459.77/291.47 WORST_CASE(Omega(n^1), O(n^2)) 459.81/291.48 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 459.81/291.48 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 459.81/291.48 459.81/291.48 459.81/291.48 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 459.81/291.48 459.81/291.48 (0) CpxTRS 459.81/291.48 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 459.81/291.48 (2) CpxWeightedTrs 459.81/291.48 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 459.81/291.48 (4) CpxTypedWeightedTrs 459.81/291.48 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 459.81/291.48 (6) CpxTypedWeightedCompleteTrs 459.81/291.48 (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 459.81/291.48 (8) CpxRNTS 459.81/291.48 (9) CompleteCoflocoProof [FINISHED, 289 ms] 459.81/291.48 (10) BOUNDS(1, n^2) 459.81/291.48 (11) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 459.81/291.48 (12) CpxTRS 459.81/291.48 (13) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 459.81/291.48 (14) typed CpxTrs 459.81/291.48 (15) OrderProof [LOWER BOUND(ID), 0 ms] 459.81/291.48 (16) typed CpxTrs 459.81/291.48 (17) RewriteLemmaProof [LOWER BOUND(ID), 295 ms] 459.81/291.48 (18) BEST 459.81/291.48 (19) proven lower bound 459.81/291.48 (20) LowerBoundPropagationProof [FINISHED, 0 ms] 459.81/291.48 (21) BOUNDS(n^1, INF) 459.81/291.48 (22) typed CpxTrs 459.81/291.48 459.81/291.48 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (0) 459.81/291.48 Obligation: 459.81/291.48 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 459.81/291.48 459.81/291.48 459.81/291.48 The TRS R consists of the following rules: 459.81/291.48 459.81/291.48 cond(true, x, y) -> cond(gr(x, y), p(x), y) 459.81/291.48 gr(0, x) -> false 459.81/291.48 gr(s(x), 0) -> true 459.81/291.48 gr(s(x), s(y)) -> gr(x, y) 459.81/291.48 p(0) -> 0 459.81/291.48 p(s(x)) -> x 459.81/291.48 459.81/291.48 S is empty. 459.81/291.48 Rewrite Strategy: INNERMOST 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 459.81/291.48 Transformed relative TRS to weighted TRS 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (2) 459.81/291.48 Obligation: 459.81/291.48 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). 459.81/291.48 459.81/291.48 459.81/291.48 The TRS R consists of the following rules: 459.81/291.48 459.81/291.48 cond(true, x, y) -> cond(gr(x, y), p(x), y) [1] 459.81/291.48 gr(0, x) -> false [1] 459.81/291.48 gr(s(x), 0) -> true [1] 459.81/291.48 gr(s(x), s(y)) -> gr(x, y) [1] 459.81/291.48 p(0) -> 0 [1] 459.81/291.48 p(s(x)) -> x [1] 459.81/291.48 459.81/291.48 Rewrite Strategy: INNERMOST 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 459.81/291.48 Infered types. 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (4) 459.81/291.48 Obligation: 459.81/291.48 Runtime Complexity Weighted TRS with Types. 