1132.82/291.50 WORST_CASE(Omega(n^1), ?) 1132.82/291.53 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 1132.82/291.53 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1132.82/291.53 1132.82/291.53 1132.82/291.53 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). 1132.82/291.53 1132.82/291.53 (0) CpxRelTRS 1132.82/291.53 (1) STerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 169 ms] 1132.82/291.53 (2) CpxRelTRS 1132.82/291.53 (3) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 1132.82/291.53 (4) CpxRelTRS 1132.82/291.53 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 1132.82/291.53 (6) typed CpxTrs 1132.82/291.53 (7) OrderProof [LOWER BOUND(ID), 0 ms] 1132.82/291.53 (8) typed CpxTrs 1132.82/291.53 (9) RewriteLemmaProof [LOWER BOUND(ID), 286 ms] 1132.82/291.53 (10) typed CpxTrs 1132.82/291.53 (11) RewriteLemmaProof [LOWER BOUND(ID), 76 ms] 1132.82/291.53 (12) typed CpxTrs 1132.82/291.53 (13) RewriteLemmaProof [LOWER BOUND(ID), 188 ms] 1132.82/291.53 (14) BEST 1132.82/291.53 (15) proven lower bound 1132.82/291.53 (16) LowerBoundPropagationProof [FINISHED, 0 ms] 1132.82/291.53 (17) BOUNDS(n^1, INF) 1132.82/291.53 (18) typed CpxTrs 1132.82/291.53 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (0) 1132.82/291.53 Obligation: 1132.82/291.53 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). 1132.82/291.53 1132.82/291.53 1132.82/291.53 The TRS R consists of the following rules: 1132.82/291.53 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 1132.82/291.53 The (relative) TRS S consists of the following rules: 1132.82/291.53 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0, S(y)) -> False 1132.82/291.53 !EQ(S(x), 0) -> False 1132.82/291.53 !EQ(0, 0) -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0, S(y)) -> True 1132.82/291.53 <(x, 0) -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Rewrite Strategy: INNERMOST 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (1) STerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) 1132.82/291.53 proved termination of relative rules 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (2) 1132.82/291.53 Obligation: 1132.82/291.53 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). 1132.82/291.53 1132.82/291.53 1132.82/291.53 The TRS R consists of the following rules: 1132.82/291.53 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 1132.82/291.53 The (relative) TRS S consists of the following rules: 1132.82/291.53 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0, S(y)) -> False 1132.82/291.53 !EQ(S(x), 0) -> False 1132.82/291.53 !EQ(0, 0) -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0, S(y)) -> True 1132.82/291.53 <(x, 0) -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Rewrite Strategy: INNERMOST 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (3) RenamingProof (BOTH BOUNDS(ID, ID)) 1132.82/291.53 Renamed function symbols to avoid clashes with predefined symbol. 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (4) 1132.82/291.53 Obligation: 1132.82/291.53 The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). 1132.82/291.53 1132.82/291.53 1132.82/291.53 The TRS R consists of the following rules: 1132.82/291.53 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 1132.82/291.53 The (relative) TRS S consists of the following rules: 1132.82/291.53 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0', S(y)) -> False 1132.82/291.53 !EQ(S(x), 0') -> False 1132.82/291.53 !EQ(0', 0') -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0', S(y)) -> True 1132.82/291.53 <(x, 0') -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Rewrite Strategy: INNERMOST 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 1132.82/291.53 Infered types. 