32.04/9.47 WORST_CASE(Omega(n^1), O(n^1)) 32.04/9.49 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 32.04/9.49 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 32.04/9.49 32.04/9.49 32.04/9.49 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 32.04/9.49 32.04/9.49 (0) CpxTRS 32.04/9.49 (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 32.04/9.49 (2) CpxWeightedTrs 32.04/9.49 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 32.04/9.49 (4) CpxTypedWeightedTrs 32.04/9.49 (5) CompletionProof [UPPER BOUND(ID), 0 ms] 32.04/9.49 (6) CpxTypedWeightedCompleteTrs 32.04/9.49 (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 32.04/9.49 (8) CpxTypedWeightedCompleteTrs 32.04/9.49 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] 32.04/9.49 (10) CpxRNTS 32.04/9.49 (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 32.04/9.49 (12) CpxRNTS 32.04/9.49 (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 1 ms] 32.04/9.49 (14) CpxRNTS 32.04/9.49 (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 32.04/9.49 (16) CpxRNTS 32.04/9.49 (17) IntTrsBoundProof [UPPER BOUND(ID), 1165 ms] 32.04/9.49 (18) CpxRNTS 32.04/9.49 (19) IntTrsBoundProof [UPPER BOUND(ID), 609 ms] 32.04/9.49 (20) CpxRNTS 32.04/9.49 (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 32.04/9.49 (22) CpxRNTS 32.04/9.49 (23) IntTrsBoundProof [UPPER BOUND(ID), 101 ms] 32.04/9.49 (24) CpxRNTS 32.04/9.49 (25) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] 32.04/9.49 (26) CpxRNTS 32.04/9.49 (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 32.04/9.49 (28) CpxRNTS 32.04/9.49 (29) IntTrsBoundProof [UPPER BOUND(ID), 280 ms] 32.04/9.49 (30) CpxRNTS 32.04/9.49 (31) IntTrsBoundProof [UPPER BOUND(ID), 115 ms] 32.04/9.49 (32) CpxRNTS 32.04/9.49 (33) FinalProof [FINISHED, 0 ms] 32.04/9.49 (34) BOUNDS(1, n^1) 32.04/9.49 (35) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 32.04/9.49 (36) CpxTRS 32.04/9.49 (37) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 32.04/9.49 (38) typed CpxTrs 32.04/9.49 (39) OrderProof [LOWER BOUND(ID), 0 ms] 32.04/9.49 (40) typed CpxTrs 32.04/9.49 (41) RewriteLemmaProof [LOWER BOUND(ID), 309 ms] 32.04/9.49 (42) BEST 32.04/9.49 (43) proven lower bound 32.04/9.49 (44) LowerBoundPropagationProof [FINISHED, 0 ms] 32.04/9.49 (45) BOUNDS(n^1, INF) 32.04/9.49 (46) typed CpxTrs 32.04/9.49 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (0) 32.04/9.49 Obligation: 32.04/9.49 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 32.04/9.49 32.04/9.49 32.04/9.49 The TRS R consists of the following rules: 32.04/9.49 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0), x, y) 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0), x, p(y)) 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0), p(x), y) 32.04/9.49 gr(0, x) -> false 32.04/9.49 gr(s(x), 0) -> true 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) 32.04/9.49 p(0) -> 0 32.04/9.49 p(s(x)) -> x 32.04/9.49 32.04/9.49 S is empty. 32.04/9.49 Rewrite Strategy: INNERMOST 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 32.04/9.49 Transformed relative TRS to weighted TRS 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (2) 32.04/9.49 Obligation: 32.04/9.49 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 32.04/9.49 32.04/9.49 32.04/9.49 The TRS R consists of the following rules: 32.04/9.49 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0), x, y) [1] 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0), x, p(y)) [1] 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0), p(x), y) [1] 32.04/9.49 gr(0, x) -> false [1] 32.04/9.49 gr(s(x), 0) -> true [1] 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) [1] 32.04/9.49 p(0) -> 0 [1] 32.04/9.49 p(s(x)) -> x [1] 32.04/9.49 32.04/9.49 Rewrite Strategy: INNERMOST 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 32.04/9.49 Infered types. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (4) 32.04/9.49 Obligation: 32.04/9.49 Runtime Complexity Weighted TRS with Types. 