459.81/291.48 The TRS R consists of the following rules: 459.81/291.48 459.81/291.48 cond(true, x, y) -> cond(gr(x, y), p(x), y) [1] 459.81/291.48 gr(0, x) -> false [1] 459.81/291.48 gr(s(x), 0) -> true [1] 459.81/291.48 gr(s(x), s(y)) -> gr(x, y) [1] 459.81/291.48 p(0) -> 0 [1] 459.81/291.48 p(s(x)) -> x [1] 459.81/291.48 459.81/291.48 The TRS has the following type information: 459.81/291.48 cond :: true:false -> 0:s -> 0:s -> cond 459.81/291.48 true :: true:false 459.81/291.48 gr :: 0:s -> 0:s -> true:false 459.81/291.48 p :: 0:s -> 0:s 459.81/291.48 0 :: 0:s 459.81/291.48 false :: true:false 459.81/291.48 s :: 0:s -> 0:s 459.81/291.48 459.81/291.48 Rewrite Strategy: INNERMOST 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (5) CompletionProof (UPPER BOUND(ID)) 459.81/291.48 The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: 459.81/291.48 459.81/291.48 cond(v0, v1, v2) -> null_cond [0] 459.81/291.48 459.81/291.48 And the following fresh constants: null_cond 459.81/291.48 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (6) 459.81/291.48 Obligation: 459.81/291.48 Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: 459.81/291.48 459.81/291.48 Runtime Complexity Weighted TRS with Types. 459.81/291.48 The TRS R consists of the following rules: 459.81/291.48 459.81/291.48 cond(true, x, y) -> cond(gr(x, y), p(x), y) [1] 459.81/291.48 gr(0, x) -> false [1] 459.81/291.48 gr(s(x), 0) -> true [1] 459.81/291.48 gr(s(x), s(y)) -> gr(x, y) [1] 459.81/291.48 p(0) -> 0 [1] 459.81/291.48 p(s(x)) -> x [1] 459.81/291.48 cond(v0, v1, v2) -> null_cond [0] 459.81/291.48 459.81/291.48 The TRS has the following type information: 459.81/291.48 cond :: true:false -> 0:s -> 0:s -> null_cond 459.81/291.48 true :: true:false 459.81/291.48 gr :: 0:s -> 0:s -> true:false 459.81/291.48 p :: 0:s -> 0:s 459.81/291.48 0 :: 0:s 459.81/291.48 false :: true:false 459.81/291.48 s :: 0:s -> 0:s 459.81/291.48 null_cond :: null_cond 459.81/291.48 459.81/291.48 Rewrite Strategy: INNERMOST 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 459.81/291.48 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 459.81/291.48 The constant constructors are abstracted as follows: 459.81/291.48 459.81/291.48 true => 1 459.81/291.48 0 => 0 459.81/291.48 false => 0 459.81/291.48 null_cond => 0 459.81/291.48 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (8) 459.81/291.48 Obligation: 459.81/291.48 Complexity RNTS consisting of the following rules: 459.81/291.48 459.81/291.48 cond(z, z', z'') -{ 1 }-> cond(gr(x, y), p(x), y) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 459.81/291.48 cond(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 459.81/291.48 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 459.81/291.48 gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 459.81/291.48 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 459.81/291.48 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x 459.81/291.48 p(z) -{ 1 }-> 0 :|: z = 0 459.81/291.48 459.81/291.48 Only complete derivations are relevant for the runtime complexity. 459.81/291.48 459.81/291.48 ---------------------------------------- 459.81/291.48 459.81/291.48 (9) CompleteCoflocoProof (FINISHED) 459.81/291.48 Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: 459.81/291.48 459.81/291.48 eq(start(V1, V, V2),0,[cond(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). 