1148.12/291.58 WORST_CASE(Omega(n^1), O(n^2)) 1148.34/291.61 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 1148.34/291.61 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1148.34/291.61 1148.34/291.61 1148.34/291.61 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1148.34/291.61 1148.34/291.61 (0) CpxTRS 1148.34/291.61 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 1148.34/291.61 (2) CpxWeightedTrs 1148.34/291.61 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 1148.34/291.61 (4) CpxTypedWeightedTrs 1148.34/291.61 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 1148.34/291.61 (6) CpxTypedWeightedCompleteTrs 1148.34/291.61 (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 1148.34/291.61 (8) CpxRNTS 1148.34/291.61 (9) CompleteCoflocoProof [FINISHED, 1105 ms] 1148.34/291.61 (10) BOUNDS(1, n^2) 1148.34/291.61 (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 1148.34/291.61 (12) TRS for Loop Detection 1148.34/291.61 (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 1148.34/291.61 (14) BEST 1148.34/291.61 (15) proven lower bound 1148.34/291.61 (16) LowerBoundPropagationProof [FINISHED, 0 ms] 1148.34/291.61 (17) BOUNDS(n^1, INF) 1148.34/291.61 (18) TRS for Loop Detection 1148.34/291.61 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (0) 1148.34/291.61 Obligation: 1148.34/291.61 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1148.34/291.61 1148.34/291.61 1148.34/291.61 The TRS R consists of the following rules: 1148.34/291.61 1148.34/291.61 cond1(true, x, y) -> cond2(gr(x, y), x, y) 1148.34/291.61 cond2(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) 1148.34/291.61 cond2(false, x, y) -> cond3(eq(x, y), x, y) 1148.34/291.61 cond3(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) 1148.34/291.61 cond3(false, x, y) -> cond1(gr(add(x, y), 0), x, p(y)) 1148.34/291.61 gr(0, x) -> false 1148.34/291.61 gr(s(x), 0) -> true 1148.34/291.61 gr(s(x), s(y)) -> gr(x, y) 1148.34/291.61 add(0, x) -> x 1148.34/291.61 add(s(x), y) -> s(add(x, y)) 1148.34/291.61 eq(0, 0) -> true 1148.34/291.61 eq(0, s(x)) -> false 1148.34/291.61 eq(s(x), 0) -> false 1148.34/291.61 eq(s(x), s(y)) -> eq(x, y) 1148.34/291.61 p(0) -> 0 1148.34/291.61 p(s(x)) -> x 1148.34/291.61 1148.34/291.61 S is empty. 1148.34/291.61 Rewrite Strategy: INNERMOST 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 1148.34/291.61 Transformed relative TRS to weighted TRS 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (2) 1148.34/291.61 Obligation: 1148.34/291.61 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). 1148.34/291.61 1148.34/291.61 1148.34/291.61 The TRS R consists of the following rules: 1148.34/291.61 1148.34/291.61 cond1(true, x, y) -> cond2(gr(x, y), x, y) [1] 1148.34/291.61 cond2(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) [1] 1148.34/291.61 cond2(false, x, y) -> cond3(eq(x, y), x, y) [1] 1148.34/291.61 cond3(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) [1] 1148.34/291.61 cond3(false, x, y) -> cond1(gr(add(x, y), 0), x, p(y)) [1] 1148.34/291.61 gr(0, x) -> false [1] 1148.34/291.61 gr(s(x), 0) -> true [1] 1148.34/291.61 gr(s(x), s(y)) -> gr(x, y) [1] 1148.34/291.61 add(0, x) -> x [1] 1148.34/291.61 add(s(x), y) -> s(add(x, y)) [1] 1148.34/291.61 eq(0, 0) -> true [1] 1148.34/291.61 eq(0, s(x)) -> false [1] 1148.34/291.61 eq(s(x), 0) -> false [1] 1148.34/291.61 eq(s(x), s(y)) -> eq(x, y) [1] 1148.34/291.61 p(0) -> 0 [1] 1148.34/291.61 p(s(x)) -> x [1] 1148.34/291.61 1148.34/291.61 Rewrite Strategy: INNERMOST 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 1148.34/291.61 Infered types. 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (4) 1148.34/291.61 Obligation: 1148.34/291.61 Runtime Complexity Weighted TRS with Types. 1148.34/291.61 The TRS R consists of the following rules: 1148.34/291.61 1148.34/291.61 cond1(true, x, y) -> cond2(gr(x, y), x, y) [1] 1148.34/291.61 cond2(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) [1] 1148.34/291.61 cond2(false, x, y) -> cond3(eq(x, y), x, y) [1] 1148.34/291.61 cond3(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) [1] 1148.34/291.61 cond3(false, x, y) -> cond1(gr(add(x, y), 0), x, p(y)) [1] 1148.34/291.61 gr(0, x) -> false [1] 1148.34/291.61 gr(s(x), 0) -> true [1] 1148.34/291.61 gr(s(x), s(y)) -> gr(x, y) [1] 1148.34/291.61 add(0, x) -> x [1] 1148.34/291.61 add(s(x), y) -> s(add(x, y)) [1] 1148.34/291.61 eq(0, 0) -> true [1] 1148.34/291.61 eq(0, s(x)) -> false [1] 1148.34/291.61 