32.04/9.49 The TRS R consists of the following rules: 32.04/9.49 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0), x, y) [1] 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0), x, p(y)) [1] 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0), p(x), y) [1] 32.04/9.49 gr(0, x) -> false [1] 32.04/9.49 gr(s(x), 0) -> true [1] 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) [1] 32.04/9.49 p(0) -> 0 [1] 32.04/9.49 p(s(x)) -> x [1] 32.04/9.49 32.04/9.49 The TRS has the following type information: 32.04/9.49 cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2 32.04/9.49 true :: true:false 32.04/9.49 cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2 32.04/9.49 gr :: 0:s -> 0:s -> true:false 32.04/9.49 0 :: 0:s 32.04/9.49 p :: 0:s -> 0:s 32.04/9.49 false :: true:false 32.04/9.49 s :: 0:s -> 0:s 32.04/9.49 32.04/9.49 Rewrite Strategy: INNERMOST 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (5) CompletionProof (UPPER BOUND(ID)) 32.04/9.49 The transformation into a RNTS is sound, since: 32.04/9.49 32.04/9.49 (a) The obligation is a constructor system where every type has a constant constructor, 32.04/9.49 32.04/9.49 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 32.04/9.49 32.04/9.49 cond1_3 32.04/9.49 cond2_3 32.04/9.49 32.04/9.49 (c) The following functions are completely defined: 32.04/9.49 32.04/9.49 gr_2 32.04/9.49 p_1 32.04/9.49 32.04/9.49 Due to the following rules being added: 32.04/9.49 none 32.04/9.49 32.04/9.49 And the following fresh constants: const 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (6) 32.04/9.49 Obligation: 32.04/9.49 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 32.04/9.49 32.04/9.49 Runtime Complexity Weighted TRS with Types. 32.04/9.49 The TRS R consists of the following rules: 32.04/9.49 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0), x, y) [1] 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0), x, p(y)) [1] 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0), p(x), y) [1] 32.04/9.49 gr(0, x) -> false [1] 32.04/9.49 gr(s(x), 0) -> true [1] 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) [1] 32.04/9.49 p(0) -> 0 [1] 32.04/9.49 p(s(x)) -> x [1] 32.04/9.49 32.04/9.49 The TRS has the following type information: 32.04/9.49 cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2 32.04/9.49 true :: true:false 32.04/9.49 cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2 32.04/9.49 gr :: 0:s -> 0:s -> true:false 32.04/9.49 0 :: 0:s 32.04/9.49 p :: 0:s -> 0:s 32.04/9.49 false :: true:false 32.04/9.49 s :: 0:s -> 0:s 32.04/9.49 const :: cond1:cond2 32.04/9.49 32.04/9.49 Rewrite Strategy: INNERMOST 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (7) NarrowingProof (BOTH BOUNDS(ID, ID)) 32.04/9.49 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (8) 32.04/9.49 Obligation: 32.04/9.49 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 32.04/9.49 32.04/9.49 Runtime Complexity Weighted TRS with Types. 32.04/9.49 The TRS R consists of the following rules: 32.04/9.49 32.04/9.49 cond1(true, x, 0) -> cond2(false, x, 0) [2] 32.04/9.49 cond1(true, x, s(x')) -> cond2(true, x, s(x')) [2] 32.04/9.49 cond2(true, x, 0) -> cond2(false, x, 0) [3] 32.04/9.49 cond2(true, x, s(x'')) -> cond2(true, x, x'') [3] 32.04/9.49 cond2(false, 0, y) -> cond1(false, 0, y) [3] 32.04/9.49 cond2(false, s(x1), y) -> cond1(true, x1, y) [3] 32.04/9.49 gr(0, x) -> false [1] 32.04/9.49 gr(s(x), 0) -> true [1] 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) [1] 32.04/9.49 p(0) -> 0 [1] 32.04/9.49 p(s(x)) -> x [1] 32.04/9.49 32.04/9.49 The TRS has the following type information: 32.04/9.49 cond1 :: true:false -> 0:s -> 0:s -> cond1:cond2 32.04/9.49 true :: true:false 32.04/9.49 cond2 :: true:false -> 0:s -> 0:s -> cond1:cond2 32.04/9.49 gr :: 0:s -> 0:s -> true:false 32.04/9.49 0 :: 0:s 32.04/9.49 p :: 0:s -> 0:s 32.04/9.49 false :: true:false 32.04/9.49 s :: 0:s -> 0:s 32.04/9.49 const :: cond1:cond2 32.04/9.49 32.04/9.49 Rewrite Strategy: INNERMOST 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 32.04/9.49 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 32.04/9.49 The constant constructors are abstracted as follows: 32.04/9.49 32.04/9.49 true => 1 32.04/9.49 0 => 0 32.04/9.49 false => 0 32.04/9.49 const => 0 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (10) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(1, x, 1 + x') :|: z' = x, z = 1, z'' = 1 + x', x >= 0, x' >= 0 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(0, x, 0) :|: z'' = 0, z' = x, z = 1, x >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(1, x, x'') :|: z' = x, z = 1, x >= 0, z'' = 1 + x'', x'' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(0, x, 0) :|: z'' = 0, z' = x, z = 1, x >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(1, x1, y) :|: x1 >= 0, z'' = y, y >= 0, z' = 1 + x1, z = 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(0, 0, y) :|: z'' = y, y >= 0, z = 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> x :|: x >= 0, z = 1 + x 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (11) SimplificationProof (BOTH BOUNDS(ID, ID)) 32.04/9.49 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (12) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(1, z', z'' - 1) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(1, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(0, 0, z'') :|: z'' >= 0, z = 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 32.04/9.49 Found the following analysis order by SCC decomposition: 32.04/9.49 32.04/9.49 { cond2, cond1 } 32.04/9.49 { p } 32.04/9.49 { gr } 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (14) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(1, z', z'' - 1) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(1, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(0, 0, z'') :|: z'' >= 0, z = 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {cond2,cond1}, {p}, {gr} 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (15) ResultPropagationProof (UPPER BOUND(ID)) 32.04/9.49 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (16) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(1, z', z'' - 1) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(1, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(0, 0, z'') :|: z'' >= 0, z = 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {cond2,cond1}, {p}, {gr} 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (17) IntTrsBoundProof (UPPER BOUND(ID)) 32.04/9.49 32.04/9.49 Computed SIZE bound using CoFloCo for: cond2 32.04/9.49 after applying outer abstraction to obtain an ITS, 32.04/9.49 resulting in: O(1) with polynomial bound: 0 32.04/9.49 32.04/9.49 Computed SIZE bound using CoFloCo for: cond1 32.04/9.49 after applying outer abstraction to obtain an ITS, 32.04/9.49 resulting in: O(1) with polynomial bound: 0 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (18) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(1, z', z'' - 1) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(1, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(0, 0, z'') :|: z'' >= 0, z = 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {cond2,cond1}, {p}, {gr} 32.04/9.49 Previous analysis results are: 32.04/9.49 cond2: runtime: ?, size: O(1) [0] 32.04/9.49 cond1: runtime: ?, size: O(1) [0] 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (19) IntTrsBoundProof (UPPER BOUND(ID)) 32.04/9.49 32.04/9.49 Computed RUNTIME bound using CoFloCo for: cond2 32.04/9.49 after applying outer abstraction to obtain an ITS, 32.04/9.49 resulting in: O(n^1) with polynomial bound: 21 + 5*z' + 3*z'' 32.04/9.49 32.04/9.49 Computed RUNTIME bound using CoFloCo for: cond1 32.04/9.49 after applying outer abstraction to obtain an ITS, 32.04/9.49 resulting in: O(n^1) with polynomial bound: 23 + 5*z' + 3*z'' 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (20) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(1, z', 1 + (z'' - 1)) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond1(z, z', z'') -{ 2 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(1, z', z'' - 1) :|: z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond2(0, z', 0) :|: z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(1, z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 cond2(z, z', z'') -{ 3 }-> cond1(0, 0, z'') :|: z'' >= 0, z = 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {p}, {gr} 32.04/9.49 Previous analysis results are: 32.04/9.49 cond2: runtime: O(n^1) [21 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 cond1: runtime: O(n^1) [23 