1078.27/291.49 WORST_CASE(Omega(n^1), O(n^2)) 1078.27/291.51 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 1078.27/291.51 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1078.27/291.51 1078.27/291.51 1078.27/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1078.27/291.51 1078.27/291.51 (0) CpxTRS 1078.27/291.51 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 1078.27/291.51 (2) CpxWeightedTrs 1078.27/291.51 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 1078.27/291.51 (4) CpxTypedWeightedTrs 1078.27/291.51 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 1078.27/291.51 (6) CpxTypedWeightedCompleteTrs 1078.27/291.51 (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 3 ms] 1078.27/291.51 (8) CpxRNTS 1078.27/291.51 (9) CompleteCoflocoProof [FINISHED, 493 ms] 1078.27/291.51 (10) BOUNDS(1, n^2) 1078.27/291.51 (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 1078.27/291.51 (12) TRS for Loop Detection 1078.27/291.51 (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 1078.27/291.51 (14) BEST 1078.27/291.51 (15) proven lower bound 1078.27/291.51 (16) LowerBoundPropagationProof [FINISHED, 0 ms] 1078.27/291.51 (17) BOUNDS(n^1, INF) 1078.27/291.51 (18) TRS for Loop Detection 1078.27/291.51 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (0) 1078.27/291.51 Obligation: 1078.27/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1078.27/291.51 1078.27/291.51 1078.27/291.51 The TRS R consists of the following rules: 1078.27/291.51 1078.27/291.51 f(true, x, y) -> f(gt(x, y), x, round(s(y))) 1078.27/291.51 round(0) -> 0 1078.27/291.51 round(s(0)) -> s(s(0)) 1078.27/291.51 round(s(s(x))) -> s(s(round(x))) 1078.27/291.51 gt(0, v) -> false 1078.27/291.51 gt(s(u), 0) -> true 1078.27/291.51 gt(s(u), s(v)) -> gt(u, v) 1078.27/291.51 1078.27/291.51 S is empty. 1078.27/291.51 Rewrite Strategy: INNERMOST 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 1078.27/291.51 Transformed relative TRS to weighted TRS 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (2) 1078.27/291.51 Obligation: 1078.27/291.51 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). 1078.27/291.51 1078.27/291.51 1078.27/291.51 The TRS R consists of the following rules: 1078.27/291.51 1078.27/291.51 f(true, x, y) -> f(gt(x, y), x, round(s(y))) [1] 1078.27/291.51 round(0) -> 0 [1] 1078.27/291.51 round(s(0)) -> s(s(0)) [1] 1078.27/291.51 round(s(s(x))) -> s(s(round(x))) [1] 1078.27/291.51 gt(0, v) -> false [1] 1078.27/291.51 gt(s(u), 0) -> true [1] 1078.27/291.51 gt(s(u), s(v)) -> gt(u, v) [1] 1078.27/291.51 1078.27/291.51 Rewrite Strategy: INNERMOST 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 1078.27/291.51 Infered types. 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (4) 1078.27/291.51 Obligation: 1078.27/291.51 Runtime Complexity Weighted TRS with Types. 