eq(s(x), 0) -> false [1] 1148.34/291.61 eq(s(x), s(y)) -> eq(x, y) [1] 1148.34/291.61 p(0) -> 0 [1] 1148.34/291.61 p(s(x)) -> x [1] 1148.34/291.61 1148.34/291.61 The TRS has the following type information: 1148.34/291.61 cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 1148.34/291.61 true :: true:false 1148.34/291.61 cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 1148.34/291.61 gr :: 0:s -> 0:s -> true:false 1148.34/291.61 add :: 0:s -> 0:s -> 0:s 1148.34/291.61 0 :: 0:s 1148.34/291.61 p :: 0:s -> 0:s 1148.34/291.61 false :: true:false 1148.34/291.61 cond3 :: true:false -> 0:s -> 0:s -> cond1:cond2:cond3 1148.34/291.61 eq :: 0:s -> 0:s -> true:false 1148.34/291.61 s :: 0:s -> 0:s 1148.34/291.61 1148.34/291.61 Rewrite Strategy: INNERMOST 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (5) CompletionProof (UPPER BOUND(ID)) 1148.34/291.61 The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: 1148.34/291.61 1148.34/291.61 cond1(v0, v1, v2) -> null_cond1 [0] 1148.34/291.61 1148.34/291.61 And the following fresh constants: null_cond1 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (6) 1148.34/291.61 Obligation: 1148.34/291.61 Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: 1148.34/291.61 1148.34/291.61 Runtime Complexity Weighted TRS with Types. 1148.34/291.61 The TRS R consists of the following rules: 1148.34/291.61 1148.34/291.61 cond1(true, x, y) -> cond2(gr(x, y), x, y) [1] 1148.34/291.61 cond2(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) [1] 1148.34/291.61 cond2(false, x, y) -> cond3(eq(x, y), x, y) [1] 1148.34/291.61 cond3(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) [1] 1148.34/291.61 cond3(false, x, y) -> cond1(gr(add(x, y), 0), x, p(y)) [1] 1148.34/291.61 gr(0, x) -> false [1] 1148.34/291.61 gr(s(x), 0) -> true [1] 1148.34/291.61 gr(s(x), s(y)) -> gr(x, y) [1] 1148.34/291.61 add(0, x) -> x [1] 1148.34/291.61 add(s(x), y) -> s(add(x, y)) [1] 1148.34/291.61 eq(0, 0) -> true [1] 1148.34/291.61 eq(0, s(x)) -> false [1] 1148.34/291.61 eq(s(x), 0) -> false [1] 1148.34/291.61 eq(s(x), s(y)) -> eq(x, y) [1] 1148.34/291.61 p(0) -> 0 [1] 1148.34/291.61 p(s(x)) -> x [1] 1148.34/291.61 cond1(v0, v1, v2) -> null_cond1 [0] 1148.34/291.61 1148.34/291.61 The TRS has the following type information: 1148.34/291.61 cond1 :: true:false -> 0:s -> 0:s -> null_cond1 1148.34/291.61 true :: true:false 1148.34/291.61 cond2 :: true:false -> 0:s -> 0:s -> null_cond1 1148.34/291.61 gr :: 0:s -> 0:s -> true:false 1148.34/291.61 add :: 0:s -> 0:s -> 0:s 1148.34/291.61 0 :: 0:s 1148.34/291.61 p :: 0:s -> 0:s 1148.34/291.61 false :: true:false 1148.34/291.61 cond3 :: true:false -> 0:s -> 0:s -> null_cond1 1148.34/291.61 eq :: 0:s -> 0:s -> true:false 1148.34/291.61 s :: 0:s -> 0:s 1148.34/291.61 null_cond1 :: null_cond1 1148.34/291.61 1148.34/291.61 Rewrite Strategy: INNERMOST 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 1148.34/291.61 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 1148.34/291.61 The constant constructors are abstracted as follows: 1148.34/291.61 1148.34/291.61 true => 1 1148.34/291.61 0 => 0 1148.34/291.61 false => 0 1148.34/291.61 null_cond1 => 0 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (8) 1148.34/291.61 Obligation: 1148.34/291.61 Complexity RNTS consisting of the following rules: 1148.34/291.61 1148.34/291.61 add(z, z') -{ 1 }-> x :|: z' = x, x >= 0, z = 0 1148.34/291.61 add(z, z') -{ 1 }-> 1 + add(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y 1148.34/291.61 cond1(z, z', z'') -{ 1 }-> cond2(gr(x, y), x, y) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 1148.34/291.61 cond1(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 1148.34/291.61 cond2(z, z', z'') -{ 1 }-> cond3(eq(x, y), x, y) :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 1148.34/291.61 cond2(z, z', z'') -{ 1 }-> cond1(gr(add(x, y), 0), p(x), y) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 1148.34/291.61 cond3(z, z', z'') -{ 1 }-> cond1(gr(add(x, y), 0), x, p(y)) :|: z' = x, z'' = y, x >= 0, y >= 0, z = 0 1148.34/291.61 cond3(z, z', z'') -{ 1 }-> cond1(gr(add(x, y), 0), p(x), y) :|: z' = x, z'' = y, z = 1, x >= 0, y >= 0 1148.34/291.61 eq(z, z') -{ 1 }-> eq(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 1148.34/291.61 eq(z, z') -{ 1 }-> 1 :|: z = 0, z' = 0 1148.34/291.61 eq(z, z') -{ 1 }-> 0 :|: z' = 1 + x, x >= 0, z = 0 1148.34/291.61 eq(z, z') -{ 1 }-> 0 :|: x >= 0, z = 1 + x, z' = 0 1148.34/291.61 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 1148.34/291.61 gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 1148.34/291.61 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 1148.34/291.61 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x 1148.34/291.61 p(z) -{ 1 }-> 0 :|: z = 0 1148.34/291.61 1148.34/291.61 Only complete derivations are relevant for the runtime complexity. 