80 eqAlph(RPar, Mul) -> False 7.41/2.80 eqAlph(RPar, Plus) -> False 7.41/2.80 eqAlph(RPar, Minus) -> False 7.41/2.80 eqAlph(RPar, Val(int2)) -> False 7.41/2.80 eqAlph(LPar, RPar) -> False 7.41/2.80 eqAlph(LPar, LPar) -> True 7.41/2.80 eqAlph(LPar, Div) -> False 7.41/2.80 eqAlph(LPar, Mul) -> False 7.41/2.80 eqAlph(LPar, Plus) -> False 7.41/2.80 eqAlph(LPar, Minus) -> False 7.41/2.80 eqAlph(LPar, Val(int2)) -> False 7.41/2.80 eqAlph(Div, RPar) -> False 7.41/2.80 eqAlph(Div, LPar) -> False 7.41/2.80 eqAlph(Div, Div) -> True 7.41/2.80 eqAlph(Div, Mul) -> False 7.41/2.80 eqAlph(Div, Plus) -> False 7.41/2.80 eqAlph(Div, Minus) -> False 7.41/2.80 eqAlph(Div, Val(int2)) -> False 7.41/2.80 eqAlph(Mul, RPar) -> False 7.41/2.80 eqAlph(Mul, LPar) -> False 7.41/2.80 eqAlph(Mul, Div) -> False 7.41/2.80 eqAlph(Mul, Mul) -> True 7.41/2.80 eqAlph(Mul, Plus) -> False 7.41/2.80 eqAlph(Mul, Minus) -> False 7.41/2.80 eqAlph(Mul, Val(int2)) -> False 7.41/2.80 eqAlph(Plus, RPar) -> False 7.41/2.80 eqAlph(Plus, LPar) -> False 7.41/2.80 eqAlph(Plus, Div) -> False 7.41/2.80 eqAlph(Plus, Mul) -> False 7.41/2.80 eqAlph(Plus, Plus) -> True 7.41/2.80 eqAlph(Plus, Minus) -> False 7.41/2.80 eqAlph(Plus, Val(int2)) -> False 7.41/2.80 eqAlph(Minus, RPar) -> False 7.41/2.80 eqAlph(Minus, LPar) -> False 7.41/2.80 eqAlph(Minus, Div) -> False 7.41/2.80 eqAlph(Minus, Mul) -> False 7.41/2.80 eqAlph(Minus, Plus) -> False 7.41/2.80 eqAlph(Minus, Minus) -> True 7.41/2.80 eqAlph(Minus, Val(int2)) -> False 7.41/2.80 eqAlph(Val(int), RPar) -> False 7.41/2.80 eqAlph(Val(int), LPar) -> False 7.41/2.80 eqAlph(Val(int), Div) -> False 7.41/2.80 eqAlph(Val(int), Mul) -> False 7.41/2.80 eqAlph(Val(int), Plus) -> False 7.41/2.80 eqAlph(Val(int), Minus) -> False 7.41/2.80 eqAlph(Val(int), Val(int2)) -> !EQ(int2, int) 7.41/2.80 notEmpty(Cons(x, xs)) -> True 7.41/2.80 notEmpty(Nil) -> False 7.41/2.80 term(xs) -> term[Let](xs, factor(xs)) 7.41/2.80 parsexp(xs) -> expr(xs) 7.41/2.80 expr(xs) -> expr[Let](xs, term(xs)) 7.41/2.80 7.41/2.80 The (relative) TRS S consists of the following rules: 7.41/2.80 7.41/2.80 and(False, False) -> False 7.41/2.80 and(True, False) -> False 7.41/2.80 and(False, True) -> False 7.41/2.80 and(True, True) -> True 7.41/2.80 !EQ(S(x), S(y)) -> !EQ(x, y) 7.41/2.80 !EQ(0, S(y)) -> False 7.41/2.80 !EQ(S(x), 0) -> False 7.41/2.80 !EQ(0, 0) -> True 7.41/2.80 factor[Ite][True][Let](xs', Cons(RPar, xs)) -> factor[Ite][True][Let][Ite](True, xs', Cons(RPar, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(LPar, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(LPar, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Div, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Div, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Mul, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Mul, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Plus, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Plus, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Minus, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Minus, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Val(int), xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Val(int), xs)) 