459.81/291.48 eq(start(V1, V, V2),0,[gr(V1, V, Out)],[V1 >= 0,V >= 0]). 459.81/291.48 eq(start(V1, V, V2),0,[p(V1, Out)],[V1 >= 0]). 459.81/291.48 eq(cond(V1, V, V2, Out),1,[gr(V4, V3, Ret0),p(V4, Ret1),cond(Ret0, Ret1, V3, Ret)],[Out = Ret,V = V4,V2 = V3,V1 = 1,V4 >= 0,V3 >= 0]). 459.81/291.48 eq(gr(V1, V, Out),1,[],[Out = 0,V = V5,V5 >= 0,V1 = 0]). 459.81/291.49 eq(gr(V1, V, Out),1,[],[Out = 1,V6 >= 0,V1 = 1 + V6,V = 0]). 459.81/291.49 eq(gr(V1, V, Out),1,[gr(V7, V8, Ret2)],[Out = Ret2,V = 1 + V8,V7 >= 0,V8 >= 0,V1 = 1 + V7]). 459.81/291.49 eq(p(V1, Out),1,[],[Out = 0,V1 = 0]). 459.81/291.49 eq(p(V1, Out),1,[],[Out = V9,V9 >= 0,V1 = 1 + V9]). 459.81/291.49 eq(cond(V1, V, V2, Out),0,[],[Out = 0,V11 >= 0,V2 = V12,V10 >= 0,V1 = V11,V = V10,V12 >= 0]). 459.81/291.49 input_output_vars(cond(V1,V,V2,Out),[V1,V,V2],[Out]). 459.81/291.49 input_output_vars(gr(V1,V,Out),[V1,V],[Out]). 459.81/291.49 input_output_vars(p(V1,Out),[V1],[Out]). 459.81/291.49 459.81/291.49 459.81/291.49 CoFloCo proof output: 459.81/291.49 Preprocessing Cost Relations 459.81/291.49 ===================================== 459.81/291.49 459.81/291.49 #### Computed strongly connected components 459.81/291.49 0. recursive : [gr/3] 459.81/291.49 1. non_recursive : [p/2] 459.81/291.49 2. recursive : [cond/4] 459.81/291.49 3. non_recursive : [start/3] 459.81/291.49 459.81/291.49 #### Obtained direct recursion through partial evaluation 459.81/291.49 0. SCC is partially evaluated into gr/3 459.81/291.49 1. SCC is partially evaluated into p/2 459.81/291.49 2. SCC is partially evaluated into cond/4 459.81/291.49 3. SCC is partially evaluated into start/3 459.81/291.49 459.81/291.49 Control-Flow Refinement of Cost Relations 459.81/291.49 ===================================== 459.81/291.49 459.81/291.49 ### Specialization of cost equations gr/3 459.81/291.49 * CE 8 is refined into CE [11] 459.81/291.49 * CE 7 is refined into CE [12] 459.81/291.49 * CE 6 is refined into CE [13] 459.81/291.49 459.81/291.49 459.81/291.49 ### Cost equations --> "Loop" of gr/3 459.81/291.49 * CEs [12] --> Loop 9 459.81/291.49 * CEs [13] --> Loop 10 459.81/291.49 * CEs [11] --> Loop 11 459.81/291.49 459.81/291.49 ### Ranking functions of CR gr(V1,V,Out) 459.81/291.49 * RF of phase [11]: [V,V1] 459.81/291.49 459.81/291.49 #### Partial ranking functions of CR gr(V1,V,Out) 459.81/291.49 * Partial RF of phase [11]: 459.81/291.49 - RF of loop [11:1]: 459.81/291.49 V 459.81/291.49 V1 459.81/291.49 459.81/291.49 459.81/291.49 ### Specialization of cost equations p/2 459.81/291.49 * CE 10 is refined into CE [14] 459.81/291.49 * CE 9 is refined into CE [15] 459.81/291.49 459.81/291.49 459.81/291.49 ### Cost equations --> "Loop" of p/2 459.81/291.49 * CEs [14] --> Loop 12 459.81/291.49 * CEs [15] --> Loop 13 459.81/291.49 459.81/291.49 ### Ranking functions of CR p(V1,Out) 459.81/291.49 459.81/291.49 #### Partial ranking functions of CR p(V1,Out) 459.81/291.49 459.81/291.49 459.81/291.49 ### Specialization of cost equations cond/4 459.81/291.49 * CE 5 is refined into CE [16] 459.81/291.49 * CE 4 is refined