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (9) CompleteCoflocoProof (FINISHED) 1148.34/291.61 Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: 1148.34/291.61 1148.34/291.61 eq(start(V1, V, V2),0,[cond1(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). 1148.34/291.61 eq(start(V1, V, V2),0,[cond2(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). 1148.34/291.61 eq(start(V1, V, V2),0,[cond3(V1, V, V2, Out)],[V1 >= 0,V >= 0,V2 >= 0]). 1148.34/291.61 eq(start(V1, V, V2),0,[gr(V1, V, Out)],[V1 >= 0,V >= 0]). 1148.34/291.61 eq(start(V1, V, V2),0,[add(V1, V, Out)],[V1 >= 0,V >= 0]). 1148.34/291.61 eq(start(V1, V, V2),0,[eq(V1, V, Out)],[V1 >= 0,V >= 0]). 1148.34/291.61 eq(start(V1, V, V2),0,[p(V1, Out)],[V1 >= 0]). 1148.34/291.61 eq(cond1(V1, V, V2, Out),1,[gr(V4, V3, Ret0),cond2(Ret0, V4, V3, Ret)],[Out = Ret,V = V4,V2 = V3,V1 = 1,V4 >= 0,V3 >= 0]). 1148.34/291.61 eq(cond2(V1, V, V2, Out),1,[add(V5, V6, Ret00),gr(Ret00, 0, Ret01),p(V5, Ret1),cond1(Ret01, Ret1, V6, Ret2)],[Out = Ret2,V = V5,V2 = V6,V1 = 1,V5 >= 0,V6 >= 0]). 1148.34/291.61 eq(cond2(V1, V, V2, Out),1,[eq(V8, V7, Ret02),cond3(Ret02, V8, V7, Ret3)],[Out = Ret3,V = V8,V2 = V7,V8 >= 0,V7 >= 0,V1 = 0]). 1148.34/291.61 eq(cond3(V1, V, V2, Out),1,[add(V9, V10, Ret001),gr(Ret001, 0, Ret03),p(V9, Ret11),cond1(Ret03, Ret11, V10, Ret4)],[Out = Ret4,V = V9,V2 = V10,V1 = 1,V9 >= 0,V10 >= 0]). 1148.34/291.61 eq(cond3(V1, V, V2, Out),1,[add(V12, V11, Ret002),gr(Ret002, 0, Ret04),p(V11, Ret21),cond1(Ret04, V12, Ret21, Ret5)],[Out = Ret5,V = V12,V2 = V11,V12 >= 0,V11 >= 0,V1 = 0]). 1148.34/291.61 eq(gr(V1, V, Out),1,[],[Out = 0,V = V13,V13 >= 0,V1 = 0]). 1148.34/291.61 eq(gr(V1, V, Out),1,[],[Out = 1,V14 >= 0,V1 = 1 + V14,V = 0]). 1148.34/291.61 eq(gr(V1, V, Out),1,[gr(V16, V15, Ret6)],[Out = Ret6,V = 1 + V15,V16 >= 0,V15 >= 0,V1 = 1 + V16]). 1148.34/291.61 eq(add(V1, V, Out),1,[],[Out = V17,V = V17,V17 >= 0,V1 = 0]). 1148.34/291.61 eq(add(V1, V, Out),1,[add(V19, V18, Ret12)],[Out = 1 + Ret12,V19 >= 0,V18 >= 0,V1 = 1 + V19,V = V18]). 1148.34/291.61 eq(eq(V1, V, Out),1,[],[Out = 1,V1 = 0,V = 0]). 1148.34/291.61 eq(eq(V1, V, Out),1,[],[Out = 0,V = 1 + V20,V20 >= 0,V1 = 0]). 1148.34/291.61 eq(eq(V1, V, Out),1,[],[Out = 0,V21 >= 0,V1 = 1 + V21,V = 0]). 1148.34/291.61 eq(eq(V1, V, Out),1,[eq(V22, V23, Ret7)],[Out = Ret7,V = 1 + V23,V22 >= 0,V23 >= 0,V1 = 1 + V22]). 1148.34/291.61 eq(p(V1, Out),1,[],[Out = 0,V1 = 0]). 1148.34/291.61 eq(p(V1, Out),1,[],[Out = V24,V24 >= 0,V1 = 1 + V24]). 1148.34/291.61 eq(cond1(V1, V, V2, Out),0,[],[Out = 0,V26 >= 0,V2 = V27,V25 >= 0,V1 = V26,V = V25,V27 >= 0]). 1148.34/291.61 input_output_vars(cond1(V1,V,V2,Out),[V1,V,V2],[Out]). 1148.34/291.61 input_output_vars(cond2(V1,V,V2,Out),[V1,V,V2],[Out]). 1148.34/291.61 input_output_vars(cond3(V1,V,V2,Out),[V1,V,V2],[Out]). 1148.34/291.61 input_output_vars(gr(V1,V,Out),[V1,V],[Out]). 1148.34/291.61 input_output_vars(add(V1,V,Out),[V1,V],[Out]). 1148.34/291.61 input_output_vars(eq(V1,V,Out),[V1,V],[Out]). 1148.34/291.61 input_output_vars(p(V1,Out),[V1],[Out]). 1148.34/291.61 1148.34/291.61 1148.34/291.61 CoFloCo proof output: 1148.34/291.61 Preprocessing Cost Relations 1148.34/291.61 ===================================== 1148.34/291.61 1148.34/291.61 #### Computed strongly connected components 1148.34/291.61 0. recursive : [add/3] 1148.34/291.61 1. recursive : [gr/3] 1148.34/291.61 2. non_recursive : [p/2] 1148.34/291.61 3. recursive : [eq/3] 1148.34/291.61 4. recursive : [cond1/4,cond2/4,cond3/4] 1148.34/291.61 5. non_recursive : [start/3] 1148.34/291.61 1148.34/291.61 #### Obtained direct recursion through partial evaluation 1148.34/291.61 0. SCC is partially evaluated into add/3 1148.34/291.61 1. SCC is partially evaluated into gr/3 1148.34/291.61 2. SCC is partially evaluated into p/2 1148.34/291.61 3. SCC is partially evaluated into eq/3 1148.34/291.61 4. SCC is partially evaluated into cond1/4 1148.34/291.61 5. SCC is partially evaluated into start/3 1148.34/291.61 1148.34/291.61 Control-Flow Refinement of Cost Relations 1148.34/291.61 ===================================== 