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (6) 1132.82/291.53 Obligation: 1132.82/291.53 Innermost TRS: 1132.82/291.53 Rules: 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0', S(y)) -> False 1132.82/291.53 !EQ(S(x), 0') -> False 1132.82/291.53 !EQ(0', 0') -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0', S(y)) -> True 1132.82/291.53 <(x, 0') -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Types: 1132.82/291.53 minsort :: Cons:Nil -> Cons:Nil 1132.82/291.53 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 Nil :: Cons:Nil 1132.82/291.53 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 < :: S:0' -> S:0' -> True:False 1132.82/291.53 remove :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 notEmpty :: Cons:Nil -> True:False 1132.82/291.53 True :: True:False 1132.82/291.53 False :: True:False 1132.82/291.53 remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 !EQ :: S:0' -> S:0' -> True:False 1132.82/291.53 S :: S:0' -> S:0' 1132.82/291.53 0' :: S:0' 1132.82/291.53 hole_Cons:Nil1_0 :: Cons:Nil 1132.82/291.53 hole_S:0'2_0 :: S:0' 1132.82/291.53 hole_True:False3_0 :: True:False 1132.82/291.53 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1132.82/291.53 gen_S:0'5_0 :: Nat -> S:0' 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (7) OrderProof (LOWER BOUND(ID)) 1132.82/291.53 Heuristically decided to analyse the following defined symbols: 1132.82/291.53 minsort, appmin, <, remove, !EQ 1132.82/291.53 1132.82/291.53 They will be analysed ascendingly in the following order: 1132.82/291.53 minsort = appmin 1132.82/291.53 < < appmin 1132.82/291.53 remove < appmin 1132.82/291.53 !EQ < remove 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (8) 1132.82/291.53 Obligation: 1132.82/291.53 Innermost TRS: 1132.82/291.53 Rules: 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0', S(y)) -> False 1132.82/291.53 !EQ(S(x), 0') -> False 1132.82/291.53 !EQ(0', 0') -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0', S(y)) -> True 1132.82/291.53 <(x, 0') -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Types: 1132.82/291.53 minsort :: Cons:Nil -> Cons:Nil 1132.82/291.53 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 Nil :: Cons:Nil 1132.82/291.53 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 < :: S:0' -> S:0' -> True:False 1132.82/291.53 remove :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 notEmpty :: Cons:Nil -> True:False 1132.82/291.53 True :: True:False 1132.82/291.53 False :: True:False 1132.82/291.53 remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 !EQ :: S:0' -> S:0' -> True:False 1132.82/291.53 S :: S:0' -> S:0' 1132.82/291.53 0' :: S:0' 1132.82/291.53 hole_Cons:Nil1_0 :: Cons:Nil 1132.82/291.53 hole_S:0'2_0 :: S:0' 1132.82/291.53 hole_True:False3_0 :: True:False 1132.82/291.53 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1132.82/291.53 gen_S:0'5_0 :: Nat -> S:0' 1132.82/291.53 1132.82/291.53 1132.82/291.53 Generator Equations: 1132.82/291.53 gen_Cons:Nil4_0(0) <=> Nil 1132.82/291.53 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1132.82/291.53 gen_S:0'5_0(0) <=> 0' 1132.82/291.53 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1132.82/291.53 1132.82/291.53 1132.82/291.53 The following defined symbols remain to be analysed: 1132.82/291.53 <, minsort, appmin, remove, !EQ 1132.82/291.53 1132.82/291.53 They will be analysed ascendingly in the following order: 1132.82/291.53 minsort = appmin 1132.82/291.53 < < appmin 1132.82/291.53 remove < appmin 1132.82/291.53 !EQ < remove 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (9) RewriteLemmaProof (LOWER BOUND(ID)) 1132.82/291.53 Proved the following rewrite lemma: 1132.82/291.53 <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) 1132.82/291.53 1132.82/291.53 Induction Base: 1132.82/291.53 <(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) 