40.39/11.45 WORST_CASE(Omega(n^1), O(n^1)) 48.39/13.49 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 48.39/13.49 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 48.39/13.49 48.39/13.49 48.39/13.49 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 48.39/13.49 48.39/13.49 (0) CpxTRS 48.39/13.49 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 48.39/13.49 (2) CpxWeightedTrs 48.39/13.49 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 48.39/13.49 (4) CpxTypedWeightedTrs 48.39/13.49 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 48.39/13.49 (6) CpxTypedWeightedCompleteTrs 48.39/13.49 (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 48.39/13.49 (8) CpxTypedWeightedCompleteTrs 48.39/13.49 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 48.39/13.49 (10) CpxRNTS 48.39/13.49 (11) InliningProof [UPPER BOUND(ID), 297 ms] 48.39/13.49 (12) CpxRNTS 48.39/13.49 (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 48.39/13.49 (14) CpxRNTS 48.39/13.49 (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] 48.39/13.49 (16) CpxRNTS 48.39/13.49 (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 48.39/13.49 (18) CpxRNTS 48.39/13.49 (19) IntTrsBoundProof [UPPER BOUND(ID), 243 ms] 48.39/13.49 (20) CpxRNTS 48.39/13.49 (21) IntTrsBoundProof [UPPER BOUND(ID), 79 ms] 48.39/13.49 (22) CpxRNTS 48.39/13.49 (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 48.39/13.49 (24) CpxRNTS 48.39/13.49 (25) IntTrsBoundProof [UPPER BOUND(ID), 647 ms] 48.39/13.49 (26) CpxRNTS 48.39/13.49 (27) IntTrsBoundProof [UPPER BOUND(ID), 110 ms] 48.39/13.49 (28) CpxRNTS 48.39/13.49 (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 48.39/13.49 (30) CpxRNTS 48.39/13.49 (31) IntTrsBoundProof [UPPER BOUND(ID), 108 ms] 48.39/13.49 (32) CpxRNTS 48.39/13.49 (33) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] 48.39/13.49 (34) CpxRNTS 48.39/13.49 (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 48.39/13.49 (36) CpxRNTS 48.39/13.49 (37) IntTrsBoundProof [UPPER BOUND(ID), 386 ms] 48.39/13.49 (38) CpxRNTS 48.39/13.49 (39) IntTrsBoundProof [UPPER BOUND(ID), 166 ms] 48.39/13.49 (40) CpxRNTS 48.39/13.49 (41) FinalProof [FINISHED, 0 ms] 48.39/13.49 (42) BOUNDS(1, n^1) 48.39/13.49 (43) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 48.39/13.49 (44) TRS for Loop Detection 48.39/13.49 (45) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 48.39/13.49 (46) BEST 48.39/13.49 (47) proven lower bound 48.39/13.49 (48) LowerBoundPropagationProof [FINISHED, 0 ms] 48.39/13.49 (49) BOUNDS(n^1, INF) 48.39/13.49 (50) TRS for Loop Detection 48.39/13.49 48.39/13.49 48.39/13.49 ---------------------------------------- 48.39/13.49 48.39/13.49 (0) 48.39/13.49 Obligation: 48.39/13.49 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 48.39/13.49 48.39/13.49 48.39/13.49 The TRS R consists of the following rules: 48.39/13.49 48.39/13.49 cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) 48.39/13.49 and(true, true) -> true 48.39/13.49 and(x, false) -> false 48.39/13.49 and(false, x) -> false 48.39/13.49 gr(0, 0) -> false 48.39/13.49 gr(0, x) -> false 48.39/13.49 gr(s(x), 0) -> true 48.39/13.49 gr(s(x), s(y)) -> gr(x, y) 48.39/13.49 p(0) -> 0 48.39/13.49 p(s(x)) -> x 48.39/13.49 48.39/13.49 S is empty. 48.39/13.49 Rewrite Strategy: INNERMOST 48.39/13.49 ---------------------------------------- 48.39/13.49 48.39/13.49 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 48.39/13.49 Transformed relative TRS to weighted TRS 48.39/13.49 ---------------------------------------- 48.39/13.49 48.39/13.49 (2) 48.39/13.49 Obligation: 48.39/13.49 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 48.39/13.49 48.39/13.49 48.39/13.49 The TRS R consists of the following rules: 48.39/13.49 48.39/13.49 cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] 48.39/13.49 and(true, true) -> true [1] 48.39/13.49 and(x, false) -> false [1] 48.39/13.49 and(false, x) -> false [1] 48.39/13.49 gr(0, 0) -> false [1] 48.39/13.49 gr(0, x) -> false [1] 48.39/13.49 gr(s(x), 0) -> true [1] 48.39/13.49 gr(s(x), s(y)) -> gr(x, y) [1] 48.39/13.49 p(0) -> 0 [1] 48.39/13.49 p(s(x)) -> x [1] 48.39/13.49 48.39/13.49 Rewrite Strategy: INNERMOST 48.39/13.49 ---------------------------------------- 48.39/13.49 48.39/13.49 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 48.39/13.49 Infered types. 