3.29/1.98 WORST_CASE(Omega(n^1), O(n^1)) 3.29/1.98 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.29/1.98 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.29/1.98 3.29/1.98 3.29/1.98 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.29/1.98 3.29/1.98 (0) CpxTRS 3.29/1.98 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.29/1.98 (2) CpxTRS 3.29/1.98 (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] 3.29/1.98 (4) BOUNDS(1, n^1) 3.29/1.98 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.29/1.98 (6) TRS for Loop Detection 3.29/1.98 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.29/1.98 (8) BEST 3.29/1.98 (9) proven lower bound 3.29/1.98 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.29/1.98 (11) BOUNDS(n^1, INF) 3.29/1.98 (12) TRS for Loop Detection 3.29/1.98 3.29/1.98 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (0) 3.29/1.98 Obligation: 3.29/1.98 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.29/1.98 3.29/1.98 3.29/1.98 The TRS R consists of the following rules: 3.29/1.98 3.29/1.98 revapp(Cons(x, xs), rest) -> revapp(xs, Cons(x, rest)) 3.29/1.98 revapp(Nil, rest) -> rest 3.29/1.98 goal(xs, ys) -> revapp(xs, ys) 3.29/1.98 3.29/1.98 S is empty. 3.29/1.98 Rewrite Strategy: INNERMOST 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.29/1.98 transformed relative TRS to TRS 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (2) 3.29/1.98 Obligation: 3.29/1.98 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.29/1.98 3.29/1.98 3.29/1.98 The TRS R consists of the following rules: 3.29/1.98 3.29/1.98 revapp(Cons(x, xs), rest) -> revapp(xs, Cons(x, rest)) 3.29/1.98 revapp(Nil, rest) -> rest 3.29/1.98 goal(xs, ys) -> revapp(xs, ys) 3.29/1.98 3.29/1.98 S is empty. 3.29/1.98 Rewrite Strategy: INNERMOST 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.29/1.98 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. 3.29/1.98 3.29/1.98 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.29/1.98 final states : [1, 2] 3.29/1.98 transitions: 3.29/1.98 Cons0(0, 0) -> 0 3.29/1.98 Nil0() -> 0 3.29/1.98 revapp0(0, 0) -> 1 3.29/1.98 goal0(0, 0) -> 2 3.29/1.98 Cons1(0, 0) -> 3 3.29/1.98 revapp1(0, 3) -> 1 3.29/1.98 revapp1(0, 0) -> 2 3.29/1.98 Cons1(0, 3) -> 3 3.29/1.98 revapp1(0, 3) -> 2 3.29/1.98 0 -> 1 3.29/1.98 0 -> 2 3.29/1.98 3 -> 1 3.29/1.98 3 -> 2 3.29/1.98 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (4) 3.29/1.98 BOUNDS(1, n^1) 3.29/1.98 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.29/1.98 Transformed a relative TRS into a decreasing-loop problem. 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (6) 3.29/1.98 Obligation: 3.29/1.98 Analyzing the following TRS for decreasing loops: 3.29/1.98 3.29/1.98 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.29/1.98 3.29/1.98 3.29/1.98 The TRS R consists of the following rules: 3.29/1.98 3.29/1.98 revapp(Cons(x, xs), rest) -> revapp(xs, Cons(x, rest)) 3.29/1.98 revapp(Nil, rest) -> rest 3.29/1.98 goal(xs, ys) -> revapp(xs, ys) 3.29/1.98 3.29/1.98 S is empty. 3.29/1.98 Rewrite Strategy: INNERMOST 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.29/1.98 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.29/1.98 3.29/1.98 The rewrite sequence 3.29/1.98 3.29/1.98 revapp(Cons(x, xs), rest) ->^+ revapp(xs, Cons(x, rest)) 3.29/1.98 3.29/1.98 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 3.29/1.98 3.29/1.98 The pumping substitution is [xs / Cons(x, xs)]. 3.29/1.98 3.29/1.98 The result substitution is [rest / Cons(x, rest)]. 3.29/1.98 3.29/1.98 3.29/1.98 3.29/1.98 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (8) 3.29/1.98 Complex Obligation (BEST) 3.29/1.98 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (9) 3.29/1.98 Obligation: 3.29/1.98 Proved the lower bound n^1 for the following obligation: 3.29/1.98 3.29/1.98 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.29/1.98 3.29/1.98 3.29/1.98 The TRS R consists of the following rules: 3.29/1.98 3.29/1.98 revapp(Cons(x, xs), rest) -> revapp(xs, Cons(x, rest)) 3.29/1.98 revapp(Nil, rest) -> rest 3.29/1.98 goal(xs, ys) -> revapp(xs, ys) 3.29/1.98 3.29/1.98 S is empty. 3.29/1.98 Rewrite Strategy: INNERMOST 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (10) LowerBoundPropagationProof (FINISHED) 3.29/1.98 Propagated lower bound. 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (11) 3.29/1.98 BOUNDS(n^1, INF) 3.29/1.98 3.29/1.98 ---------------------------------------- 3.29/1.98 3.29/1.98 (12) 3.29/1.98 Obligation: 3.29/1.98 Analyzing the following TRS for decreasing loops: 3.29/1.98 3.29/1.98 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.29/1.98 3.29/1.98 3.29/1.98 The TRS R consists of the following rules: 3.29/1.98 3.29/1.98 revapp(Cons(x, xs), rest) -> revapp(xs, Cons(x, rest)) 3.29/1.98 revapp(Nil, rest) -> rest 3.29/1.98 goal(xs, ys) -> revapp(xs, ys) 3.29/1.98 3.29/1.98 S is empty. 3.29/1.98 Rewrite Strategy: INNERMOST 3.63/2.02 EOF