into CE [17,18,19,20] 459.81/291.49 459.81/291.49 459.81/291.49 ### Cost equations --> "Loop" of cond/4 459.81/291.49 * CEs [20] --> Loop 14 459.81/291.49 * CEs [19] --> Loop 15 459.81/291.49 * CEs [18] --> Loop 16 459.81/291.49 * CEs [17] --> Loop 17 459.81/291.49 * CEs [16] --> Loop 18 459.81/291.49 459.81/291.49 ### Ranking functions of CR cond(V1,V,V2,Out) 459.81/291.49 * RF of phase [14]: [V-1,V-V2] 459.81/291.49 * RF of phase [16]: [V] 459.81/291.49 459.81/291.49 #### Partial ranking functions of CR cond(V1,V,V2,Out) 459.81/291.49 * Partial RF of phase [14]: 459.81/291.49 - RF of loop [14:1]: 459.81/291.49 V-1 459.81/291.49 V-V2 459.81/291.49 * Partial RF of phase [16]: 459.81/291.49 - RF of loop [16:1]: 459.81/291.49 V 459.81/291.49 459.81/291.49 459.81/291.49 ### Specialization of cost equations start/3 459.81/291.49 * CE 1 is refined into CE [21,22,23,24] 459.81/291.49 * CE 2 is refined into CE [25,26,27,28] 459.81/291.49 * CE 3 is refined into CE [29,30] 459.81/291.49 459.81/291.49 459.81/291.49 ### Cost equations --> "Loop" of start/3 459.81/291.49 * CEs [26] --> Loop 19 459.81/291.49 * CEs [24] --> Loop 20 459.81/291.49 * CEs [23,27,28,30] --> Loop 21 459.81/291.49 * CEs [21,22] --> Loop 22 459.81/291.49 * CEs [25,29] --> Loop 23 459.81/291.49 459.81/291.49 ### Ranking functions of CR start(V1,V,V2) 459.81/291.49 459.81/291.49 #### Partial ranking functions of CR start(V1,V,V2) 459.81/291.49 459.81/291.49 459.81/291.49 Computing Bounds 459.81/291.49 ===================================== 459.81/291.49 459.81/291.49 #### Cost of chains of gr(V1,V,Out): 459.81/291.49 * Chain [[11],10]: 1*it(11)+1 459.81/291.49 Such that:it(11) =< V1 459.81/291.49 459.81/291.49 with precondition: [Out=0,V1>=1,V>=V1] 459.81/291.49 459.81/291.49 * Chain [[11],9]: 1*it(11)+1 459.81/291.49 Such that:it(11) =< V 459.81/291.49 459.81/291.49 with precondition: [Out=1,V>=1,V1>=V+1] 459.81/291.49 459.81/291.49 * Chain [10]: 1 459.81/291.49 with precondition: [V1=0,Out=0,V>=0] 459.81/291.49 459.81/291.49 * Chain [9]: 1 459.81/291.49 with precondition: [V=0,Out=1,V1>=1] 459.81/291.49 459.81/291.49 459.81/291.49 #### Cost of chains of p(V1,Out): 459.81/291.49 * Chain [13]: 1 459.81/291.49 with precondition: [V1=0,Out=0] 459.81/291.49 459.81/291.49 * Chain [12]: 1 459.81/291.49 with precondition: [V1=Out+1,V1>=1] 459.81/291.49 459.81/291.49 459.81/291.49 #### Cost of chains of cond(V1,V,V2,Out): 459.81/291.49 * Chain [[16],18]: 3*it(16)+0 459.81/291.49 Such that:it(16) =< V 459.81/291.49 459.81/291.49 with precondition: [V1=1,V2=0,Out=0,V>=1] 459.81/291.49 459.81/291.49 * Chain [[16],17,18]: 3*it(16)+3 459.81/291.49 Such that:it(16) =< V 459.81/291.49 459.81/291.49 with precondition: [V1=1,V2=0,Out=0,V>=1] 459.81/291.49 459.81/291.49 * Chain [[14],18]: 3*it(14)+1*s(3)+0 459.81/291.49 Such that:it(14) =< V-V2 459.81/291.49 aux(1) =< V2 459.81/291.49 s(3) =< it(14)*aux(1) 459.81/291.49 459.81/291.49 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 459.81/291.49 459.81/291.49 * Chain [[14],15,18]: 3*it(14)+1*s(3)+1*s(4)+3 459.81/291.49 Such that:it(14) =< V-V2 