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (21) ResultPropagationProof (UPPER BOUND(ID)) 32.04/9.49 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (22) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' + 3*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 24 + 5*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 26 + 3*z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z = 0, z' = 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {p}, {gr} 32.04/9.49 Previous analysis results are: 32.04/9.49 cond2: runtime: O(n^1) [21 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 cond1: runtime: O(n^1) [23 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (23) IntTrsBoundProof (UPPER BOUND(ID)) 32.04/9.49 32.04/9.49 Computed SIZE bound using KoAT for: p 32.04/9.49 after applying outer abstraction to obtain an ITS, 32.04/9.49 resulting in: O(n^1) with polynomial bound: z 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (24) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' + 3*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 24 + 5*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 26 + 3*z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z = 0, z' = 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {p}, {gr} 32.04/9.49 Previous analysis results are: 32.04/9.49 cond2: runtime: O(n^1) [21 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 cond1: runtime: O(n^1) [23 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 p: runtime: ?, size: O(n^1) [z] 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (25) IntTrsBoundProof (UPPER BOUND(ID)) 32.04/9.49 32.04/9.49 Computed RUNTIME bound using CoFloCo for: p 32.04/9.49 after applying outer abstraction to obtain an ITS, 32.04/9.49 resulting in: O(1) with polynomial bound: 1 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (26) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' + 3*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 24 + 5*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 26 + 3*z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z = 0, z' = 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {gr} 32.04/9.49 Previous analysis results are: 32.04/9.49 cond2: runtime: O(n^1) [21 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 cond1: runtime: O(n^1) [23 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 p: runtime: O(1) [1], size: O(n^1) [z] 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (27) ResultPropagationProof (UPPER BOUND(ID)) 32.04/9.49 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (28) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' + 3*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 24 + 5*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 26 + 3*z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z = 0, z' = 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {gr} 32.04/9.49 Previous analysis results are: 32.04/9.49 cond2: runtime: O(n^1) [21 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 cond1: runtime: O(n^1) [23 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 p: runtime: O(1) [1], size: O(n^1) [z] 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (29) IntTrsBoundProof (UPPER BOUND(ID)) 32.04/9.49 32.04/9.49 Computed SIZE bound using CoFloCo for: gr 32.04/9.49 after applying outer abstraction to obtain an ITS, 32.04/9.49 resulting in: O(1) with polynomial bound: 1 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (30) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' + 3*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 24 + 5*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 26 + 3*z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z = 0, z' = 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: {gr} 32.04/9.49 Previous analysis results are: 32.04/9.49 cond2: runtime: O(n^1) [21 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 cond1: runtime: O(n^1) [23 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 p: runtime: O(1) [1], size: O(n^1) [z] 32.04/9.49 gr: runtime: ?, size: O(1) [1] 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (31) IntTrsBoundProof (UPPER BOUND(ID)) 32.04/9.49 32.04/9.49 Computed