1078.27/291.51 The TRS R consists of the following rules: 1078.27/291.51 1078.27/291.51 f(true, x, y) -> f(gt(x, y), x, round(s(y))) [1] 1078.27/291.51 round(0) -> 0 [1] 1078.27/291.51 round(s(0)) -> s(s(0)) [1] 1078.27/291.51 round(s(s(x))) -> s(s(round(x))) [1] 1078.27/291.51 gt(0, v) -> false [1] 1078.27/291.51 gt(s(u), 0) -> true [1] 1078.27/291.51 gt(s(u), s(v)) -> gt(u, v) [1] 1078.27/291.51 1078.27/291.51 The TRS has the following type information: 1078.27/291.51 f :: true:false -> s:0 -> s:0 -> f 1078.27/291.51 true :: true:false 1078.27/291.51 gt :: s:0 -> s:0 -> true:false 1078.27/291.51 round :: s:0 -> s:0 1078.27/291.51 s :: s:0 -> s:0 1078.27/291.51 0 :: s:0 1078.27/291.51 false :: true:false 1078.27/291.51 1078.27/291.51 Rewrite Strategy: INNERMOST 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (5) CompletionProof (UPPER BOUND(ID)) 1078.27/291.51 The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: 1078.27/291.51 1078.27/291.51 f(v0, v1, v2) -> null_f [0] 1078.27/291.51 1078.27/291.51 And the following fresh constants: null_f 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (6) 1078.27/291.51 Obligation: 1078.27/291.51 Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: 1078.27/291.51 1078.27/291.51 Runtime Complexity Weighted TRS with Types. 1078.27/291.51 The TRS R consists of the following rules: 1078.27/291.51 1078.27/291.51 f(true, x, y) -> f(gt(x, y), x, round(s(y))) [1] 1078.27/291.51 round(0) -> 0 [1] 1078.27/291.51 round(s(0)) -> s(s(0)) [1] 1078.27/291.51 round(s(s(x))) -> s(s(round(x))) [1] 1078.27/291.51 gt(0, v) -> false [1] 1078.27/291.51 gt(s(u), 0) -> true [1] 1078.27/291.51 gt(s(u), s(v)) -> gt(u, v) [1] 1078.27/291.51 f(v0, v1, v2) -> null_f [0] 1078.27/291.51 1078.27/291.51 The TRS has the following type information: 1078.27/291.51 f :: true:false -> s:0 -> s:0 -> null_f 1078.27/291.51 true :: true:false 1078.27/291.51 gt :: s:0 -> s:0 -> true:false 1078.27/291.51 round :: s:0 -> s:0 1078.27/291.51 s :: s:0 -> s:0 1078.27/291.51 0 :: s:0 1078.27/291.51 false :: true:false 1078.27/291.51 null_f :: null_f 1078.27/291.51 1078.27/291.51 Rewrite Strategy: INNERMOST 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 1078.27/291.51 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 1078.27/291.51 The constant constructors are abstracted as follows: 1078.27/291.51 1078.27/291.51 true => 1 1078.27/291.51 0 => 0 1078.27/291.51 false => 0 1078.27/291.51 null_f => 0 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (8) 1078.27/291.51 Obligation: 1078.27/291.51 Complexity RNTS consisting of the following rules: 1078.27/291.51 1078.27/291.51 f(z, z', z'') -{ 1 }-> f(gt(x, y), x, round(1 + y)) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 1078.27/291.51 f(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 1078.27/291.51 gt(z, z') -{ 1 }-> gt(u, v) :|: v >= 0, z' = 1 + v, z = 1 + u, u >= 0 1078.27/291.51 gt(z, z') -{ 1 }-> 1 :|: z = 1 + u, z' = 0, u >= 0 1078.27/291.51 gt(z, z') -{ 1 }-> 0 :|: v >= 0, z' = v, z = 0 1078.27/291.51 round(z) -{ 1 }-> 0 :|: z = 0 1078.27/291.51 round(z) -{ 1 }-> 1 + (1 + round(x)) :|: x >= 0, z = 1 + (1 + x) 1078.27/291.51 round(z) -{ 1 }-> 1 + (1 + 0) :|: z = 1 + 0 1078.27/291.51 1078.27/291.51 Only complete derivations are relevant for the runtime complexity. 