1148.34/291.61 1148.34/291.61 ### Specialization of cost equations add/3 1148.34/291.61 * CE 11 is refined into CE [25] 1148.34/291.61 * CE 10 is refined into CE [26] 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Cost equations --> "Loop" of add/3 1148.34/291.61 * CEs [26] --> Loop 17 1148.34/291.61 * CEs [25] --> Loop 18 1148.34/291.61 1148.34/291.61 ### Ranking functions of CR add(V1,V,Out) 1148.34/291.61 * RF of phase [18]: [V1] 1148.34/291.61 1148.34/291.61 #### Partial ranking functions of CR add(V1,V,Out) 1148.34/291.61 * Partial RF of phase [18]: 1148.34/291.61 - RF of loop [18:1]: 1148.34/291.61 V1 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Specialization of cost equations gr/3 1148.34/291.61 * CE 14 is refined into CE [27] 1148.34/291.61 * CE 13 is refined into CE [28] 1148.34/291.61 * CE 12 is refined into CE [29] 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Cost equations --> "Loop" of gr/3 1148.34/291.61 * CEs [28] --> Loop 19 1148.34/291.61 * CEs [29] --> Loop 20 1148.34/291.61 * CEs [27] --> Loop 21 1148.34/291.61 1148.34/291.61 ### Ranking functions of CR gr(V1,V,Out) 1148.34/291.61 * RF of phase [21]: [V,V1] 1148.34/291.61 1148.34/291.61 #### Partial ranking functions of CR gr(V1,V,Out) 1148.34/291.61 * Partial RF of phase [21]: 1148.34/291.61 - RF of loop [21:1]: 1148.34/291.61 V 1148.34/291.61 V1 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Specialization of cost equations p/2 1148.34/291.61 * CE 16 is refined into CE [30] 1148.34/291.61 * CE 15 is refined into CE [31] 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Cost equations --> "Loop" of p/2 1148.34/291.61 * CEs [30] --> Loop 22 1148.34/291.61 * CEs [31] --> Loop 23 1148.34/291.61 1148.34/291.61 ### Ranking functions of CR p(V1,Out) 1148.34/291.61 1148.34/291.61 #### Partial ranking functions of CR p(V1,Out) 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Specialization of cost equations eq/3 1148.34/291.61 * CE 24 is refined into CE [32] 1148.34/291.61 * CE 23 is refined into CE [33] 1148.34/291.61 * CE 22 is refined into CE [34] 1148.34/291.61 * CE 21 is refined into CE [35] 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Cost equations --> "Loop" of eq/3 1148.34/291.61 * CEs [33] --> Loop 24 1148.34/291.61 * CEs [34] --> Loop 25 1148.34/291.61 * CEs [35] --> Loop 26 1148.34/291.61 * CEs [32] --> Loop 27 1148.34/291.61 1148.34/291.61 ### Ranking functions of CR eq(V1,V,Out) 1148.34/291.61 * RF of phase [27]: [V,V1] 1148.34/291.61 1148.34/291.61 #### Partial ranking functions of CR eq(V1,V,Out) 1148.34/291.61 * Partial RF of phase [27]: 1148.34/291.61 - RF of loop [27:1]: 1148.34/291.61 V 1148.34/291.61 V1 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Specialization of cost equations cond1/4 1148.34/291.61 * CE 20 is refined into CE [36] 1148.34/291.61 * CE 17 is refined into CE [37,38] 1148.34/291.61 * CE 18 is refined into CE [39,40] 1148.34/291.61 * CE 19 is refined into CE [41,42] 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Cost equations --> "Loop" of cond1/4 1148.34/291.61 * CEs [42] --> Loop 28 1148.34/291.61 * CEs [38] --> Loop 29 1148.34/291.61 * CEs [40] --> Loop 30 1148.34/291.61 * CEs [37] --> Loop 31 1148.34/291.61 * CEs [41] --> Loop 32 1148.34/291.61 * CEs [39] --> Loop 33 1148.34/291.61 * CEs [36] --> Loop 34 1148.34/291.61 1148.34/291.61 ### Ranking functions of CR cond1(V1,V,V2,Out) 1148.34/291.61 * RF of phase [28,30]: [V+V2-1] 1148.34/291.61 * RF of phase [29]: [V-1,V-V2] 1148.34/291.61 * RF of phase [31]: [V] 1148.34/291.61 * RF of phase [32]: [V2] 1148.34/291.61 1148.34/291.61 #### Partial ranking functions of CR cond1(V1,V,V2,Out) 1148.34/291.61 * Partial RF of phase [28,30]: 1148.34/291.61 - RF of loop [28:1]: 1148.34/291.61 -V+V2 depends on loops [30:1] 1148.34/291.61 V2-1 1148.34/291.61 - RF of loop [30:1]: 1148.34/291.61 V 1148.34/291.61 V-V2+1 depends on loops [28:1] 1148.34/291.61 * Partial RF of phase [29]: 1148.34/291.61 - RF of loop [29:1]: 1148.34/291.61 V-1 1148.34/291.61 V-V2 1148.34/291.61 * Partial RF of phase [31]: 1148.34/291.61 - RF of loop [31:1]: 1148.34/291.61 V 1148.34/291.61 * Partial RF of phase [32]: 1148.34/291.61 - RF of loop [32:1]: 1148.34/291.61 V2 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Specialization of cost equations start/3 1148.34/291.61 * CE 1 is refined into CE [43,44,45,46,47,48,49,50] 1148.34/291.61 * CE 2 is refined into CE [51,52,53,54] 1148.34/291.61 * CE 3 is refined into CE [55,56,57,58,59,60,61,62,63] 1148.34/291.61 * CE 4 is refined into CE [64,65,66,67,68,69,70,71,72] 1148.34/291.61 * CE 5 is refined into CE [73,74,75,76,77] 1148.34/291.61 * CE 6 is refined into CE [78,79,80,81] 1148.34/291.61 * CE 7 is refined into CE [82,83] 1148.34/291.61 * CE 8 is refined into CE [84,85,86,87,88,89] 1148.34/291.61 * CE 9 is refined into CE [90,91] 1148.34/291.61 1148.34/291.61 1148.34/291.61 ### Cost equations --> "Loop" of start/3 1148.34/291.61 * CEs [89] --> Loop 35 1148.34/291.61 * CEs [48,75] --> Loop 36 1148.34/291.61 * CEs [46,47,49,50,76,77] --> Loop 37 1148.34/291.61 * CEs [44,45,73,74] --> Loop 38 1148.34/291.61 * CEs [43,79,80,81,83,86,87,88,91] --> Loop 39 1148.34/291.61 * CEs [51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,78,82,84,85,90] --> Loop 40 1148.34/291.61 1148.34/291.61 ### Ranking functions of CR start(V1,V,V2) 1148.34/291.61 1148.34/291.61 #### Partial ranking functions of CR start(V1,V,V2) 1148.34/291.61 1148.34/291.61 1148.34/291.61 Computing Bounds 1148.34/291.61 ===================================== 1148.34/291.61 1148.34/291.61 #### Cost of chains of add(V1,V,Out): 1148.34/291.61 * Chain [[18],17]: 1*it(18)+1 1148.34/291.61 Such that:it(18) =< -V+Out 1148.34/291.61 1148.34/291.61 with precondition: [V+V1=Out,V1>=1,V>=0] 1148.34/291.61 1148.34/291.61 * Chain [17]: 1 1148.34/291.61 with precondition: [V1=0,V=Out,V>=0] 1148.34/291.61 1148.34/291.61 1148.34/291.61 #### Cost of chains of gr(V1,V,Out): 1148.34/291.61 * Chain [[21],20]: 1*it(21)+1 1148.34/291.61 Such that:it(21) =< V1 1148.34/291.61 1148.34/291.61 with precondition: [Out=0,V1>=1,V>=V1] 1148.34/291.61 1148.34/291.61 * Chain [[21],19]: 1*it(21)+1 1148.34/291.61 Such that:it(21) =< V 1148.34/291.61 1148.34/291.61 with precondition: [Out=1,V>=1,V1>=V+1] 1148.34/291.61 1148.34/291.61 * Chain [20]: 1 1148.34/291.61 with precondition: [V1=0,Out=0,V>=0] 1148.34/291.61 1148.34/291.61 * Chain [19]: 1 1148.34/291.61 with precondition: [V=0,Out=1,V1>=1] 1148.34/291.61 1148.34/291.61 1148.34/291.61 #### Cost of chains of p(V1,Out): 1148.34/291.61 * Chain [23]: 1 1148.34/291.61 with precondition: [V1=0,Out=0] 1148.34/291.61 1148.34/291.61 * Chain [22]: 1 1148.34/291.61 with precondition: [V1=Out+1,V1>=1] 1148.34/291.61 1148.34/291.61 1148.34/291.61 #### Cost of chains of eq(V1,V,Out): 1148.34/291.61 * Chain [[27],26]: 1*it(27)+1 1148.34/291.61 Such that:it(27) =< V1 1148.34/291.61 1148.34/291.61 with precondition: [Out=1,V1=V,V1>=1] 1148.34/291.61 1148.34/291.61 * Chain [[27],25]: 1*it(27)+1 1148.34/291.61 Such that:it(27) =< V1 1148.34/291.61 1148.34/291.61 with precondition: [Out=0,V1>=1,V>=V1+1] 1148.34/291.61 1148.34/291.61 * Chain [[27],24]: 1*it(27)+1 1148.34/291.61 Such that:it(27) =< V 1148.34/291.61 1148.34/291.61 with precondition: [Out=0,V>=1,V1>=V+1] 1148.34/291.61 1148.34/291.61 * Chain [26]: 1 1148.34/291.61 with precondition: [V1=0,V=0,Out=1] 1148.34/291.61 1148.34/291.61 * Chain [25]: 1 1148.34/291.61 with precondition: [V1=0,Out=0,V>=1] 1148.34/291.61 1148.34/291.61 * Chain [24]: 1 1148.34/291.61 with precondition: [V=0,Out=0,V1>=1] 1148.34/291.61 1148.34/291.61 1148.34/291.61 #### Cost of chains of cond1(V1,V,V2,Out): 1148.34/291.61 * Chain [[32],34]: 8*it(32)+0 1148.34/291.61 Such that:it(32) =< V2 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,V=0,Out=0,V2>=1] 1148.34/291.61 1148.34/291.61 * Chain [[32],33,34]: 8*it(32)+8 1148.34/291.61 Such that:it(32) =< V2 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,V=0,Out=0,V2>=1] 1148.34/291.61 1148.34/291.61 * Chain [[31],34]: 6*it(31)+1*s(3)+0 1148.34/291.61 Such that:aux(3) =< V 1148.34/291.61 it(31) =< aux(3) 1148.34/291.61 s(3) =< it(31)*aux(3) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,V2=0,Out=0,V>=1] 1148.34/291.61 1148.34/291.61 * Chain [[31],33,34]: 6*it(31)+1*s(3)+8 1148.34/291.61 Such that:aux(4) =< V 1148.34/291.61 it(31) =< aux(4) 1148.34/291.61 s(3) =< it(31)*aux(4) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,V2=0,Out=0,V>=1] 1148.34/291.61 1148.34/291.61 * Chain [[29],[28,30],[32],34]: 16*it(28)+6*it(29)+8*it(32)+3*s(14)+3*s(16)+1*s(22)+1*s(23)+0 1148.34/291.61 Such that:aux(20) =< V 1148.34/291.61 it(29) =< V-V2 1148.34/291.61 aux(17) =< 2*V2 1148.34/291.61 aux(21) =< V2 1148.34/291.61 it(28) =< aux(21) 1148.34/291.61 it(32) =< aux(17) 1148.34/291.61 it(28) =< aux(17) 1148.34/291.61 s(17) =< it(28)*aux(17) 1148.34/291.61 s(15) =< it(28)*aux(21) 1148.34/291.61 s(16) =< s(17) 