7.41/2.80 term[Let](xs', Cons(x, xs)) -> term[Let][Ite][False][Ite](member(x, Cons(Mul, Cons(Div, Nil))), xs', Cons(x, xs)) 7.41/2.80 expr[Let](xs', Cons(x, xs)) -> expr[Let][Ite][False][Ite](member(x, Cons(Plus, Cons(Minus, Nil))), xs', Cons(x, xs)) 7.41/2.80 term[Let](xs, Nil) -> Nil 7.41/2.80 member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) 7.41/2.80 factor[Ite][True][Let](xs, Nil) -> factor[Ite][True][Let][Ite](and(False, eqAlph(head(Nil), RPar)), xs, Nil) 7.41/2.80 expr[Let](xs, Nil) -> Nil 7.41/2.80 member[Ite][True][Ite](True, x, xs) -> True 7.41/2.80 7.41/2.80 Rewrite Strategy: INNERMOST 7.41/2.80 ---------------------------------------- 7.41/2.80 7.41/2.80 (1) STerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) 7.41/2.80 proved termination of relative rules 7.41/2.80 ---------------------------------------- 7.41/2.80 7.41/2.80 (2) 7.41/2.80 Obligation: 7.41/2.80 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). 7.41/2.80 7.41/2.80 7.41/2.80 The TRS R consists of the following rules: 7.41/2.80 7.41/2.80 head(Cons(x, xs)) -> x 7.41/2.80 factor(Cons(RPar, xs)) -> xs 7.41/2.80 factor(Cons(Div, xs)) -> xs 7.41/2.80 factor(Cons(Mul, xs)) -> xs 7.41/2.80 factor(Cons(Plus, xs)) -> xs 7.41/2.80 factor(Cons(Minus, xs)) -> xs 7.41/2.80 factor(Cons(Val(int), xs)) -> xs 7.41/2.80 factor(Cons(LPar, xs)) -> factor[Ite][True][Let](Cons(LPar, xs), expr(Cons(LPar, xs))) 7.41/2.80 member(x', Cons(x, xs)) -> member[Ite][True][Ite](eqAlph(x, x'), x', Cons(x, xs)) 7.41/2.80 member(x, Nil) -> False 7.41/2.80 atom(Cons(x, xs)) -> xs 7.41/2.80 atom(Nil) -> Nil 7.41/2.80 eqAlph(RPar, RPar) -> True 7.41/2.80 eqAlph(RPar, LPar) -> False 7.41/2.80 eqAlph(RPar, Div) -> False 7.41/2.80 eqAlph(RPar, Mul) -> False 7.41/2.80 eqAlph(RPar, Plus) -> False 7.41/2.80 eqAlph(RPar, Minus) -> False 7.41/2.80 eqAlph(RPar, Val(int2)) -> False 7.41/2.80 eqAlph(LPar, RPar) -> False 7.41/2.80 eqAlph(LPar, LPar) -> True 7.41/2.80 eqAlph(LPar, Div) -> False 7.41/2.80 eqAlph(LPar, Mul) -> False 7.41/2.80 eqAlph(LPar, Plus) -> False 7.41/2.80 eqAlph(LPar, Minus) -> False 7.41/2.80 eqAlph(LPar, Val(int2)) -> False 7.41/2.80 eqAlph(Div, RPar) -> False 7.41/2.80 eqAlph(Div, LPar) -> False 7.41/2.80 eqAlph(Div, Div) -> True 7.41/2.80 eqAlph(Div, Mul) -> False 7.41/2.80 eqAlph(Div, Plus) -> False 7.41/2.80 eqAlph(Div, Minus) -> False 7.41/2.80 eqAlph(Div, Val(int2)) -> False 7.41/2.80 eqAlph(Mul, RPar) -> False 7.41/2.80 eqAlph(Mul, LPar) -> False 7.41/2.80 eqAlph(Mul, Div) -> False 7.41/2.80 eqAlph(Mul, Mul) -> True 7.41/2.80 eqAlph(Mul, Plus) -> False 