RUNTIME bound using KoAT for: gr 32.04/9.49 after applying outer abstraction to obtain an ITS, 32.04/9.49 resulting in: O(n^1) with polynomial bound: 2 + z' 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (32) 32.04/9.49 Obligation: 32.04/9.49 Complexity RNTS consisting of the following rules: 32.04/9.49 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' }-> s :|: s >= 0, s <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond1(z, z', z'') -{ 23 + 5*z' + 3*z'' }-> s' :|: s' >= 0, s' <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 24 + 5*z' }-> s'' :|: s'' >= 0, s'' <= 0, z'' = 0, z = 1, z' >= 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s1 :|: s1 >= 0, s1 <= 0, z = 1, z' >= 0, z'' - 1 >= 0 32.04/9.49 cond2(z, z', z'') -{ 26 + 3*z'' }-> s2 :|: s2 >= 0, s2 <= 0, z'' >= 0, z = 0, z' = 0 32.04/9.49 cond2(z, z', z'') -{ 21 + 5*z' + 3*z'' }-> s3 :|: s3 >= 0, s3 <= 0, z' - 1 >= 0, z'' >= 0, z = 0 32.04/9.49 gr(z, z') -{ 1 }-> gr(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 32.04/9.49 gr(z, z') -{ 1 }-> 1 :|: z - 1 >= 0, z' = 0 32.04/9.49 gr(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 32.04/9.49 p(z) -{ 1 }-> 0 :|: z = 0 32.04/9.49 p(z) -{ 1 }-> z - 1 :|: z - 1 >= 0 32.04/9.49 32.04/9.49 Function symbols to be analyzed: 32.04/9.49 Previous analysis results are: 32.04/9.49 cond2: runtime: O(n^1) [21 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 cond1: runtime: O(n^1) [23 + 5*z' + 3*z''], size: O(1) [0] 32.04/9.49 p: runtime: O(1) [1], size: O(n^1) [z] 32.04/9.49 gr: runtime: O(n^1) [2 + z'], size: O(1) [1] 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (33) FinalProof (FINISHED) 32.04/9.49 Computed overall runtime complexity 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (34) 32.04/9.49 BOUNDS(1, n^1) 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (35) RenamingProof (BOTH BOUNDS(ID, ID)) 32.04/9.49 Renamed function symbols to avoid clashes with predefined symbol. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (36) 32.04/9.49 Obligation: 32.04/9.49 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 32.04/9.49 32.04/9.49 32.04/9.49 The TRS R consists of the following rules: 32.04/9.49 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0'), x, y) 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0'), x, p(y)) 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0'), p(x), y) 32.04/9.49 gr(0', x) -> false 32.04/9.49 gr(s(x), 0') -> true 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) 32.04/9.49 p(0') -> 0' 32.04/9.49 p(s(x)) -> x 32.04/9.49 32.04/9.49 S is empty. 32.04/9.49 Rewrite Strategy: INNERMOST 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (37) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 32.04/9.49 Infered types. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (38) 32.04/9.49 Obligation: 32.04/9.49 Innermost TRS: 32.04/9.49 Rules: 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0'), x, y) 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0'), x, p(y)) 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0'), p(x), y) 32.04/9.49 gr(0', x) -> false 32.04/9.49 gr(s(x), 0') -> true 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) 32.04/9.49 p(0') -> 0' 32.04/9.49 p(s(x)) -> x 32.04/9.49 32.04/9.49 Types: 32.04/9.49 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 32.04/9.49 true :: true:false 32.04/9.49 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 32.04/9.49 gr :: 0':s -> 0':s -> true:false 32.04/9.49 0' :: 0':s 32.04/9.49 p :: 0':s -> 0':s 32.04/9.49 false :: true:false 32.04/9.49 s :: 0':s -> 0':s 32.04/9.49 hole_cond1:cond21_0 :: cond1:cond2 32.04/9.49 hole_true:false2_0 :: true:false 32.04/9.49 hole_0':s3_0 :: 0':s 32.04/9.49 gen_0':s4_0 :: Nat -> 0':s 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (39) OrderProof (LOWER BOUND(ID)) 32.04/9.49 Heuristically decided to analyse the following defined symbols: 32.04/9.49 cond1, cond2, gr 32.04/9.49 32.04/9.49 They will be analysed ascendingly in the following order: 32.04/9.49 cond1 = cond2 32.04/9.49 gr < cond1 32.04/9.49 gr < cond2 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (40) 32.04/9.49 Obligation: 32.04/9.49 Innermost TRS: 