48.39/13.49 ---------------------------------------- 48.39/13.49 48.39/13.49 (4) 48.39/13.49 Obligation: 48.39/13.49 Runtime Complexity Weighted TRS with Types. 48.39/13.49 The TRS R consists of the following rules: 48.39/13.49 48.39/13.49 cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] 48.39/13.49 and(true, true) -> true [1] 48.39/13.49 and(x, false) -> false [1] 48.39/13.49 and(false, x) -> false [1] 48.39/13.49 gr(0, 0) -> false [1] 48.39/13.49 gr(0, x) -> false [1] 48.39/13.49 gr(s(x), 0) -> true [1] 48.39/13.49 gr(s(x), s(y)) -> gr(x, y) [1] 48.39/13.49 p(0) -> 0 [1] 48.39/13.49 p(s(x)) -> x [1] 48.39/13.49 48.39/13.49 The TRS has the following type information: 48.39/13.49 cond :: true:false -> 0:s -> 0:s -> cond 48.39/13.49 true :: true:false 48.39/13.49 and :: true:false -> true:false -> true:false 48.39/13.49 gr :: 0:s -> 0:s -> true:false 48.39/13.49 0 :: 0:s 48.39/13.49 p :: 0:s -> 0:s 48.39/13.49 false :: true:false 48.39/13.49 s :: 0:s -> 0:s 48.39/13.50 48.39/13.50 Rewrite Strategy: INNERMOST 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (5) CompletionProof (UPPER BOUND(ID)) 48.39/13.50 The transformation into a RNTS is sound, since: 48.39/13.50 48.39/13.50 (a) The obligation is a constructor system where every type has a constant constructor, 48.39/13.50 48.39/13.50 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 48.39/13.50 48.39/13.50 cond_3 48.39/13.50 48.39/13.50 (c) The following functions are completely defined: 48.39/13.50 48.39/13.50 and_2 48.39/13.50 gr_2 48.39/13.50 p_1 48.39/13.50 48.39/13.50 Due to the following rules being added: 48.39/13.50 none 48.39/13.50 48.39/13.50 And the following fresh constants: const 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (6) 48.39/13.50 Obligation: 48.39/13.50 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 48.39/13.50 48.39/13.50 Runtime Complexity Weighted TRS with Types. 48.39/13.50 The TRS R consists of the following rules: 48.39/13.50 48.39/13.50 cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) [1] 48.39/13.50 and(true, true) -> true [1] 48.39/13.50 and(x, false) -> false [1] 48.39/13.50 and(false, x) -> false [1] 48.39/13.50 gr(0, 0) -> false [1] 48.39/13.50 gr(0, x) -> false [1] 48.39/13.50 gr(s(x), 0) -> true [1] 48.39/13.50 gr(s(x), s(y)) -> gr(x, y) [1] 48.39/13.50 p(0) -> 0 [1] 48.39/13.50 p(s(x)) -> x [1] 48.39/13.50 48.39/13.50 The TRS has the following type information: 48.39/13.50 cond :: true:false -> 0:s -> 0:s -> cond 48.39/13.50 true :: true:false 48.39/13.50 and :: true:false -> true:false -> true:false 48.39/13.50 gr :: 0:s -> 0:s -> true:false 48.39/13.50 0 :: 0:s 48.39/13.50 p :: 0:s -> 0:s 48.39/13.50 false :: true:false 48.39/13.50 s :: 0:s -> 0:s 48.39/13.50 const :: cond 48.39/13.50 48.39/13.50 Rewrite Strategy: INNERMOST 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (7) NarrowingProof (BOTH BOUNDS(ID, ID)) 48.39/13.50 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (8) 48.39/13.50 Obligation: 48.39/13.50 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 48.39/13.50 48.39/13.50 Runtime Complexity Weighted TRS with Types. 48.39/13.50 The TRS R consists of the following rules: 48.39/13.50 48.39/13.50 cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] 48.39/13.50 cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] 48.39/13.50 cond(true, 0, s(x'')) -> cond(and(false, true), 0, x'') [5] 48.39/13.50 cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] 48.39/13.50 cond(true, 0, 0) -> cond(and(false, false), 0, 0) [5] 48.39/13.50 cond(true, 0, s(x1)) -> cond(and(false, true), 0, x1) [5] 48.39/13.50 cond(true, s(x'), 0) -> cond(and(true, false), x', 0) [5] 48.39/13.50 cond(true, s(x'), 0) -> cond(and(true, false), x', 0) [5] 48.39/13.50 cond(true, s(x'), s(x2)) -> cond(and(true, true), x', x2) [5] 48.39/13.50 and(true, true) -> true [1] 48.39/13.50 and(x, false) -> false [1] 48.39/13.50 and(false, x) -> false [1] 48.39/13.50 gr(0, 0) -> false [1] 48.39/13.50 gr(0, x) -> false [1] 48.39/13.50 gr(s(x), 0) -> true [1] 48.39/13.50 gr(s(x), s(y)) -> gr(x, y) [1] 48.39/13.50 p(0) -> 0 [1] 48.39/13.50 p(s(x)) -> x [1] 48.39/13.50 48.39/13.50 The TRS has the following type information: 48.39/13.50 cond :: true:false -> 0:s -> 0:s -> cond 48.39/13.50 true :: true:false 48.39/13.50 and :: true:false -> true:false -> true:false 48.39/13.50 gr :: 0:s -> 0:s -> true:false 48.39/13.50 0 :: 0:s 48.39/13.50 p :: 0:s -> 0:s 48.39/13.50 false :: true:false 48.39/13.50 s :: 0:s -> 0:s 48.39/13.50 const :: cond 48.39/13.50 48.39/13.50 Rewrite Strategy: INNERMOST 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 48.39/13.50 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 48.39/13.50 The constant constructors are abstracted as follows: 48.39/13.50 48.39/13.50 true => 1 48.39/13.50 0 => 0 48.39/13.50 false => 0 48.39/13.50 const => 0 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (10) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 5 }-> cond(and(1, 1), x', x2) :|: z' = 1 + x', z = 1, x' >= 0, z'' = 1 + x2, x2 >= 0 48.39/13.50 cond(z, z', z'') -{ 5 }-> cond(and(1, 0), x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0 48.39/13.50 cond(z, z', z'') -{ 5 }-> cond(and(0, 1), 0, x'') :|: z = 1, z'' = 1 + x'', x'' >= 0, z' = 0 48.39/13.50 cond(z, z', z'') -{ 5 }-> cond(and(0, 1), 0, x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0 48.39/13.50 cond(z, z', z'') -{ 5 }-> cond(and(0, 0), 0, 0) :|: z'' = 0, z = 1, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (11) InliningProof (UPPER BOUND(ID)) 48.39/13.50 Inlined the following terminating rules on right-hand sides where appropriate: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (12) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: x >= 0, z = x, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, x', x2) :|: z' = 1 + x', z = 1, x' >= 0, z'' = 1 + x2, x2 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, x', 0) :|: z'' = 0, z' = 1 + x', z = 1, x' >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, x'') :|: z = 1, z'' = 1 + x'', x'' >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, x1) :|: x1 >= 0, z = 1, z'' = 1 + x1, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (13) SimplificationProof (BOTH BOUNDS(ID, ID)) 48.39/13.50 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (14) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 48.39/13.50 Found the following analysis order by SCC decomposition: 48.39/13.50 48.39/13.50 { and } 48.39/13.50 { cond } 48.39/13.50 { p } 48.39/13.50 { gr } 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (16) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (17) ResultPropagationProof (UPPER BOUND(ID)) 48.39/13.50 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (18) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (19) IntTrsBoundProof (UPPER BOUND(ID)) 48.39/13.50 48.39/13.50 Computed SIZE bound using CoFloCo for: and 48.39/13.50 after applying outer abstraction to obtain an ITS, 48.39/13.50 resulting in: O(1) with polynomial bound: 1 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (20) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {and}, {cond}, {p}, {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: ?, size: O(1) [1] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (21) IntTrsBoundProof (UPPER BOUND(ID)) 48.39/13.50 48.39/13.50 Computed RUNTIME bound using CoFloCo for: and 48.39/13.50 after applying outer abstraction to obtain an ITS, 48.39/13.50 resulting in: O(1) with polynomial bound: 1 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (22) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {cond}, {p}, {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (23) ResultPropagationProof (UPPER BOUND(ID)) 48.39/13.50 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (24) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {cond}, {p}, {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (25) IntTrsBoundProof (UPPER BOUND(ID)) 48.39/13.50 48.39/13.50 