7.41/2.80 eqAlph(Mul, Minus) -> False 7.41/2.80 eqAlph(Mul, Val(int2)) -> False 7.41/2.80 eqAlph(Plus, RPar) -> False 7.41/2.80 eqAlph(Plus, LPar) -> False 7.41/2.80 eqAlph(Plus, Div) -> False 7.41/2.80 eqAlph(Plus, Mul) -> False 7.41/2.80 eqAlph(Plus, Plus) -> True 7.41/2.80 eqAlph(Plus, Minus) -> False 7.41/2.80 eqAlph(Plus, Val(int2)) -> False 7.41/2.80 eqAlph(Minus, RPar) -> False 7.41/2.80 eqAlph(Minus, LPar) -> False 7.41/2.80 eqAlph(Minus, Div) -> False 7.41/2.80 eqAlph(Minus, Mul) -> False 7.41/2.80 eqAlph(Minus, Plus) -> False 7.41/2.80 eqAlph(Minus, Minus) -> True 7.41/2.80 eqAlph(Minus, Val(int2)) -> False 7.41/2.80 eqAlph(Val(int), RPar) -> False 7.41/2.80 eqAlph(Val(int), LPar) -> False 7.41/2.80 eqAlph(Val(int), Div) -> False 7.41/2.80 eqAlph(Val(int), Mul) -> False 7.41/2.80 eqAlph(Val(int), Plus) -> False 7.41/2.80 eqAlph(Val(int), Minus) -> False 7.41/2.80 eqAlph(Val(int), Val(int2)) -> !EQ(int2, int) 7.41/2.80 notEmpty(Cons(x, xs)) -> True 7.41/2.80 notEmpty(Nil) -> False 7.41/2.80 term(xs) -> term[Let](xs, factor(xs)) 7.41/2.80 parsexp(xs) -> expr(xs) 7.41/2.80 expr(xs) -> expr[Let](xs, term(xs)) 7.41/2.80 7.41/2.80 The (relative) TRS S consists of the following rules: 7.41/2.80 7.41/2.80 and(False, False) -> False 7.41/2.80 and(True, False) -> False 7.41/2.80 and(False, True) -> False 7.41/2.80 and(True, True) -> True 7.41/2.80 !EQ(S(x), S(y)) -> !EQ(x, y) 7.41/2.80 !EQ(0, S(y)) -> False 7.41/2.80 !EQ(S(x), 0) -> False 7.41/2.80 !EQ(0, 0) -> True 7.41/2.80 factor[Ite][True][Let](xs', Cons(RPar, xs)) -> factor[Ite][True][Let][Ite](True, xs', Cons(RPar, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(LPar, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(LPar, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Div, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Div, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Mul, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Mul, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Plus, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Plus, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Minus, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Minus, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Val(int), xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Val(int), xs)) 7.41/2.80 term[Let](xs', Cons(x, xs)) -> term[Let][Ite][False][Ite](member(x, Cons(Mul, Cons(Div, Nil))), xs', Cons(x, xs)) 7.41/2.80 expr[Let](xs', Cons(x, xs)) -> expr[Let][Ite][False][Ite](member(x, Cons(Plus, Cons(Minus, Nil))), xs', Cons(x, xs)) 7.41/2.80 term[Let](xs, Nil) -> Nil 7.41/2.80 member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) 7.41/2.80 factor[Ite][True][Let](xs, Nil) -> factor[Ite][True][Let][Ite](and(False, eqAlph(head(Nil), RPar)), xs, Nil) 7.41/2.80 expr[Let](xs, Nil) -> Nil 7.41/2.80 member[Ite][True][Ite](True, x, xs) -> True 7.41/2.80 7.41/2.80 Rewrite Strategy: INNERMOST 7.41/2.80 ---------------------------------------- 7.41/2.80 7.41/2.80 (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 7.41/2.80 Transformed a relative TRS into a decreasing-loop problem. 