1132.82/291.53 True 1132.82/291.53 1132.82/291.53 Induction Step: 1132.82/291.53 <(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) ->_R^Omega(0) 1132.82/291.53 <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) ->_IH 1132.82/291.53 True 1132.82/291.53 1132.82/291.53 We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (10) 1132.82/291.53 Obligation: 1132.82/291.53 Innermost TRS: 1132.82/291.53 Rules: 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0', S(y)) -> False 1132.82/291.53 !EQ(S(x), 0') -> False 1132.82/291.53 !EQ(0', 0') -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0', S(y)) -> True 1132.82/291.53 <(x, 0') -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Types: 1132.82/291.53 minsort :: Cons:Nil -> Cons:Nil 1132.82/291.53 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 Nil :: Cons:Nil 1132.82/291.53 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 < :: S:0' -> S:0' -> True:False 1132.82/291.53 remove :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 notEmpty :: Cons:Nil -> True:False 1132.82/291.53 True :: True:False 1132.82/291.53 False :: True:False 1132.82/291.53 remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 !EQ :: S:0' -> S:0' -> True:False 1132.82/291.53 S :: S:0' -> S:0' 1132.82/291.53 0' :: S:0' 1132.82/291.53 hole_Cons:Nil1_0 :: Cons:Nil 1132.82/291.53 hole_S:0'2_0 :: S:0' 1132.82/291.53 hole_True:False3_0 :: True:False 1132.82/291.53 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1132.82/291.53 gen_S:0'5_0 :: Nat -> S:0' 1132.82/291.53 1132.82/291.53 1132.82/291.53 Lemmas: 1132.82/291.53 <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) 1132.82/291.53 1132.82/291.53 1132.82/291.53 Generator Equations: 1132.82/291.53 gen_Cons:Nil4_0(0) <=> Nil 1132.82/291.53 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1132.82/291.53 gen_S:0'5_0(0) <=> 0' 1132.82/291.53 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1132.82/291.53 1132.82/291.53 1132.82/291.53 The following defined symbols remain to be analysed: 1132.82/291.53 !EQ, minsort, appmin, remove 1132.82/291.53 1132.82/291.53 They will be analysed ascendingly in the following order: 1132.82/291.53 minsort = appmin 1132.82/291.53 remove < appmin 1132.82/291.53 !EQ < remove 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (11) RewriteLemmaProof (LOWER BOUND(ID)) 1132.82/291.53 Proved the following rewrite lemma: 1132.82/291.53 !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) -> False, rt in Omega(0) 1132.82/291.53 1132.82/291.53 Induction Base: 1132.82/291.53 !EQ(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) 1132.82/291.53 False 1132.82/291.53 1132.82/291.53 Induction Step: 1132.82/291.53 !EQ(gen_S:0'5_0(+(n269_0, 1)), gen_S:0'5_0(+(1, +(n269_0, 1)))) ->_R^Omega(0) 1132.82/291.53 !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) ->_IH 1132.82/291.53 False 1132.82/291.53 1132.82/291.53 We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (12) 1132.82/291.53 Obligation: 1132.82/291.53 Innermost TRS: 1132.82/291.53 Rules: 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0', S(y)) -> False 1132.82/291.53 !EQ(S(x), 0') -> False 1132.82/291.53 !EQ(0', 0') -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0', S(y)) -> True 1132.82/291.53 <(x, 0') -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Types: 1132.82/291.53 minsort :: Cons:Nil -> Cons:Nil 1132.82/291.53 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 Nil :: Cons:Nil 1132.82/291.53 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 < :: S:0' -> S:0' -> True:False 1132.82/291.53 remove :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 notEmpty :: Cons:Nil -> True:False 1132.82/291.53 True :: True:False 1132.82/291.53 False :: True:False 1132.82/291.53 remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 !EQ :: S:0' -> S:0' -> True:False 1132.82/291.53 S :: S:0' -> S:0' 1132.82/291.53 0' :: S:0' 1132.82/291.53 hole_Cons:Nil1_0 :: Cons:Nil 1132.82/291.53 hole_S:0'2_0 :: S:0' 1132.82/291.53 hole_True:False3_0 :: True:False 1132.82/291.53 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1132.82/291.53 gen_S:0'5_0 :: Nat -> S:0' 1132.82/291.53 1132.82/291.53 1132.82/291.53 Lemmas: 1132.82/291.53 <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) 1132.82/291.53 !