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (9) CompleteCoflocoProof (FINISHED) 1078.27/291.51 Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: 1078.27/291.51 1078.27/291.51 eq(start(V1, V, V2),0,[f(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). 1078.27/291.51 eq(start(V1, V, V2),0,[round(V1, Out)],[V1 >= 0]). 1078.27/291.51 eq(start(V1, V, V2),0,[gt(V1, V, Out)],[V1 >= 0,V >= 0]). 1078.27/291.51 eq(f(V1, V, V2, Out),1,[gt(V4, V3, Ret0),round(1 + V3, Ret2),f(Ret0, V4, Ret2, Ret)],[Out = Ret,V = V4,V2 = V3,V1 = 1,V4 >= 0,V3 >= 0]). 1078.27/291.51 eq(round(V1, Out),1,[],[Out = 0,V1 = 0]). 1078.27/291.51 eq(round(V1, Out),1,[],[Out = 2,V1 = 1]). 1078.27/291.51 eq(round(V1, Out),1,[round(V5, Ret11)],[Out = 2 + Ret11,V5 >= 0,V1 = 2 + V5]). 1078.27/291.51 eq(gt(V1, V, Out),1,[],[Out = 0,V6 >= 0,V = V6,V1 = 0]). 1078.27/291.51 eq(gt(V1, V, Out),1,[],[Out = 1,V1 = 1 + V7,V = 0,V7 >= 0]). 1078.27/291.51 eq(gt(V1, V, Out),1,[gt(V8, V9, Ret1)],[Out = Ret1,V9 >= 0,V = 1 + V9,V1 = 1 + V8,V8 >= 0]). 1078.27/291.51 eq(f(V1, V, V2, Out),0,[],[Out = 0,V11 >= 0,V2 = V12,V10 >= 0,V1 = V11,V = V10,V12 >= 0]). 1078.27/291.51 input_output_vars(f(V1,V,V2,Out),[V1,V,V2],[Out]). 1078.27/291.51 input_output_vars(round(V1,Out),[V1],[Out]). 1078.27/291.51 input_output_vars(gt(V1,V,Out),[V1,V],[Out]). 1078.27/291.51 1078.27/291.51 1078.27/291.51 CoFloCo proof output: 1078.27/291.51 Preprocessing Cost Relations 1078.27/291.51 ===================================== 1078.27/291.51 1078.27/291.51 #### Computed strongly connected components 1078.27/291.51 0. recursive : [gt/3] 1078.27/291.51 1. recursive : [round/2] 1078.27/291.51 2. recursive : [f/4] 1078.27/291.51 3. non_recursive : [start/3] 1078.27/291.51 1078.27/291.51 #### Obtained direct recursion through partial evaluation 1078.27/291.51 0. SCC is partially evaluated into gt/3 1078.27/291.51 1. SCC is partially evaluated into round/2 1078.27/291.51 2. SCC is partially evaluated into f/4 1078.27/291.51 3. SCC is partially evaluated into start/3 1078.27/291.51 1078.27/291.51 Control-Flow Refinement of Cost Relations 1078.27/291.51 ===================================== 1078.27/291.51 1078.27/291.51 ### Specialization of cost equations gt/3 1078.27/291.51 * CE 11 is refined into CE [12] 1078.27/291.51 * CE 10 is refined into CE [13] 1078.27/291.51 * CE 9 is refined into CE [14] 1078.27/291.51 1078.27/291.51 1078.27/291.51 ### Cost equations --> "Loop" of gt/3 1078.27/291.51 * CEs [13] --> Loop 10 1078.27/291.51 * CEs [14] --> Loop 11 1078.27/291.51 * CEs [12] --> Loop 12 1078.27/291.51 1078.27/291.51 ### Ranking functions of CR gt(V1,V,Out) 1078.27/291.51 * RF of phase [12]: [V,V1] 1078.27/291.51 1078.27/291.51 #### Partial ranking functions of CR gt(V1,V,Out) 1078.27/291.51 * Partial RF of phase [12]: 1078.27/291.51 - RF of loop [12:1]: 1078.27/291.51 V 1078.27/291.51 V1 1078.27/291.51 1078.27/291.51 1078.27/291.51 ### Specialization of cost equations round/2 1078.27/291.51 * CE 8 is refined into CE [15] 1078.27/291.51 * CE 7 is refined into CE [16] 