1148.34/291.61 s(14) =< s(15) 1148.34/291.61 it(29) =< aux(20) 1148.34/291.61 s(22) =< it(29)*aux(21) 1148.34/291.61 s(23) =< it(29)*aux(20) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 1148.34/291.61 1148.34/291.61 * Chain [[29],[28,30],[32],33,34]: 16*it(28)+6*it(29)+8*it(32)+3*s(14)+3*s(16)+1*s(22)+1*s(23)+8 1148.34/291.61 Such that:aux(20) =< V 1148.34/291.61 it(29) =< V-V2 1148.34/291.61 aux(23) =< 2*V2 1148.34/291.61 aux(24) =< V2 1148.34/291.61 it(28) =< aux(24) 1148.34/291.61 it(32) =< aux(23) 1148.34/291.61 it(28) =< aux(23) 1148.34/291.61 s(17) =< it(28)*aux(23) 1148.34/291.61 s(15) =< it(28)*aux(24) 1148.34/291.61 s(16) =< s(17) 1148.34/291.61 s(14) =< s(15) 1148.34/291.61 it(29) =< aux(20) 1148.34/291.61 s(22) =< it(29)*aux(24) 1148.34/291.61 s(23) =< it(29)*aux(20) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 1148.34/291.61 1148.34/291.61 * Chain [[29],[28,30],34]: 16*it(28)+6*it(29)+3*s(14)+3*s(16)+1*s(22)+1*s(23)+0 1148.34/291.61 Such that:aux(20) =< V 1148.34/291.61 it(29) =< V-V2 1148.34/291.61 aux(26) =< 2*V2 1148.34/291.61 aux(27) =< V2 1148.34/291.61 it(28) =< aux(27) 1148.34/291.61 it(28) =< aux(26) 1148.34/291.61 s(17) =< it(28)*aux(26) 1148.34/291.61 s(15) =< it(28)*aux(27) 1148.34/291.61 s(16) =< s(17) 1148.34/291.61 s(14) =< s(15) 1148.34/291.61 it(29) =< aux(20) 1148.34/291.61 s(22) =< it(29)*aux(27) 1148.34/291.61 s(23) =< it(29)*aux(20) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 1148.34/291.61 1148.34/291.61 * Chain [[29],34]: 6*it(29)+1*s(22)+1*s(23)+0 1148.34/291.61 Such that:aux(20) =< V 1148.34/291.61 it(29) =< V-V2 1148.34/291.61 aux(19) =< V2 1148.34/291.61 it(29) =< aux(20) 1148.34/291.61 s(22) =< it(29)*aux(19) 1148.34/291.61 s(23) =< it(29)*aux(20) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,Out=0,V2>=1,V>=V2+1] 1148.34/291.61 1148.34/291.61 * Chain [[28,30],[32],34]: 8*it(28)+8*it(30)+8*it(32)+3*s(14)+3*s(16)+0 1148.34/291.61 Such that:it(28) =< V2 1148.34/291.61 aux(16) =< V 1148.34/291.61 aux(17) =< V+V2 1148.34/291.61 it(30) =< aux(16) 1148.34/291.61 it(32) =< aux(17) 1148.34/291.61 it(28) =< aux(17) 1148.34/291.61 it(30) =< aux(17) 1148.34/291.61 s(17) =< it(30)*aux(17) 1148.34/291.61 s(15) =< it(28)*aux(16) 1148.34/291.61 s(16) =< s(17) 1148.34/291.61 s(14) =< s(15) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,Out=0,V>=1,V2>=V] 1148.34/291.61 1148.34/291.61 * Chain [[28,30],[32],33,34]: 8*it(28)+8*it(30)+8*it(32)+3*s(14)+3*s(16)+8 1148.34/291.61 Such that:it(28) =< V2 1148.34/291.61 aux(22) =< V 1148.34/291.61 aux(23) =< V+V2 1148.34/291.61 it(30) =< aux(22) 1148.34/291.61 it(32) =< aux(23) 1148.34/291.61 it(28) =< aux(23) 1148.34/291.61 it(30) =< aux(23) 1148.34/291.61 s(17) =< it(30)*aux(23) 1148.34/291.61 s(15) =< it(28)*aux(22) 1148.34/291.61 s(16) =< s(17) 1148.34/291.61 s(14) =< s(15) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,Out=0,V>=1,V2>=V] 1148.34/291.61 1148.34/291.61 * Chain [[28,30],34]: 8*it(28)+8*it(30)+3*s(14)+3*s(16)+0 1148.34/291.61 Such that:it(28) =< V2 1148.34/291.61 aux(25) =< V 1148.34/291.61 aux(26) =< V+V2 1148.34/291.61 it(30) =< aux(25) 1148.34/291.61 it(28) =< aux(26) 1148.34/291.61 it(30) =< aux(26) 1148.34/291.61 s(17) =< it(30)*aux(26) 1148.34/291.61 s(15) =< it(28)*aux(25) 1148.34/291.61 s(16) =< s(17) 1148.34/291.61 s(14) =< s(15) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,Out=0,V>=1,V2>=V] 1148.34/291.61 1148.34/291.61 * Chain [34]: 0 1148.34/291.61 with precondition: [Out=0,V1>=0,V>=0,V2>=0] 1148.34/291.61 1148.34/291.61 * Chain [33,34]: 8 1148.34/291.61 with precondition: [V1=1,V=0,V2=0,Out=0] 1148.34/291.61 1148.34/291.61 1148.34/291.61 #### Cost of chains of start(V1,V,V2): 1148.34/291.61 * Chain [40]: 38*s(98)+19*s(100)+144*s(109)+27*s(113)+27*s(114)+48*s(115)+63*s(118)+8*s(122)+48*s(130)+48*s(131)+18*s(134)+18*s(135)+32*s(136)+48*s(150)+8*s(151)+8*s(152)+14 1148.34/291.61 Such that:aux(50) =< 1 1148.34/291.61 aux(51) =< V 1148.34/291.61 aux(52) =< V-V2+1 1148.34/291.61 aux(53) =< V+V2 1148.34/291.61 aux(54) =< V2 1148.34/291.61 aux(55) =< 2*V2 1148.34/291.61 s(100) =< aux(50) 1148.34/291.61 s(118) =< aux(51) 1148.34/291.61 s(98) =< aux(54) 1148.34/291.61 s(122) =< s(118)*aux(51) 1148.34/291.61 s(150) =< aux(52) 1148.34/291.61 s(150) =< aux(51) 1148.34/291.61 s(151) =< s(150)*aux(54) 1148.34/291.61 s(152) =< s(150)*aux(51) 1148.34/291.61 s(109) =< aux(54) 1148.34/291.61 s(109) =< aux(55) 1148.34/291.61 s(111) =< s(109)*aux(55) 1148.34/291.61 s(112) =< s(109)*aux(54) 