3.95/1.80 WORST_CASE(Omega(n^1), O(n^1)) 3.95/1.81 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.95/1.81 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.95/1.81 3.95/1.81 3.95/1.81 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). 3.95/1.81 3.95/1.81 (0) CpxRelTRS 3.95/1.81 (1) STerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 141 ms] 3.95/1.81 (2) CpxRelTRS 3.95/1.81 (3) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.95/1.81 (4) CpxTRS 3.95/1.81 (5) CpxTrsMatchBoundsTAProof [FINISHED, 34 ms] 3.95/1.81 (6) BOUNDS(1, n^1) 3.95/1.81 (7) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.95/1.81 (8) TRS for Loop Detection 3.95/1.81 (9) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.95/1.81 (10) BEST 3.95/1.81 (11) proven lower bound 3.95/1.81 (12) LowerBoundPropagationProof [FINISHED, 0 ms] 3.95/1.81 (13) BOUNDS(n^1, INF) 3.95/1.81 (14) TRS for Loop Detection 3.95/1.81 3.95/1.81 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (0) 3.95/1.81 Obligation: 3.95/1.81 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). 3.95/1.81 3.95/1.81 3.95/1.81 The TRS R consists of the following rules: 3.95/1.81 3.95/1.81 f(C(x1, x2)) -> C(f(x1), f(x2)) 3.95/1.81 f(Z) -> Z 3.95/1.81 eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) 3.95/1.81 eqZList(C(x1, x2), Z) -> False 3.95/1.81 eqZList(Z, C(y1, y2)) -> False 3.95/1.81 eqZList(Z, Z) -> True 3.95/1.81 second(C(x1, x2)) -> x2 3.95/1.81 first(C(x1, x2)) -> x1 3.95/1.81 g(x) -> x 3.95/1.81 3.95/1.81 The (relative) TRS S consists of the following rules: 3.95/1.81 3.95/1.81 and(False, False) -> False 3.95/1.81 and(True, False) -> False 3.95/1.81 and(False, True) -> False 3.95/1.81 and(True, True) -> True 3.95/1.81 3.95/1.81 Rewrite Strategy: INNERMOST 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (1) STerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) 3.95/1.81 proved termination of relative rules 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (2) 3.95/1.81 Obligation: 3.95/1.81 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). 3.95/1.81 3.95/1.81 3.95/1.81 The TRS R consists of the following rules: 3.95/1.81 3.95/1.81 f(C(x1, x2)) -> C(f(x1), f(x2)) 3.95/1.81 f(Z) -> Z 3.95/1.81 eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) 3.95/1.81 eqZList(C(x1, x2), Z) -> False 3.95/1.81 eqZList(Z, C(y1, y2)) -> False 3.95/1.81 eqZList(Z, Z) -> True 3.95/1.81 second(C(x1, x2)) -> x2 3.95/1.81 first(C(x1, x2)) -> x1 3.95/1.81 g(x) -> x 3.95/1.81 3.95/1.81 The (relative) TRS S consists of the following rules: 3.95/1.81 3.95/1.81 and(False, False) -> False 3.95/1.81 and(True, False) -> False 3.95/1.81 and(False, True) -> False 3.95/1.81 and(True, True) -> True 3.95/1.81 3.95/1.81 Rewrite Strategy: INNERMOST 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (3) RelTrsToTrsProof (UPPER BOUND(ID)) 3.95/1.81 transformed relative TRS to TRS 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (4) 3.95/1.81 Obligation: 3.95/1.81 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.95/1.81 3.95/1.81 3.95/1.81 The TRS R consists of the following rules: 3.95/1.81 3.95/1.81 f(C(x1, x2)) -> C(f(x1), f(x2)) 3.95/1.81 f(Z) -> Z 3.95/1.81 eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) 3.95/1.81 eqZList(C(x1, x2), Z) -> False 3.95/1.81 eqZList(Z, C(y1, y2)) -> False 3.95/1.81 eqZList(Z, Z) -> True 3.95/1.81 second(C(x1, x2)) -> x2 3.95/1.81 first(C(x1, x2)) -> x1 3.95/1.81 g(x) -> x 3.95/1.81 and(False, False) -> False 3.95/1.81 and(True, False) -> False 3.95/1.81 and(False, True) -> False 3.95/1.81 and(True, True) -> True 3.95/1.81 3.95/1.81 S is empty. 3.95/1.81 Rewrite Strategy: INNERMOST 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (5) CpxTrsMatchBoundsTAProof (FINISHED) 3.95/1.81 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 3.95/1.81 3.95/1.81 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.95/1.81 final states : [1, 2, 3, 4, 5, 6] 3.95/1.81 transitions: 3.95/1.81 C0(0, 0) -> 0 3.95/1.81 Z0() -> 0 3.95/1.81 False0() -> 0 3.95/1.81 True0() -> 0 3.95/1.81 f0(0) -> 1 3.95/1.81 eqZList0(0, 0) -> 2 3.95/1.81 second0(0) -> 3 3.95/1.81 first0(0) -> 4 3.95/1.81 g0(0) -> 5 3.95/1.81 and0(0, 0) -> 6 3.95/1.81 f1(0) -> 7 3.95/1.81 f1(0) -> 8 3.95/1.81 C1(7, 8) -> 1 3.95/1.81 Z1() -> 1 3.95/1.81 eqZList1(0, 0) -> 9 3.95/1.81 eqZList1(0, 0) -> 10 3.95/1.81 and1(9, 10) -> 2 3.95/1.81 False1() -> 2 3.95/1.81 