1078.27/291.51 * CE 6 is refined into CE [17] 1078.27/291.51 1078.27/291.51 1078.27/291.51 ### Cost equations --> "Loop" of round/2 1078.27/291.51 * CEs [16] --> Loop 13 1078.27/291.51 * CEs [17] --> Loop 14 1078.27/291.51 * CEs [15] --> Loop 15 1078.27/291.51 1078.27/291.51 ### Ranking functions of CR round(V1,Out) 1078.27/291.51 * RF of phase [15]: [V1-1] 1078.27/291.51 1078.27/291.51 #### Partial ranking functions of CR round(V1,Out) 1078.27/291.51 * Partial RF of phase [15]: 1078.27/291.51 - RF of loop [15:1]: 1078.27/291.51 V1-1 1078.27/291.51 1078.27/291.51 1078.27/291.51 ### Specialization of cost equations f/4 1078.27/291.51 * CE 5 is refined into CE [18] 1078.27/291.51 * CE 4 is refined into CE [19,20,21,22,23,24,25,26] 1078.27/291.51 1078.27/291.51 1078.27/291.51 ### Cost equations --> "Loop" of f/4 1078.27/291.51 * CEs [25] --> Loop 16 1078.27/291.51 * CEs [26] --> Loop 17 1078.27/291.51 * CEs [24] --> Loop 18 1078.27/291.51 * CEs [23] --> Loop 19 1078.27/291.51 * CEs [22] --> Loop 20 1078.27/291.51 * CEs [21] --> Loop 21 1078.27/291.51 * CEs [20] --> Loop 22 1078.27/291.51 * CEs [19] --> Loop 23 1078.27/291.51 * CEs [18] --> Loop 24 1078.27/291.51 1078.27/291.51 ### Ranking functions of CR f(V1,V,V2,Out) 1078.27/291.51 * RF of phase [16,17]: [V-V2] 1078.27/291.51 1078.27/291.51 #### Partial ranking functions of CR f(V1,V,V2,Out) 1078.27/291.51 * Partial RF of phase [16,17]: 1078.27/291.51 - RF of loop [16:1]: 1078.27/291.51 V/2-V2/2 1078.27/291.51 - RF of loop [17:1]: 1078.27/291.51 V-V2 1078.27/291.51 1078.27/291.51 1078.27/291.51 ### Specialization of cost equations start/3 1078.27/291.51 * CE 1 is refined into CE [27,28,29,30,31] 1078.27/291.51 * CE 2 is refined into CE [32,33,34,35] 1078.27/291.51 * CE 3 is refined into CE [36,37,38,39] 1078.27/291.51 1078.27/291.51 1078.27/291.51 ### Cost equations --> "Loop" of start/3 1078.27/291.51 * CEs [34,35,39] --> Loop 25 1078.27/291.51 * CEs [38] --> Loop 26 1078.27/291.51 * CEs [27] --> Loop 27 1078.27/291.51 * CEs [37] --> Loop 28 1078.27/291.51 * CEs [28,29,30,31,33] --> Loop 29 1078.27/291.51 * CEs [32,36] --> Loop 30 1078.27/291.51 1078.27/291.51 ### Ranking functions of CR start(V1,V,V2) 1078.27/291.51 1078.27/291.51 #### Partial ranking functions of CR start(V1,V,V2) 1078.27/291.51 1078.27/291.51 1078.27/291.51 Computing Bounds 1078.27/291.51 ===================================== 1078.27/291.51 1078.27/291.51 #### Cost of chains of gt(V1,V,Out): 1078.27/291.51 * Chain [[12],11]: 1*it(12)+1 1078.27/291.51 Such that:it(12) =< V1 1078.27/291.51 1078.27/291.51 with precondition: [Out=0,V1>=1,V>=V1] 1078.27/291.51 1078.27/291.51 * Chain [[12],10]: 1*it(12)+1 1078.27/291.51 Such that:it(12) =< V 1078.27/291.51 1078.27/291.51 with precondition: [Out=1,V>=1,V1>=V+1] 1078.27/291.51 1078.27/291.51 * Chain [11]: 1 1078.27/291.51 with precondition: [V1=0,Out=0,V>=0] 1078.27/291.51 1078.27/291.51 * Chain [10]: 1 1078.27/291.51 with precondition: [V=0,Out=1,V1>=1] 1078.27/291.51 1078.27/291.51 1078.27/291.51 #### Cost of chains of round(V1,Out): 1078.27/291.51 * Chain [[15],14]: 1*it(15)+1 1078.27/291.51 Such that:it(15) =< Out 1078.27/291.51 1078.27/291.51 with precondition: [V1=Out,V1>=2] 1078.27/291.51 1078.27/291.51 * Chain [[15],13]: 1*it(15)+1 1078.27/291.51 Such that:it(15) =< Out 1078.27/291.51 1078.27/291.51 with precondition: [V1+1=Out,V1>=3] 1078.27/291.51 1078.27/291.51 * Chain [14]: 1 1078.27/291.51 with precondition: [V1=0,Out=0] 1078.27/291.51 1078.27/291.51 * Chain [13]: 1 1078.27/291.51 with precondition: [V1=1,Out=2] 1078.27/291.51 1078.27/291.51 1078.27/291.51 #### Cost of chains of f(V1,V,V2,Out): 1078.27/291.51 * Chain [[16,17],24]: 3*it(16)+3*it(17)+2*s(9)+2*s(11)+0 1078.27/291.51 Such that:aux(3) =< V+1 1078.27/291.51 aux(5) =< V-V2 1078.27/291.51 aux(6) =< V-V2+1 1078.27/291.51 it(16) =< V/2-V2/2 1078.27/291.51 it(16) =< aux(5) 1078.27/291.51 it(17) =< aux(5) 1078.27/291.51 it(16) =< aux(6) 1078.27/291.51 it(17) =< aux(6) 1078.27/291.51 aux(4) =< aux(3)-1 1078.27/291.51 s(10) =< it(16)*aux(3) 1078.27/291.51 s(12) =< it(17)*aux(4) 1078.27/291.51 s(11) =< s(12) 1078.27/291.51 s(9) =< s(10) 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 1078.27/291.51 1078.27/291.51 * Chain [[16,17],19,24]: 3*it(16)+3*it(17)+2*s(9)+2*s(11)+1*s(13)+1*s(14)+3 1078.27/291.51 Such that:s(13) =< V 1078.27/291.51 aux(3) =< V+1 1078.27/291.51 s(14) =< V+3 1078.27/291.51 aux(5) =< V-V2 1078.27/291.51 aux(6) =< V-V2+1 1078.27/291.51 it(16) =< V/2-V2/2 1078.27/291.51 it(16) =< aux(5) 1078.27/291.51 it(17) =< aux(5) 1078.27/291.51 it(16) =< aux(6) 1078.27/291.51 it(17) =< aux(6) 1078.27/291.51 aux(4) =< aux(3)-1 1078.27/291.51 s(10) =< it(16)*aux(3) 1078.27/291.51 s(12) =< it(17)*aux(4) 1078.27/291.51 s(11) =< s(12) 1078.27/291.51 s(9) =< s(10) 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 1078.27/291.51 1078.27/291.51 * Chain [[16,17],18,24]: 3*it(16)+3*it(17)+2*s(9)+2*s(11)+1*s(15)+1*s(16)+3 1078.27/291.51 Such that:s(15) =< V 1078.27/291.51 aux(3) =< V+1 1078.27/291.51 s(16) =< V+2 1078.27/291.51 aux(5) =< V-V2 1078.27/291.51 aux(6) =< V-V2+1 1078.27/291.51 it(16) =< V/2-V2/2 1078.27/291.51 it(16) =< aux(5) 1078.27/291.51 it(17) =< aux(5) 1078.27/291.51 it(16) =< aux(6) 1078.27/291.51 it(17) =< aux(6) 1078.27/291.51 aux(4) =< aux(3)-1 1078.27/291.51 s(10) =< it(16)*aux(3) 1078.27/291.51 s(12) =< it(17)*aux(4) 1078.27/291.51 s(11) =< s(12) 1078.27/291.51 s(9) =< s(10) 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 1078.27/291.51 1078.27/291.51 * Chain [24]: 0 1078.27/291.51 with precondition: [Out=0,V1>=0,V>=0,V2>=0] 1078.27/291.51 1078.27/291.51 * Chain [23,24]: 3 1078.27/291.51 with precondition: [V1=1,V=0,V2=0,Out=0] 1078.27/291.51 1078.27/291.51 * Chain [22,24]: 1*s(17)+3 1078.27/291.51 Such that:s(17) =< V2+2 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,V=0,Out=0,V2>=2] 1078.27/291.51 1078.27/291.51 * Chain [21,24]: 1*s(18)+3 1078.27/291.51 Such that:s(18) =< V2+1 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,V=0,Out=0,V2>=1] 1078.27/291.51 1078.27/291.51 * Chain [20,[16,17],24]: 3*it(16)+3*it(17)+2*s(9)+2*s(11)+3 