459.81/291.49 aux(2) =< V2 459.81/291.49 s(4) =< aux(2) 459.81/291.49 s(3) =< it(14)*aux(2) 459.81/291.49 459.81/291.49 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 459.81/291.49 459.81/291.49 * Chain [18]: 0 459.81/291.49 with precondition: [Out=0,V1>=0,V>=0,V2>=0] 459.81/291.49 459.81/291.49 * Chain [17,18]: 3 459.81/291.49 with precondition: [V1=1,V=0,Out=0,V2>=0] 459.81/291.49 459.81/291.49 * Chain [15,18]: 1*s(4)+3 459.81/291.49 Such that:s(4) =< V 459.81/291.49 459.81/291.49 with precondition: [V1=1,Out=0,V>=1,V2>=V] 459.81/291.49 459.81/291.49 459.81/291.49 #### Cost of chains of start(V1,V,V2): 459.81/291.49 * Chain [23]: 1 459.81/291.49 with precondition: [V1=0] 459.81/291.49 459.81/291.49 * Chain [22]: 6*s(15)+3 459.81/291.49 Such that:s(14) =< V 459.81/291.49 s(15) =< s(14) 459.81/291.49 459.81/291.49 with precondition: [V1>=0,V>=0,V2>=0] 459.81/291.49 459.81/291.49 * Chain [21]: 2*s(16)+1*s(17)+3 459.81/291.49 Such that:s(17) =< V1 459.81/291.49 aux(6) =< V 459.81/291.49 s(16) =< aux(6) 459.81/291.49 459.81/291.49 with precondition: [V1>=1] 459.81/291.49 459.81/291.49 * Chain [20]: 6*s(21)+1*s(22)+2*s(23)+3 459.81/291.49 Such that:s(19) =< V-V2 459.81/291.49 s(20) =< V2 459.81/291.49 s(21) =< s(19) 459.81/291.49 s(22) =< s(20) 459.81/291.49 s(23) =< s(21)*s(20) 459.81/291.49 459.81/291.49 with precondition: [V1=1,V2>=1,V>=V2+1] 459.81/291.49 459.81/291.49 * Chain [19]: 1 459.81/291.49 with precondition: [V=0,V1>=1] 459.81/291.49 459.81/291.49 459.81/291.49 Closed-form bounds of start(V1,V,V2): 459.81/291.49 ------------------------------------- 459.81/291.49 * Chain [23] with precondition: [V1=0] 459.81/291.49 - Upper bound: 1 459.81/291.49 - Complexity: constant 459.81/291.49 * Chain [22] with precondition: [V1>=0,V>=0,V2>=0] 459.81/291.49 - Upper bound: 6*V+3 459.81/291.49 - Complexity: n 459.81/291.49 * Chain [21] with precondition: [V1>=1] 459.81/291.49 - Upper bound: V1+3+nat(V)*2 459.81/291.49 - Complexity: n 459.81/291.49 * Chain [20] with precondition: [V1=1,V2>=1,V>=V2+1] 459.81/291.49 - Upper bound: 6*V-6*V2+(V2+3+(V-V2)*(2*V2)) 459.81/291.49 - Complexity: n^2 459.81/291.49 * Chain [19] with precondition: [V=0,V1>=1] 459.81/291.49 - Upper bound: 1 459.81/291.49 - Complexity: constant 459.81/291.49 459.81/291.49 ### Maximum cost of start(V1,V,V2): max([nat(V)*2+2+max([V1,nat(V)*4]),nat(V2)+2+nat(V2)*2*nat(V-V2)+nat(V-V2)*6])+1 459.81/291.49 Asymptotic class: n^2 459.81/291.49 * Total analysis performed in 207 ms. 459.81/291.49 459.81/291.49 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (10) 459.81/291.49 BOUNDS(1, n^2) 459.81/291.49 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (11) RenamingProof (BOTH BOUNDS(ID, ID)) 459.81/291.49 Renamed function symbols to avoid clashes with predefined symbol. 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (12) 459.81/291.49 Obligation: 459.81/291.49 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 459.81/291.49 459.81/291.49 459.81/291.49 The TRS R consists of the following rules: 459.81/291.49 459.81/291.49 cond(true, x, y) -> cond(gr(x, y), p(x), y) 459.81/291.49 gr(0', x) -> false 459.81/291.49 gr(s(x), 0') -> true 459.81/291.49 gr(s(x), s(y)) -> gr(x, y) 459.81/291.49 p(0') -> 0' 459.81/291.49 p(s(x)) -> x 459.81/291.49 459.81/291.49 S is empty. 