7.41/2.80 ---------------------------------------- 7.41/2.80 7.41/2.80 (4) 7.41/2.80 Obligation: 7.41/2.80 Analyzing the following TRS for decreasing loops: 7.41/2.80 7.41/2.80 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(INF, INF). 7.41/2.80 7.41/2.80 7.41/2.80 The TRS R consists of the following rules: 7.41/2.80 7.41/2.80 head(Cons(x, xs)) -> x 7.41/2.80 factor(Cons(RPar, xs)) -> xs 7.41/2.80 factor(Cons(Div, xs)) -> xs 7.41/2.80 factor(Cons(Mul, xs)) -> xs 7.41/2.80 factor(Cons(Plus, xs)) -> xs 7.41/2.80 factor(Cons(Minus, xs)) -> xs 7.41/2.80 factor(Cons(Val(int), xs)) -> xs 7.41/2.80 factor(Cons(LPar, xs)) -> factor[Ite][True][Let](Cons(LPar, xs), expr(Cons(LPar, xs))) 7.41/2.80 member(x', Cons(x, xs)) -> member[Ite][True][Ite](eqAlph(x, x'), x', Cons(x, xs)) 7.41/2.80 member(x, Nil) -> False 7.41/2.80 atom(Cons(x, xs)) -> xs 7.41/2.80 atom(Nil) -> Nil 7.41/2.80 eqAlph(RPar, RPar) -> True 7.41/2.80 eqAlph(RPar, LPar) -> False 7.41/2.80 eqAlph(RPar, Div) -> False 7.41/2.80 eqAlph(RPar, Mul) -> False 7.41/2.80 eqAlph(RPar, Plus) -> False 7.41/2.80 eqAlph(RPar, Minus) -> False 7.41/2.80 eqAlph(RPar, Val(int2)) -> False 7.41/2.80 eqAlph(LPar, RPar) -> False 7.41/2.80 eqAlph(LPar, LPar) -> True 7.41/2.80 eqAlph(LPar, Div) -> False 7.41/2.80 eqAlph(LPar, Mul) -> False 7.41/2.80 eqAlph(LPar, Plus) -> False 7.41/2.80 eqAlph(LPar, Minus) -> False 7.41/2.80 eqAlph(LPar, Val(int2)) -> False 7.41/2.80 eqAlph(Div, RPar) -> False 7.41/2.80 eqAlph(Div, LPar) -> False 7.41/2.80 eqAlph(Div, Div) -> True 7.41/2.80 eqAlph(Div, Mul) -> False 7.41/2.80 eqAlph(Div, Plus) -> False 7.41/2.80 eqAlph(Div, Minus) -> False 7.41/2.80 eqAlph(Div, Val(int2)) -> False 7.41/2.80 eqAlph(Mul, RPar) -> False 7.41/2.80 eqAlph(Mul, LPar) -> False 7.41/2.80 eqAlph(Mul, Div) -> False 7.41/2.80 eqAlph(Mul, Mul) -> True 7.41/2.80 eqAlph(Mul, Plus) -> False 7.41/2.80 eqAlph(Mul, Minus) -> False 7.41/2.80 eqAlph(Mul, Val(int2)) -> False 7.41/2.80 eqAlph(Plus, RPar) -> False 7.41/2.80 eqAlph(Plus, LPar) -> False 7.41/2.80 eqAlph(Plus, Div) -> False 7.41/2.80 eqAlph(Plus, Mul) -> False 7.41/2.80 eqAlph(Plus, Plus) -> True 7.41/2.80 eqAlph(Plus, Minus) -> False 7.41/2.80 eqAlph(Plus, Val(int2)) -> False 7.41/2.80 eqAlph(Minus, RPar) -> False 7.41/2.80 eqAlph(Minus, LPar) -> False 7.41/2.80 eqAlph(Minus, Div) -> False 7.41/2.80 eqAlph(Minus, Mul) -> False 7.41/2.80 eqAlph(Minus, Plus) -> False 7.41/2.80 eqAlph(Minus, Minus) -> True 7.41/2.80 eqAlph(Minus, Val(int2)) -> False 7.41/2.80 eqAlph(Val(int), RPar) -> False 7.41/2.80 eqAlph(Val(int), LPar) -> False 7.41/2.80 eqAlph(Val(int), Div) -> False 7.41/2.80 eqAlph(Val(int), Mul) -> False 