1078.27/291.51 Such that:aux(3) =< V+1 1078.27/291.51 it(16) =< V/2 1078.27/291.51 aux(7) =< V 1078.27/291.51 it(16) =< aux(7) 1078.27/291.51 it(17) =< aux(7) 1078.27/291.51 aux(4) =< aux(3)-1 1078.27/291.51 s(10) =< it(16)*aux(3) 1078.27/291.51 s(12) =< it(17)*aux(4) 1078.27/291.51 s(11) =< s(12) 1078.27/291.51 s(9) =< s(10) 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,V2=0,Out=0,V>=3] 1078.27/291.51 1078.27/291.51 * Chain [20,[16,17],19,24]: 3*it(16)+4*it(17)+2*s(9)+2*s(11)+1*s(14)+6 1078.27/291.51 Such that:aux(3) =< V+1 1078.27/291.51 s(14) =< V+3 1078.27/291.51 it(16) =< V/2 1078.27/291.51 aux(8) =< V 1078.27/291.51 it(17) =< aux(8) 1078.27/291.51 it(16) =< aux(8) 1078.27/291.51 aux(4) =< aux(3)-1 1078.27/291.51 s(10) =< it(16)*aux(3) 1078.27/291.51 s(12) =< it(17)*aux(4) 1078.27/291.51 s(11) =< s(12) 1078.27/291.51 s(9) =< s(10) 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,V2=0,Out=0,V>=3] 1078.27/291.51 1078.27/291.51 * Chain [20,[16,17],18,24]: 3*it(16)+4*it(17)+2*s(9)+2*s(11)+1*s(16)+6 1078.27/291.51 Such that:aux(3) =< V+1 1078.27/291.51 s(16) =< V+2 1078.27/291.51 it(16) =< V/2 1078.27/291.51 aux(9) =< V 1078.27/291.51 it(17) =< aux(9) 1078.27/291.51 it(16) =< aux(9) 1078.27/291.51 aux(4) =< aux(3)-1 1078.27/291.51 s(10) =< it(16)*aux(3) 1078.27/291.51 s(12) =< it(17)*aux(4) 1078.27/291.51 s(11) =< s(12) 1078.27/291.51 s(9) =< s(10) 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,V2=0,Out=0,V>=3] 1078.27/291.51 1078.27/291.51 * Chain [20,24]: 3 1078.27/291.51 with precondition: [V1=1,V2=0,Out=0,V>=1] 1078.27/291.51 1078.27/291.51 * Chain [20,19,24]: 1*s(13)+1*s(14)+6 1078.27/291.51 Such that:s(14) =< 4 1078.27/291.51 s(13) =< V 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,V2=0,Out=0,2>=V,V>=1] 1078.27/291.51 1078.27/291.51 * Chain [20,18,24]: 1*s(15)+1*s(16)+6 1078.27/291.51 Such that:s(16) =< 3 1078.27/291.51 s(15) =< V 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,V2=0,Out=0,2>=V,V>=1] 1078.27/291.51 1078.27/291.51 * Chain [19,24]: 1*s(13)+1*s(14)+3 1078.27/291.51 Such that:s(13) =< V 1078.27/291.51 s(14) =< V2+2 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,Out=0,V>=1,V2>=2,V2>=V] 1078.27/291.51 1078.27/291.51 * Chain [18,24]: 1*s(15)+1*s(16)+3 1078.27/291.51 Such that:s(15) =< V 1078.27/291.51 s(16) =< V2+1 1078.27/291.51 1078.27/291.51 with precondition: [V1=1,Out=0,V>=1,V2>=V] 1078.27/291.51 1078.27/291.51 1078.27/291.51 #### Cost of chains of start(V1,V,V2): 1078.27/291.51 * Chain [30]: 1 1078.27/291.51 with precondition: [V1=0] 1078.27/291.51 1078.27/291.51 * Chain [29]: 2*s(92)+2*s(93)+1*s(94)+1*s(95)+2*s(96)+2*s(97)+17*s(101)+9*s(102)+6*s(106)+6*s(107)+9*s(120)+9*s(121)+6*s(125)+6*s(126)+6 1078.27/291.51 Such that:s(94) =< 3 1078.27/291.51 s(95) =< 4 1078.27/291.51 s(116) =< V-V2 1078.27/291.51 s(117) =< V-V2+1 1078.27/291.51 s(100) =< V/2 1078.27/291.51 s(118) =< V/2-V2/2 1078.27/291.51 aux(19) =< V 1078.27/291.51 aux(20) =< V+1 1078.27/291.51 aux(21) =< V+2 1078.27/291.51 aux(22) =< V+3 1078.27/291.51 aux(23) =< V2+1 1078.27/291.51 aux(24) =< V2+2 