459.81/291.49 Rewrite Strategy: INNERMOST 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (13) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 459.81/291.49 Infered types. 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (14) 459.81/291.49 Obligation: 459.81/291.49 Innermost TRS: 459.81/291.49 Rules: 459.81/291.49 cond(true, x, y) -> cond(gr(x, y), p(x), y) 459.81/291.49 gr(0', x) -> false 459.81/291.49 gr(s(x), 0') -> true 459.81/291.49 gr(s(x), s(y)) -> gr(x, y) 459.81/291.49 p(0') -> 0' 459.81/291.49 p(s(x)) -> x 459.81/291.49 459.81/291.49 Types: 459.81/291.49 cond :: true:false -> 0':s -> 0':s -> cond 459.81/291.49 true :: true:false 459.81/291.49 gr :: 0':s -> 0':s -> true:false 459.81/291.49 p :: 0':s -> 0':s 459.81/291.49 0' :: 0':s 459.81/291.49 false :: true:false 459.81/291.49 s :: 0':s -> 0':s 459.81/291.49 hole_cond1_0 :: cond 459.81/291.49 hole_true:false2_0 :: true:false 459.81/291.49 hole_0':s3_0 :: 0':s 459.81/291.49 gen_0':s4_0 :: Nat -> 0':s 459.81/291.49 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (15) OrderProof (LOWER BOUND(ID)) 459.81/291.49 Heuristically decided to analyse the following defined symbols: 459.81/291.49 cond, gr 459.81/291.49 459.81/291.49 They will be analysed ascendingly in the following order: 459.81/291.49 gr < cond 459.81/291.49 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (16) 459.81/291.49 Obligation: 459.81/291.49 Innermost TRS: 459.81/291.49 Rules: 459.81/291.49 cond(true, x, y) -> cond(gr(x, y), p(x), y) 459.81/291.49 gr(0', x) -> false 459.81/291.49 gr(s(x), 0') -> true 459.81/291.49 gr(s(x), s(y)) -> gr(x, y) 459.81/291.49 p(0') -> 0' 459.81/291.49 p(s(x)) -> x 459.81/291.49 459.81/291.49 Types: 459.81/291.49 cond :: true:false -> 0':s -> 0':s -> cond 459.81/291.49 true :: true:false 459.81/291.49 gr :: 0':s -> 0':s -> true:false 459.81/291.49 p :: 0':s -> 0':s 459.81/291.49 0' :: 0':s 459.81/291.49 false :: true:false 459.81/291.49 s :: 0':s -> 0':s 459.81/291.49 hole_cond1_0 :: cond 459.81/291.49 hole_true:false2_0 :: true:false 459.81/291.49 hole_0':s3_0 :: 0':s 459.81/291.49 gen_0':s4_0 :: Nat -> 0':s 459.81/291.49 459.81/291.49 459.81/291.49 Generator Equations: 459.81/291.49 gen_0':s4_0(0) <=> 0' 459.81/291.49 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 459.81/291.49 459.81/291.49 459.81/291.49 The following defined symbols remain to be analysed: 459.81/291.49 gr, cond 459.81/291.49 459.81/291.49 They will be analysed ascendingly in the following order: 459.81/291.49 gr < cond 459.81/291.49 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (17) RewriteLemmaProof (LOWER BOUND(ID)) 459.81/291.49 Proved the following rewrite lemma: 459.81/291.49 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 459.81/291.49 459.81/291.49 Induction Base: 459.81/291.49 gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) 459.81/291.49 false 459.81/291.49 459.81/291.49 