7.41/2.80 eqAlph(Val(int), Plus) -> False 7.41/2.80 eqAlph(Val(int), Minus) -> False 7.41/2.80 eqAlph(Val(int), Val(int2)) -> !EQ(int2, int) 7.41/2.80 notEmpty(Cons(x, xs)) -> True 7.41/2.80 notEmpty(Nil) -> False 7.41/2.80 term(xs) -> term[Let](xs, factor(xs)) 7.41/2.80 parsexp(xs) -> expr(xs) 7.41/2.80 expr(xs) -> expr[Let](xs, term(xs)) 7.41/2.80 7.41/2.80 The (relative) TRS S consists of the following rules: 7.41/2.80 7.41/2.80 and(False, False) -> False 7.41/2.80 and(True, False) -> False 7.41/2.80 and(False, True) -> False 7.41/2.80 and(True, True) -> True 7.41/2.80 !EQ(S(x), S(y)) -> !EQ(x, y) 7.41/2.80 !EQ(0, S(y)) -> False 7.41/2.80 !EQ(S(x), 0) -> False 7.41/2.80 !EQ(0, 0) -> True 7.41/2.80 factor[Ite][True][Let](xs', Cons(RPar, xs)) -> factor[Ite][True][Let][Ite](True, xs', Cons(RPar, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(LPar, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(LPar, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Div, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Div, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Mul, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Mul, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Plus, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Plus, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Minus, xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Minus, xs)) 7.41/2.80 factor[Ite][True][Let](xs', Cons(Val(int), xs)) -> factor[Ite][True][Let][Ite](False, xs', Cons(Val(int), xs)) 7.41/2.80 term[Let](xs', Cons(x, xs)) -> term[Let][Ite][False][Ite](member(x, Cons(Mul, Cons(Div, Nil))), xs', Cons(x, xs)) 7.41/2.80 expr[Let](xs', Cons(x, xs)) -> expr[Let][Ite][False][Ite](member(x, Cons(Plus, Cons(Minus, Nil))), xs', Cons(x, xs)) 7.41/2.80 term[Let](xs, Nil) -> Nil 7.41/2.80 member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) 7.41/2.80 factor[Ite][True][Let](xs, Nil) -> factor[Ite][True][Let][Ite](and(False, eqAlph(head(Nil), RPar)), xs, Nil) 7.41/2.80 expr[Let](xs, Nil) -> Nil 7.41/2.80 member[Ite][True][Ite](True, x, xs) -> True 7.41/2.80 7.41/2.80 Rewrite Strategy: INNERMOST 7.41/2.80 ---------------------------------------- 7.41/2.80 7.41/2.80 (5) InfiniteLowerBoundProof (FINISHED) 7.41/2.80 The following loop proves infinite runtime complexity: 7.41/2.80 7.41/2.80 The rewrite sequence 7.41/2.80 7.41/2.80 term(Cons(LPar, xs1_0)) ->^+ term[Let](Cons(LPar, xs1_0), factor[Ite][True][Let](Cons(LPar, xs1_0), expr[Let](Cons(LPar, xs1_0), term(Cons(LPar, xs1_0))))) 7.41/2.80 7.41/2.80 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1,1]. 7.41/2.80 7.41/2.80 The pumping substitution is [ ]. 7.41/2.80 7.41/2.80 The result substitution is [ ]. 7.41/2.80 7.41/2.80 7.41/2.80 7.41/2.80 7.41/2.80 ---------------------------------------- 7.41/2.81 7.41/2.81 (6) 7.41/2.81 BOUNDS(INF, INF) 7.99/3.26 EOF