Computed SIZE bound using CoFloCo for: cond 48.39/13.50 after applying outer abstraction to obtain an ITS, 48.39/13.50 resulting in: O(1) with polynomial bound: 0 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (26) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {cond}, {p}, {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 cond: runtime: ?, size: O(1) [0] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (27) IntTrsBoundProof (UPPER BOUND(ID)) 48.39/13.50 48.39/13.50 Computed RUNTIME bound using KoAT for: cond 48.39/13.50 after applying outer abstraction to obtain an ITS, 48.39/13.50 resulting in: O(n^1) with polynomial bound: 24*z + 24*z' 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (28) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(1, z' - 1, z'' - 1) :|: z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, 0) :|: z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, 0, z'' - 1) :|: z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> cond(0, z' - 1, 0) :|: z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {p}, {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (29) ResultPropagationProof (UPPER BOUND(ID)) 48.39/13.50 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (30) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {p}, {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (31) IntTrsBoundProof (UPPER BOUND(ID)) 48.39/13.50 48.39/13.50 Computed SIZE bound using KoAT for: p 48.39/13.50 after applying outer abstraction to obtain an ITS, 48.39/13.50 resulting in: O(n^1) with polynomial bound: z 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (32) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {p}, {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] 48.39/13.50 p: runtime: ?, size: O(n^1) [z] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (33) IntTrsBoundProof (UPPER BOUND(ID)) 48.39/13.50 48.39/13.50 Computed RUNTIME bound using CoFloCo for: p 48.39/13.50 after applying outer abstraction to obtain an ITS, 48.39/13.50 resulting in: O(1) with polynomial bound: 1 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (34) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] 48.39/13.50 p: runtime: O(1) [1], size: O(n^1) [z] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (35) ResultPropagationProof (UPPER BOUND(ID)) 48.39/13.50 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (36) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] 48.39/13.50 p: runtime: O(1) [1], size: O(n^1) [z] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (37) IntTrsBoundProof (UPPER BOUND(ID)) 48.39/13.50 48.39/13.50 Computed SIZE bound using CoFloCo for: gr 48.39/13.50 after applying outer abstraction to obtain an ITS, 48.39/13.50 resulting in: O(1) with polynomial bound: 1 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (38) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: {gr} 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] 48.39/13.50 p: runtime: O(1) [1], size: O(n^1) [z] 48.39/13.50 gr: runtime: ?, size: O(1) [1] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (39) IntTrsBoundProof (UPPER BOUND(ID)) 48.39/13.50 48.39/13.50 Computed RUNTIME bound using KoAT for: gr 48.39/13.50 after applying outer abstraction to obtain an ITS, 48.39/13.50 resulting in: O(n^1) with polynomial bound: 3 + z' 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (40) 48.39/13.50 Obligation: 48.39/13.50 Complexity RNTS consisting of the following rules: 48.39/13.50 48.39/13.50 and(z, z') -{ 1 }-> 1 :|: z = 1, z' = 1 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z >= 0, z' = 0 48.39/13.50 and(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' = 0, x >= 0, 0 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 }-> s' :|: s' >= 0, s' <= 0, z = 1, z'' - 1 >= 0, z' = 0, 1 = x, x >= 0, 0 = 0 48.39/13.50 cond(z, z', z'') -{ -18 + 24*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' - 1 >= 0, x >= 0, 1 = x, 0 = 0 48.39/13.50 cond(z, z', z'') -{ 6 + 24*z' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' - 1 >= 0, z'' - 1 >= 0, 1 = 1 48.39/13.50 