1148.34/291.61 s(113) =< s(111) 1148.34/291.61 s(114) =< s(112) 1148.34/291.61 s(115) =< aux(55) 1148.34/291.61 s(130) =< aux(54) 1148.34/291.61 s(131) =< aux(51) 1148.34/291.61 s(130) =< aux(53) 1148.34/291.61 s(131) =< aux(53) 1148.34/291.61 s(132) =< s(131)*aux(53) 1148.34/291.61 s(133) =< s(130)*aux(51) 1148.34/291.61 s(134) =< s(132) 1148.34/291.61 s(135) =< s(133) 1148.34/291.61 s(136) =< aux(53) 1148.34/291.61 1148.34/291.61 with precondition: [V1=0] 1148.34/291.61 1148.34/291.61 * Chain [39]: 3*s(196)+2*s(197)+12 1148.34/291.61 Such that:aux(56) =< V1 1148.34/291.61 aux(57) =< V 1148.34/291.61 s(196) =< aux(56) 1148.34/291.61 s(197) =< aux(57) 1148.34/291.61 1148.34/291.61 with precondition: [V1>=1] 1148.34/291.61 1148.34/291.61 * Chain [38]: 32*s(202)+12 1148.34/291.61 Such that:aux(58) =< V2 1148.34/291.61 s(202) =< aux(58) 1148.34/291.61 1148.34/291.61 with precondition: [V1>=0,V>=0,V2>=0] 1148.34/291.61 1148.34/291.61 * Chain [37]: 3*s(205)+1*s(206)+16*s(208)+48*s(213)+48*s(214)+18*s(217)+18*s(218)+32*s(219)+48*s(225)+8*s(226)+8*s(227)+96*s(228)+18*s(231)+18*s(232)+32*s(233)+12 1148.34/291.61 Such that:s(206) =< 1 1148.34/291.61 aux(61) =< V 1148.34/291.61 aux(62) =< V-V2 1148.34/291.61 aux(63) =< V+V2 1148.34/291.61 aux(64) =< V2 1148.34/291.61 aux(65) =< 2*V2 1148.34/291.61 s(205) =< aux(61) 1148.34/291.61 s(208) =< aux(64) 1148.34/291.61 s(213) =< aux(64) 1148.34/291.61 s(214) =< aux(61) 1148.34/291.61 s(213) =< aux(63) 1148.34/291.61 s(214) =< aux(63) 1148.34/291.61 s(215) =< s(214)*aux(63) 1148.34/291.61 s(216) =< s(213)*aux(61) 1148.34/291.61 s(217) =< s(215) 1148.34/291.61 s(218) =< s(216) 1148.34/291.61 s(219) =< aux(63) 1148.34/291.61 s(225) =< aux(62) 1148.34/291.61 s(225) =< aux(61) 1148.34/291.61 s(226) =< s(225)*aux(64) 1148.34/291.61 s(227) =< s(225)*aux(61) 1148.34/291.61 s(228) =< aux(64) 1148.34/291.61 s(228) =< aux(65) 1148.34/291.61 s(229) =< s(228)*aux(65) 1148.34/291.61 s(230) =< s(228)*aux(64) 1148.34/291.61 s(231) =< s(229) 1148.34/291.61 s(232) =< s(230) 1148.34/291.61 s(233) =< aux(65) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,V>=1,V2>=0] 1148.34/291.61 1148.34/291.61 * Chain [36]: 25*s(257)+4*s(260)+12 1148.34/291.61 Such that:aux(67) =< V 1148.34/291.61 s(257) =< aux(67) 1148.34/291.61 s(260) =< s(257)*aux(67) 1148.34/291.61 1148.34/291.61 with precondition: [V1=1,V2=0,V>=1] 1148.34/291.61 1148.34/291.61 * Chain [35]: 1*s(264)+1 1148.34/291.61 Such that:s(264) =< V 1148.34/291.61 1148.34/291.61 with precondition: [V1=V,V1>=1] 1148.34/291.61 1148.34/291.61 1148.34/291.61 Closed-form bounds of start(V1,V,V2): 1148.34/291.61 ------------------------------------- 1148.34/291.61 * Chain [40] with precondition: [V1=0] 1148.34/291.61 - Upper bound: nat(V)*111+33+nat(V)*8*nat(V)+nat(V)*18*nat(V2)+nat(V)*18*nat(V+V2)+nat(V)*8*nat(V-V2+1)+nat(V2)*230+nat(V2)*27*nat(V2)+nat(V2)*27*nat(2*V2)+nat(V2)*8*nat(V-V2+1)+nat(2*V2)*48+nat(V+V2)*32+nat(V-V2+1)*48 1148.34/291.61 - Complexity: n^2 1148.34/291.61 * Chain [39] with precondition: [V1>=1] 1148.34/291.61 - Upper bound: 3*V1+12+nat(V)*2 1148.34/291.61 - Complexity: n 1148.34/291.61 * Chain [38] with precondition: [V1>=0,V>=0,V2>=0] 1148.34/291.61 - Upper bound: 32*V2+12 1148.34/291.61 - Complexity: n 1148.34/291.61 * Chain [37] with precondition: [V1=1,V>=1,V2>=0] 1148.34/291.61 - Upper bound: 51*V+13+18*V*V2+(V+V2)*(18*V)+8*V*nat(V-V2)+160*V2+18*V2*V2+18*V2*(2*V2)+8*V2*nat(V-V2)+64*V2+(32*V+32*V2)+nat(V-V2)*48 1148.34/291.61 - Complexity: n^2 1148.34/291.61 * Chain [36] with precondition: [V1=1,V2=0,V>=1] 1148.34/291.61 - Upper bound: 25*V+12+4*V*V 1148.34/291.61 - Complexity: n^2 1148.34/291.61 * Chain [35] with precondition: [V1=V,V1>=1] 1148.34/291.61 - Upper bound: V+1 1148.34/291.61 - Complexity: n 1148.34/291.61 1148.34/291.61 ### Maximum cost of start(V1,V,V2): max([nat(V2)*32+11,nat(V)+11+max([3*V1,nat(V)*23+max([nat(V)*4*nat(V),nat(V)*26+1+nat(V)*18*nat(V2)+nat(V)*18*nat(V+V2)+nat(V2)*160+nat(V2)*18*nat(V2)+nat(V2)*18*nat(2*V2)+nat(2*V2)*32+nat(V+V2)*32+max([nat(V2)*8*nat(V-V2)+nat(V)*8*nat(V-V2)+nat(V-V2)*48,nat(V)*60+20+nat(V)*8*nat(V)+nat(V)*8*nat(V-V2+1)+nat(V2)*70+nat(V2)*9*nat(V2)+nat(V2)*9*nat(2*V2)+nat(V2)*8*nat(V-V2+1)+nat(2*V2)*16+nat(V-V2+1)*48])])])+nat(V)])+1 1148.34/291.61 Asymptotic class: n^2 1148.34/291.61 * Total analysis performed in 960 ms. 1148.34/291.61 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (10) 1148.34/291.61 BOUNDS(1, n^2) 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 1148.34/291.61 Transformed a relative TRS into a decreasing-loop problem. 