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) -> False, rt in Omega(0) 1132.82/291.53 1132.82/291.53 1132.82/291.53 Generator Equations: 1132.82/291.53 gen_Cons:Nil4_0(0) <=> Nil 1132.82/291.53 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1132.82/291.53 gen_S:0'5_0(0) <=> 0' 1132.82/291.53 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1132.82/291.53 1132.82/291.53 1132.82/291.53 The following defined symbols remain to be analysed: 1132.82/291.53 remove, minsort, appmin 1132.82/291.53 1132.82/291.53 They will be analysed ascendingly in the following order: 1132.82/291.53 minsort = appmin 1132.82/291.53 remove < appmin 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (13) RewriteLemmaProof (LOWER BOUND(ID)) 1132.82/291.53 Proved the following rewrite lemma: 1132.82/291.53 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, n572_0))) -> *6_0, rt in Omega(n572_0) 1132.82/291.53 1132.82/291.53 Induction Base: 1132.82/291.53 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, 0))) 1132.82/291.53 1132.82/291.53 Induction Step: 1132.82/291.53 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, +(n572_0, 1)))) ->_R^Omega(1) 1132.82/291.53 remove[Ite](!EQ(gen_S:0'5_0(1), 0'), gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(+(1, n572_0)))) ->_R^Omega(0) 1132.82/291.53 remove[Ite](False, gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(+(1, n572_0)))) ->_R^Omega(0) 1132.82/291.53 Cons(0', remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, n572_0)))) ->_IH 1132.82/291.53 Cons(0', *6_0) 1132.82/291.53 1132.82/291.53 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (14) 1132.82/291.53 Complex Obligation (BEST) 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (15) 1132.82/291.53 Obligation: 1132.82/291.53 Proved the lower bound n^1 for the following obligation: 1132.82/291.53 1132.82/291.53 Innermost TRS: 1132.82/291.53 Rules: 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0', S(y)) -> False 1132.82/291.53 !EQ(S(x), 0') -> False 1132.82/291.53 !EQ(0', 0') -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0', S(y)) -> True 1132.82/291.53 <(x, 0') -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Types: 1132.82/291.53 minsort :: Cons:Nil -> Cons:Nil 1132.82/291.53 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 Nil :: Cons:Nil 1132.82/291.53 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 < :: S:0' -> S:0' -> True:False 1132.82/291.53 remove :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 notEmpty :: Cons:Nil -> True:False 1132.82/291.53 True :: True:False 1132.82/291.53 False :: True:False 1132.82/291.53 remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 !EQ :: S:0' -> S:0' -> True:False 1132.82/291.53 S :: S:0' -> S:0' 1132.82/291.53 0' :: S:0' 1132.82/291.53 hole_Cons:Nil1_0 :: Cons:Nil 1132.82/291.53 hole_S:0'2_0 :: S:0' 1132.82/291.53 hole_True:False3_0 :: True:False 1132.82/291.53 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1132.82/291.53 gen_S:0'5_0 :: Nat -> S:0' 1132.82/291.53 1132.82/291.53 1132.82/291.53 Lemmas: 1132.82/291.53 <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) 1132.82/291.53 !