1078.27/291.51 s(96) =< aux(21) 1078.27/291.51 s(97) =< aux(22) 1078.27/291.51 s(92) =< aux(23) 1078.27/291.51 s(93) =< aux(24) 1078.27/291.51 s(101) =< aux(19) 1078.27/291.51 s(102) =< s(100) 1078.27/291.51 s(102) =< aux(19) 1078.27/291.51 s(103) =< aux(20)-1 1078.27/291.51 s(104) =< s(102)*aux(20) 1078.27/291.51 s(105) =< s(101)*s(103) 1078.27/291.51 s(106) =< s(105) 1078.27/291.51 s(107) =< s(104) 1078.27/291.51 s(120) =< s(118) 1078.27/291.51 s(120) =< s(116) 1078.27/291.51 s(121) =< s(116) 1078.27/291.51 s(120) =< s(117) 1078.27/291.51 s(121) =< s(117) 1078.27/291.51 s(123) =< s(120)*aux(20) 1078.27/291.51 s(124) =< s(121)*s(103) 1078.27/291.51 s(125) =< s(124) 1078.27/291.51 s(126) =< s(123) 1078.27/291.51 1078.27/291.51 with precondition: [V1=1] 1078.27/291.51 1078.27/291.51 * Chain [28]: 1 1078.27/291.51 with precondition: [V=0,V1>=1] 1078.27/291.51 1078.27/291.51 * Chain [27]: 3 1078.27/291.51 with precondition: [V1>=0,V>=0,V2>=0] 1078.27/291.51 1078.27/291.51 * Chain [26]: 1*s(127)+1 1078.27/291.51 Such that:s(127) =< V1 1078.27/291.51 1078.27/291.51 with precondition: [V1>=1,V>=V1] 1078.27/291.51 1078.27/291.51 * Chain [25]: 1*s(128)+1*s(129)+1*s(130)+1 1078.27/291.51 Such that:s(129) =< V1 1078.27/291.51 s(128) =< V1+1 1078.27/291.51 s(130) =< V 1078.27/291.51 1078.27/291.51 with precondition: [V1>=2] 1078.27/291.51 1078.27/291.51 1078.27/291.51 Closed-form bounds of start(V1,V,V2): 1078.27/291.51 ------------------------------------- 1078.27/291.51 * Chain [30] with precondition: [V1=0] 1078.27/291.51 - Upper bound: 1 1078.27/291.51 - Complexity: constant 1078.27/291.51 * Chain [29] with precondition: [V1=1] 1078.27/291.51 - Upper bound: nat(V)*17+13+nat(V)*6*nat(nat(V+1)+ -1)+nat(nat(V+1)+ -1)*6*nat(V-V2)+nat(V+1)*6*nat(V/2-V2/2)+nat(V+1)*6*nat(V/2)+nat(V+2)*2+nat(V+3)*2+nat(V2+1)*2+nat(V2+2)*2+nat(V-V2)*9+nat(V/2-V2/2)*9+nat(V/2)*9 1078.27/291.51 - Complexity: n^2 1078.27/291.51 * Chain [28] with precondition: [V=0,V1>=1] 1078.27/291.51 - Upper bound: 1 1078.27/291.51 - Complexity: constant 1078.27/291.51 * Chain [27] with precondition: [V1>=0,V>=0,V2>=0] 1078.27/291.51 - Upper bound: 3 1078.27/291.51 - Complexity: constant 1078.27/291.51 * Chain [26] with precondition: [V1>=1,V>=V1] 1078.27/291.51 - Upper bound: V1+1 1078.27/291.51 - Complexity: n 1078.27/291.51 * Chain [25] with precondition: [V1>=2] 1078.27/291.51 - Upper bound: V1+1+nat(V)+(V1+1) 1078.27/291.51 - Complexity: n 1078.27/291.51 1078.27/291.51 ### Maximum cost of start(V1,V,V2): max([max([2,nat(V)*17+12+nat(V)*6*nat(nat(V+1)+ -1)+nat(nat(V+1)+ -1)*6*nat(V-V2)+nat(V+1)*6*nat(V/2-V2/2)+nat(V+1)*6*nat(V/2)+nat(V+2)*2+nat(V+3)*2+nat(V2+1)*2+nat(V2+2)*2+nat(V-V2)*9+nat(V/2-V2/2)*9+nat(V/2)*9]),V1+1+nat(V)+V1])+1 1078.27/291.51 Asymptotic class: n^2 1078.27/291.51 * Total analysis performed in 404 ms. 1078.27/291.51 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (10) 1078.27/291.51 BOUNDS(1, n^2) 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 1078.27/291.51 Transformed a relative TRS into a decreasing-loop problem. 