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (12) 1148.34/291.61 Obligation: 1148.34/291.61 Analyzing the following TRS for decreasing loops: 1148.34/291.61 1148.34/291.61 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1148.34/291.61 1148.34/291.61 1148.34/291.61 The TRS R consists of the following rules: 1148.34/291.61 1148.34/291.61 cond1(true, x, y) -> cond2(gr(x, y), x, y) 1148.34/291.61 cond2(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) 1148.34/291.61 cond2(false, x, y) -> cond3(eq(x, y), x, y) 1148.34/291.61 cond3(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) 1148.34/291.61 cond3(false, x, y) -> cond1(gr(add(x, y), 0), x, p(y)) 1148.34/291.61 gr(0, x) -> false 1148.34/291.61 gr(s(x), 0) -> true 1148.34/291.61 gr(s(x), s(y)) -> gr(x, y) 1148.34/291.61 add(0, x) -> x 1148.34/291.61 add(s(x), y) -> s(add(x, y)) 1148.34/291.61 eq(0, 0) -> true 1148.34/291.61 eq(0, s(x)) -> false 1148.34/291.61 eq(s(x), 0) -> false 1148.34/291.61 eq(s(x), s(y)) -> eq(x, y) 1148.34/291.61 p(0) -> 0 1148.34/291.61 p(s(x)) -> x 1148.34/291.61 1148.34/291.61 S is empty. 1148.34/291.61 Rewrite Strategy: INNERMOST 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (13) DecreasingLoopProof (LOWER BOUND(ID)) 1148.34/291.61 The following loop(s) give(s) rise to the lower bound Omega(n^1): 1148.34/291.61 1148.34/291.61 The rewrite sequence 1148.34/291.61 1148.34/291.61 add(s(x), y) ->^+ s(add(x, y)) 1148.34/291.61 1148.34/291.61 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 1148.34/291.61 1148.34/291.61 The pumping substitution is [x / s(x)]. 1148.34/291.61 1148.34/291.61 The result substitution is [ ]. 1148.34/291.61 1148.34/291.61 1148.34/291.61 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (14) 1148.34/291.61 Complex Obligation (BEST) 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (15) 1148.34/291.61 Obligation: 1148.34/291.61 Proved the lower bound n^1 for the following obligation: 1148.34/291.61 1148.34/291.61 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1148.34/291.61 1148.34/291.61 1148.34/291.61 The TRS R consists of the following rules: 1148.34/291.61 1148.34/291.61 cond1(true, x, y) -> cond2(gr(x, y), x, y) 1148.34/291.61 cond2(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) 1148.34/291.61 cond2(false, x, y) -> cond3(eq(x, y), x, y) 1148.34/291.61 cond3(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) 1148.34/291.61 cond3(false, x, y) -> cond1(gr(add(x, y), 0), x, p(y)) 1148.34/291.61 gr(0, x) -> false 1148.34/291.61 gr(s(x), 0) -> true 1148.34/291.61 gr(s(x), s(y)) -> gr(x, y) 1148.34/291.61 add(0, x) -> x 1148.34/291.61 add(s(x), y) -> s(add(x, y)) 1148.34/291.61 eq(0, 0) -> true 1148.34/291.61 eq(0, s(x)) -> false 1148.34/291.61 eq(s(x), 0) -> false 1148.34/291.61 eq(s(x), s(y)) -> eq(x, y) 1148.34/291.61 p(0) -> 0 1148.34/291.61 p(s(x)) -> x 1148.34/291.61 1148.34/291.61 S is empty. 1148.34/291.61 Rewrite Strategy: INNERMOST 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (16) LowerBoundPropagationProof (FINISHED) 1148.34/291.61 Propagated lower bound. 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (17) 1148.34/291.61 BOUNDS(n^1, INF) 1148.34/291.61 1148.34/291.61 ---------------------------------------- 1148.34/291.61 1148.34/291.61 (18) 1148.34/291.61 Obligation: 1148.34/291.61 Analyzing the following TRS for decreasing loops: 1148.34/291.61 1148.34/291.61 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). 1148.34/291.61 1148.34/291.61 1148.34/291.61 The TRS R consists of the following rules: 1148.34/291.61 1148.34/291.61 cond1(true, x, y) -> cond2(gr(x, y), x, y) 1148.34/291.61 cond2(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) 1148.34/291.61 cond2(false, x, y) -> cond3(eq(x, y), x, y) 1148.34/291.61 cond3(true, x, y) -> cond1(gr(add(x, y), 0), p(x), y) 1148.34/291.61 cond3(false, x, y) -> cond1(gr(add(x, y), 0), x, p(y)) 1148.34/291.61 gr(0, x) -> false 1148.34/291.61 gr(s(x), 0) -> true 1148.34/291.61 gr(s(x), s(y)) -> gr(x, y) 1148.34/291.61 add(0, x) -> x 1148.34/291.61 add(s(x), y) -> s(add(x, y)) 1148.34/291.61 eq(0, 0) -> true 1148.34/291.61 eq(0, s(x)) -> false 1148.34/291.61 eq(s(x), 0) -> false 1148.34/291.61 eq(s(x), s(y)) -> eq(x, y) 1148.34/291.61 p(0) -> 0 1148.34/291.61 p(s(x)) -> x 1148.34/291.61 1148.34/291.61 S is empty. 1148.34/291.61 Rewrite Strategy: INNERMOST 1148.68/291.73 EOF