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) -> False, rt in Omega(0) 1132.82/291.53 1132.82/291.53 1132.82/291.53 Generator Equations: 1132.82/291.53 gen_Cons:Nil4_0(0) <=> Nil 1132.82/291.53 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1132.82/291.53 gen_S:0'5_0(0) <=> 0' 1132.82/291.53 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1132.82/291.53 1132.82/291.53 1132.82/291.53 The following defined symbols remain to be analysed: 1132.82/291.53 remove, minsort, appmin 1132.82/291.53 1132.82/291.53 They will be analysed ascendingly in the following order: 1132.82/291.53 minsort = appmin 1132.82/291.53 remove < appmin 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (16) LowerBoundPropagationProof (FINISHED) 1132.82/291.53 Propagated lower bound. 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (17) 1132.82/291.53 BOUNDS(n^1, INF) 1132.82/291.53 1132.82/291.53 ---------------------------------------- 1132.82/291.53 1132.82/291.53 (18) 1132.82/291.53 Obligation: 1132.82/291.53 Innermost TRS: 1132.82/291.53 Rules: 1132.82/291.53 minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) 1132.82/291.53 minsort(Nil) -> Nil 1132.82/291.53 appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') 1132.82/291.53 appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) 1132.82/291.53 notEmpty(Cons(x, xs)) -> True 1132.82/291.53 notEmpty(Nil) -> False 1132.82/291.53 remove(x', Cons(x, xs)) -> remove[Ite](!EQ(x', x), x', Cons(x, xs)) 1132.82/291.53 !EQ(S(x), S(y)) -> !EQ(x, y) 1132.82/291.53 !EQ(0', S(y)) -> False 1132.82/291.53 !EQ(S(x), 0') -> False 1132.82/291.53 !EQ(0', 0') -> True 1132.82/291.53 <(S(x), S(y)) -> <(x, y) 1132.82/291.53 <(0', S(y)) -> True 1132.82/291.53 <(x, 0') -> False 1132.82/291.53 remove[Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) 1132.82/291.53 appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') 1132.82/291.53 remove[Ite](True, x', Cons(x, xs)) -> xs 1132.82/291.53 appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') 1132.82/291.53 1132.82/291.53 Types: 1132.82/291.53 minsort :: Cons:Nil -> Cons:Nil 1132.82/291.53 Cons :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 appmin :: S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 Nil :: Cons:Nil 1132.82/291.53 appmin[Ite][True][Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil -> Cons:Nil 1132.82/291.53 < :: S:0' -> S:0' -> True:False 1132.82/291.53 remove :: S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 notEmpty :: Cons:Nil -> True:False 1132.82/291.53 True :: True:False 1132.82/291.53 False :: True:False 1132.82/291.53 remove[Ite] :: True:False -> S:0' -> Cons:Nil -> Cons:Nil 1132.82/291.53 !EQ :: S:0' -> S:0' -> True:False 1132.82/291.53 S :: S:0' -> S:0' 1132.82/291.53 0' :: S:0' 1132.82/291.53 hole_Cons:Nil1_0 :: Cons:Nil 1132.82/291.53 hole_S:0'2_0 :: S:0' 1132.82/291.53 hole_True:False3_0 :: True:False 1132.82/291.53 gen_Cons:Nil4_0 :: Nat -> Cons:Nil 1132.82/291.53 gen_S:0'5_0 :: Nat -> S:0' 1132.82/291.53 1132.82/291.53 1132.82/291.53 Lemmas: 1132.82/291.53 <(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> True, rt in Omega(0) 1132.82/291.53 !EQ(gen_S:0'5_0(n269_0), gen_S:0'5_0(+(1, n269_0))) -> False, rt in Omega(0) 1132.82/291.53 remove(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(1, n572_0))) -> *6_0, rt in Omega(n572_0) 1132.82/291.53 1132.82/291.53 1132.82/291.53 Generator Equations: 1132.82/291.53 gen_Cons:Nil4_0(0) <=> Nil 1132.82/291.53 gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) 1132.82/291.53 gen_S:0'5_0(0) <=> 0' 1132.82/291.53 gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) 1132.82/291.53 1132.82/291.53 1132.82/291.53 The following defined symbols remain to be analysed: 1132.82/291.53 appmin, minsort 1132.82/291.53 1132.82/291.53 They will be analysed ascendingly in the following order: 1132.82/291.53 minsort = appmin 1133.23/291.59 EOF