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (12) 1078.27/291.51 Obligation: 1078.27/291.51 Analyzing the following TRS for decreasing loops: 1078.27/291.51 1078.27/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1078.27/291.51 1078.27/291.51 1078.27/291.51 The TRS R consists of the following rules: 1078.27/291.51 1078.27/291.51 f(true, x, y) -> f(gt(x, y), x, round(s(y))) 1078.27/291.51 round(0) -> 0 1078.27/291.51 round(s(0)) -> s(s(0)) 1078.27/291.51 round(s(s(x))) -> s(s(round(x))) 1078.27/291.51 gt(0, v) -> false 1078.27/291.51 gt(s(u), 0) -> true 1078.27/291.51 gt(s(u), s(v)) -> gt(u, v) 1078.27/291.51 1078.27/291.51 S is empty. 1078.27/291.51 Rewrite Strategy: INNERMOST 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (13) DecreasingLoopProof (LOWER BOUND(ID)) 1078.27/291.51 The following loop(s) give(s) rise to the lower bound Omega(n^1): 1078.27/291.51 1078.27/291.51 The rewrite sequence 1078.27/291.51 1078.27/291.51 gt(s(u), s(v)) ->^+ gt(u, v) 1078.27/291.51 1078.27/291.51 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 1078.27/291.51 1078.27/291.51 The pumping substitution is [u / s(u), v / s(v)]. 1078.27/291.51 1078.27/291.51 The result substitution is [ ]. 1078.27/291.51 1078.27/291.51 1078.27/291.51 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (14) 1078.27/291.51 Complex Obligation (BEST) 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (15) 1078.27/291.51 Obligation: 1078.27/291.51 Proved the lower bound n^1 for the following obligation: 1078.27/291.51 1078.27/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1078.27/291.51 1078.27/291.51 1078.27/291.51 The TRS R consists of the following rules: 1078.27/291.51 1078.27/291.51 f(true, x, y) -> f(gt(x, y), x, round(s(y))) 1078.27/291.51 round(0) -> 0 1078.27/291.51 round(s(0)) -> s(s(0)) 1078.27/291.51 round(s(s(x))) -> s(s(round(x))) 1078.27/291.51 gt(0, v) -> false 1078.27/291.51 gt(s(u), 0) -> true 1078.27/291.51 gt(s(u), s(v)) -> gt(u, v) 1078.27/291.51 1078.27/291.51 S is empty. 1078.27/291.51 Rewrite Strategy: INNERMOST 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (16) LowerBoundPropagationProof (FINISHED) 1078.27/291.51 Propagated lower bound. 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (17) 1078.27/291.51 BOUNDS(n^1, INF) 1078.27/291.51 1078.27/291.51 ---------------------------------------- 1078.27/291.51 1078.27/291.51 (18) 1078.27/291.51 Obligation: 1078.27/291.51 Analyzing the following TRS for decreasing loops: 1078.27/291.51 1078.27/291.51 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1078.27/291.51 1078.27/291.51 1078.27/291.51 The TRS R consists of the following rules: 1078.27/291.51 1078.27/291.51 f(true, x, y) -> f(gt(x, y), x, round(s(y))) 1078.27/291.51 round(0) -> 0 1078.27/291.51 round(s(0)) -> s(s(0)) 1078.27/291.51 round(s(s(x))) -> s(s(round(x))) 1078.27/291.51 gt(0, v) -> false 1078.27/291.51 gt(s(u), 0) -> true 1078.27/291.51 gt(s(u), s(v)) -> gt(u, v) 1078.27/291.51 1078.27/291.51 S is empty. 1078.27/291.51 Rewrite Strategy: INNERMOST 1078.49/291.58 EOF