Induction Step: 459.81/291.49 gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) 459.81/291.49 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH 459.81/291.49 false 459.81/291.49 459.81/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (18) 459.81/291.49 Complex Obligation (BEST) 459.81/291.49 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (19) 459.81/291.49 Obligation: 459.81/291.49 Proved the lower bound n^1 for the following obligation: 459.81/291.49 459.81/291.49 Innermost TRS: 459.81/291.49 Rules: 459.81/291.49 cond(true, x, y) -> cond(gr(x, y), p(x), y) 459.81/291.49 gr(0', x) -> false 459.81/291.49 gr(s(x), 0') -> true 459.81/291.49 gr(s(x), s(y)) -> gr(x, y) 459.81/291.49 p(0') -> 0' 459.81/291.49 p(s(x)) -> x 459.81/291.49 459.81/291.49 Types: 459.81/291.49 cond :: true:false -> 0':s -> 0':s -> cond 459.81/291.49 true :: true:false 459.81/291.49 gr :: 0':s -> 0':s -> true:false 459.81/291.49 p :: 0':s -> 0':s 459.81/291.49 0' :: 0':s 459.81/291.49 false :: true:false 459.81/291.49 s :: 0':s -> 0':s 459.81/291.49 hole_cond1_0 :: cond 459.81/291.49 hole_true:false2_0 :: true:false 459.81/291.49 hole_0':s3_0 :: 0':s 459.81/291.49 gen_0':s4_0 :: Nat -> 0':s 459.81/291.49 459.81/291.49 459.81/291.49 Generator Equations: 459.81/291.49 gen_0':s4_0(0) <=> 0' 459.81/291.49 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 459.81/291.49 459.81/291.49 459.81/291.49 The following defined symbols remain to be analysed: 459.81/291.49 gr, cond 459.81/291.49 459.81/291.49 They will be analysed ascendingly in the following order: 459.81/291.49 gr < cond 459.81/291.49 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (20) LowerBoundPropagationProof (FINISHED) 459.81/291.49 Propagated lower bound. 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (21) 459.81/291.49 BOUNDS(n^1, INF) 459.81/291.49 459.81/291.49 ---------------------------------------- 459.81/291.49 459.81/291.49 (22) 459.81/291.49 Obligation: 459.81/291.49 Innermost TRS: 459.81/291.49 Rules: 459.81/291.49 cond(true, x, y) -> cond(gr(x, y), p(x), y) 459.81/291.49 gr(0', x) -> false 459.81/291.49 gr(s(x), 0') -> true 459.81/291.49 gr(s(x), s(y)) -> gr(x, y) 459.81/291.49 p(0') -> 0' 459.81/291.49 p(s(x)) -> x 459.81/291.49 459.81/291.49 Types: 459.81/291.49 cond :: true:false -> 0':s -> 0':s -> cond 459.81/291.49 true :: true:false 459.81/291.49 gr :: 0':s -> 0':s -> true:false 459.81/291.49 p :: 0':s -> 0':s 459.81/291.49 0' :: 0':s 459.81/291.49 false :: true:false 459.81/291.49 s :: 0':s -> 0':s 459.81/291.49 hole_cond1_0 :: cond 459.81/291.49 hole_true:false2_0 :: true:false 459.81/291.49 hole_0':s3_0 :: 0':s 459.81/291.49 gen_0':s4_0 :: Nat -> 0':s 459.81/291.49 459.81/291.49 459.81/291.49 Lemmas: 459.81/291.49 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 459.81/291.49 459.81/291.49 459.81/291.49 Generator Equations: 459.81/291.49 gen_0':s4_0(0) <=> 0' 459.81/291.49 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 459.81/291.49 459.81/291.49 459.81/291.49 The following defined symbols remain to be analysed: 459.81/291.49 cond 459.81/291.53 EOF