True1() -> 2 3.95/1.81 False1() -> 6 3.95/1.81 True1() -> 6 3.95/1.81 C1(7, 8) -> 7 3.95/1.81 C1(7, 8) -> 8 3.95/1.81 Z1() -> 7 3.95/1.81 Z1() -> 8 3.95/1.81 and1(9, 10) -> 9 3.95/1.81 and1(9, 10) -> 10 3.95/1.81 False1() -> 9 3.95/1.81 False1() -> 10 3.95/1.81 True1() -> 9 3.95/1.81 True1() -> 10 3.95/1.81 False2() -> 2 3.95/1.81 False2() -> 9 3.95/1.81 False2() -> 10 3.95/1.81 True2() -> 2 3.95/1.81 True2() -> 9 3.95/1.81 True2() -> 10 3.95/1.81 0 -> 3 3.95/1.81 0 -> 4 3.95/1.81 0 -> 5 3.95/1.81 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (6) 3.95/1.81 BOUNDS(1, n^1) 3.95/1.81 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (7) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.95/1.81 Transformed a relative TRS into a decreasing-loop problem. 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (8) 3.95/1.81 Obligation: 3.95/1.81 Analyzing the following TRS for decreasing loops: 3.95/1.81 3.95/1.81 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). 3.95/1.81 3.95/1.81 3.95/1.81 The TRS R consists of the following rules: 3.95/1.81 3.95/1.81 f(C(x1, x2)) -> C(f(x1), f(x2)) 3.95/1.81 f(Z) -> Z 3.95/1.81 eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) 3.95/1.81 eqZList(C(x1, x2), Z) -> False 3.95/1.81 eqZList(Z, C(y1, y2)) -> False 3.95/1.81 eqZList(Z, Z) -> True 3.95/1.81 second(C(x1, x2)) -> x2 3.95/1.81 first(C(x1, x2)) -> x1 3.95/1.81 g(x) -> x 3.95/1.81 3.95/1.81 The (relative) TRS S consists of the following rules: 3.95/1.81 3.95/1.81 and(False, False) -> False 3.95/1.81 and(True, False) -> False 3.95/1.81 and(False, True) -> False 3.95/1.81 and(True, True) -> True 3.95/1.81 3.95/1.81 Rewrite Strategy: INNERMOST 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (9) DecreasingLoopProof (LOWER BOUND(ID)) 3.95/1.81 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.95/1.81 3.95/1.81 The rewrite sequence 3.95/1.81 3.95/1.81 eqZList(C(x1, x2), C(y1, y2)) ->^+ and(eqZList(x1, y1), eqZList(x2, y2)) 3.95/1.81 3.95/1.81 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.95/1.81 3.95/1.81 The pumping substitution is [x1 / C(x1, x2), y1 / C(y1, y2)]. 3.95/1.81 3.95/1.81 The result substitution is [ ]. 3.95/1.81 3.95/1.81 3.95/1.81 3.95/1.81 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (10) 3.95/1.81 Complex Obligation (BEST) 3.95/1.81 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (11) 3.95/1.81 Obligation: 3.95/1.81 Proved the lower bound n^1 for the following obligation: 3.95/1.81 3.95/1.81 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). 3.95/1.81 3.95/1.81 3.95/1.81 The TRS R consists of the following rules: 3.95/1.81 3.95/1.81 f(C(x1, x2)) -> C(f(x1), f(x2)) 3.95/1.81 f(Z) -> Z 3.95/1.81 eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) 3.95/1.81 eqZList(C(x1, x2), Z) -> False 3.95/1.81 eqZList(Z, C(y1, y2)) -> False 3.95/1.81 eqZList(Z, Z) -> True 3.95/1.81 second(C(x1, x2)) -> x2 3.95/1.81 first(C(x1, x2)) -> x1 3.95/1.81 g(x) -> x 3.95/1.81 3.95/1.81 The (relative) TRS S consists of the following rules: 3.95/1.81 3.95/1.81 and(False, False) -> False 3.95/1.81 and(True, False) -> False 3.95/1.81 and(False, True) -> False 3.95/1.81 and(True, True) -> True 3.95/1.81 3.95/1.81 Rewrite Strategy: INNERMOST 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (12) LowerBoundPropagationProof (FINISHED) 3.95/1.81 Propagated lower bound. 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (13) 3.95/1.81 BOUNDS(n^1, INF) 3.95/1.81 3.95/1.81 ---------------------------------------- 3.95/1.81 3.95/1.81 (14) 3.95/1.81 Obligation: 3.95/1.81 Analyzing the following TRS for decreasing loops: 3.95/1.81 3.95/1.81 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). 3.95/1.81 3.95/1.81 3.95/1.81 The TRS R consists of the following rules: 3.95/1.81 3.95/1.81 f(C(x1, x2)) -> C(f(x1), f(x2)) 3.95/1.81 f(Z) -> Z 3.95/1.81 eqZList(C(x1, x2), C(y1, y2)) -> and(eqZList(x1, y1), eqZList(x2, y2)) 3.95/1.81 eqZList(C(x1, x2), Z) -> False 3.95/1.81 eqZList(Z, C(y1, y2)) -> False 3.95/1.81 eqZList(Z, Z) -> True 3.95/1.81 second(C(x1, x2)) -> x2 3.95/1.81 first(C(x1, x2)) -> x1 3.95/1.81 g(x) -> x 3.95/1.81 3.95/1.81 The (relative) TRS S consists of the following rules: 3.95/1.81 3.95/1.81 and(False, False) -> False 3.95/1.81 and(True, False) -> False 3.95/1.81 and(False, True) -> False 3.95/1.81 and(True, True) -> True 3.95/1.81 3.95/1.81 Rewrite Strategy: INNERMOST 4.06/1.84 EOF