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 48.39/13.50 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z = 0, z' = 0 48.39/13.50 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 48.39/13.50 p(z) -{ 1 }-> 0 :|: z = 0 48.39/13.50 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 48.39/13.50 48.39/13.50 Function symbols to be analyzed: 48.39/13.50 Previous analysis results are: 48.39/13.50 and: runtime: O(1) [1], size: O(1) [1] 48.39/13.50 cond: runtime: O(n^1) [24*z + 24*z'], size: O(1) [0] 48.39/13.50 p: runtime: O(1) [1], size: O(n^1) [z] 48.39/13.50 gr: runtime: O(n^1) [3 + z'], size: O(1) [1] 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (41) FinalProof (FINISHED) 48.39/13.50 Computed overall runtime complexity 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (42) 48.39/13.50 BOUNDS(1, n^1) 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (43) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 48.39/13.50 Transformed a relative TRS into a decreasing-loop problem. 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (44) 48.39/13.50 Obligation: 48.39/13.50 Analyzing the following TRS for decreasing loops: 48.39/13.50 48.39/13.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 48.39/13.50 48.39/13.50 48.39/13.50 The TRS R consists of the following rules: 48.39/13.50 48.39/13.50 cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) 48.39/13.50 and(true, true) -> true 48.39/13.50 and(x, false) -> false 48.39/13.50 and(false, x) -> false 48.39/13.50 gr(0, 0) -> false 48.39/13.50 gr(0, x) -> false 48.39/13.50 gr(s(x), 0) -> true 48.39/13.50 gr(s(x), s(y)) -> gr(x, y) 48.39/13.50 p(0) -> 0 48.39/13.50 p(s(x)) -> x 48.39/13.50 48.39/13.50 S is empty. 48.39/13.50 Rewrite Strategy: INNERMOST 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (45) DecreasingLoopProof (LOWER BOUND(ID)) 48.39/13.50 The following loop(s) give(s) rise to the lower bound Omega(n^1): 48.39/13.50 48.39/13.50 The rewrite sequence 48.39/13.50 48.39/13.50 gr(s(x), s(y)) ->^+ gr(x, y) 48.39/13.50 48.39/13.50 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 48.39/13.50 48.39/13.50 The pumping substitution is [x / s(x), y / s(y)]. 48.39/13.50 48.39/13.50 The result substitution is [ ]. 48.39/13.50 48.39/13.50 48.39/13.50 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (46) 48.39/13.50 Complex Obligation (BEST) 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (47) 48.39/13.50 Obligation: 48.39/13.50 Proved the lower bound n^1 for the following obligation: 48.39/13.50 48.39/13.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 48.39/13.50 48.39/13.50 48.39/13.50 The TRS R consists of the following rules: 48.39/13.50 48.39/13.50 cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) 48.39/13.50 and(true, true) -> true 48.39/13.50 and(x, false) -> false 48.39/13.50 and(false, x) -> false 48.39/13.50 gr(0, 0) -> false 48.39/13.50 gr(0, x) -> false 48.39/13.50 gr(s(x), 0) -> true 48.39/13.50 gr(s(x), s(y)) -> gr(x, y) 48.39/13.50 p(0) -> 0 48.39/13.50 p(s(x)) -> x 48.39/13.50 48.39/13.50 S is empty. 48.39/13.50 Rewrite Strategy: INNERMOST 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (48) LowerBoundPropagationProof (FINISHED) 48.39/13.50 Propagated lower bound. 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (49) 48.39/13.50 BOUNDS(n^1, INF) 48.39/13.50 48.39/13.50 ---------------------------------------- 48.39/13.50 48.39/13.50 (50) 48.39/13.50 Obligation: 48.39/13.50 Analyzing the following TRS for decreasing loops: 48.39/13.50 48.39/13.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 48.39/13.50 48.39/13.50 48.39/13.50 The TRS R consists of the following rules: 48.39/13.50 48.39/13.50 cond(true, x, y) -> cond(and(gr(x, 0), gr(y, 0)), p(x), p(y)) 48.39/13.50 and(true, true) -> true 48.39/13.50 and(x, false) -> false 48.39/13.50 and(false, x) -> false 48.39/13.50 gr(0, 0) -> false 48.39/13.50 gr(0, x) -> false 48.39/13.50 gr(s(x), 0) -> true 48.39/13.50 gr(s(x), s(y)) -> gr(x, y) 48.39/13.50 p(0) -> 0 48.39/13.50 p(s(x)) -> x 48.39/13.50 48.39/13.50 S is empty. 48.39/13.50 Rewrite Strategy: INNERMOST 48.70/13.57 EOF