32.04/9.49 Rules: 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0'), x, y) 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0'), x, p(y)) 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0'), p(x), y) 32.04/9.49 gr(0', x) -> false 32.04/9.49 gr(s(x), 0') -> true 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) 32.04/9.49 p(0') -> 0' 32.04/9.49 p(s(x)) -> x 32.04/9.49 32.04/9.49 Types: 32.04/9.49 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 32.04/9.49 true :: true:false 32.04/9.49 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 32.04/9.49 gr :: 0':s -> 0':s -> true:false 32.04/9.49 0' :: 0':s 32.04/9.49 p :: 0':s -> 0':s 32.04/9.49 false :: true:false 32.04/9.49 s :: 0':s -> 0':s 32.04/9.49 hole_cond1:cond21_0 :: cond1:cond2 32.04/9.49 hole_true:false2_0 :: true:false 32.04/9.49 hole_0':s3_0 :: 0':s 32.04/9.49 gen_0':s4_0 :: Nat -> 0':s 32.04/9.49 32.04/9.49 32.04/9.49 Generator Equations: 32.04/9.49 gen_0':s4_0(0) <=> 0' 32.04/9.49 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 32.04/9.49 32.04/9.49 32.04/9.49 The following defined symbols remain to be analysed: 32.04/9.49 gr, cond1, cond2 32.04/9.49 32.04/9.49 They will be analysed ascendingly in the following order: 32.04/9.49 cond1 = cond2 32.04/9.49 gr < cond1 32.04/9.49 gr < cond2 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (41) RewriteLemmaProof (LOWER BOUND(ID)) 32.04/9.49 Proved the following rewrite lemma: 32.04/9.49 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 32.04/9.49 32.04/9.49 Induction Base: 32.04/9.49 gr(gen_0':s4_0(0), gen_0':s4_0(0)) ->_R^Omega(1) 32.04/9.49 false 32.04/9.49 32.04/9.49 Induction Step: 32.04/9.49 gr(gen_0':s4_0(+(n6_0, 1)), gen_0':s4_0(+(n6_0, 1))) ->_R^Omega(1) 32.04/9.49 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) ->_IH 32.04/9.49 false 32.04/9.49 32.04/9.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (42) 32.04/9.49 Complex Obligation (BEST) 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (43) 32.04/9.49 Obligation: 32.04/9.49 Proved the lower bound n^1 for the following obligation: 32.04/9.49 32.04/9.49 Innermost TRS: 32.04/9.49 Rules: 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0'), x, y) 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0'), x, p(y)) 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0'), p(x), y) 32.04/9.49 gr(0', x) -> false 32.04/9.49 gr(s(x), 0') -> true 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) 32.04/9.49 p(0') -> 0' 32.04/9.49 p(s(x)) -> x 32.04/9.49 32.04/9.49 Types: 32.04/9.49 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 32.04/9.49 true :: true:false 32.04/9.49 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 32.04/9.49 gr :: 0':s -> 0':s -> true:false 32.04/9.49 0' :: 0':s 32.04/9.49 p :: 0':s -> 0':s 32.04/9.49 false :: true:false 32.04/9.49 s :: 0':s -> 0':s 32.04/9.49 hole_cond1:cond21_0 :: cond1:cond2 32.04/9.49 hole_true:false2_0 :: true:false 32.04/9.49 hole_0':s3_0 :: 0':s 32.04/9.49 gen_0':s4_0 :: Nat -> 0':s 32.04/9.49 32.04/9.49 32.04/9.49 Generator Equations: 32.04/9.49 gen_0':s4_0(0) <=> 0' 32.04/9.49 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 32.04/9.49 32.04/9.49 32.04/9.49 The following defined symbols remain to be analysed: 32.04/9.49 gr, cond1, cond2 32.04/9.49 32.04/9.49 They will be analysed ascendingly in the following order: 32.04/9.49 cond1 = cond2 32.04/9.49 gr < cond1 32.04/9.49 gr < cond2 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (44) LowerBoundPropagationProof (FINISHED) 32.04/9.49 Propagated lower bound. 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (45) 32.04/9.49 BOUNDS(n^1, INF) 32.04/9.49 32.04/9.49 ---------------------------------------- 32.04/9.49 32.04/9.49 (46) 32.04/9.49 Obligation: 32.04/9.49 Innermost TRS: 32.04/9.49 Rules: 32.04/9.49 cond1(true, x, y) -> cond2(gr(y, 0'), x, y) 32.04/9.49 cond2(true, x, y) -> cond2(gr(y, 0'), x, p(y)) 32.04/9.49 cond2(false, x, y) -> cond1(gr(x, 0'), p(x), y) 32.04/9.49 gr(0', x) -> false 32.04/9.49 gr(s(x), 0') -> true 32.04/9.49 gr(s(x), s(y)) -> gr(x, y) 32.04/9.49 p(0') -> 0' 32.04/9.49 p(s(x)) -> x 32.04/9.49 32.04/9.49 Types: 32.04/9.49 cond1 :: true:false -> 0':s -> 0':s -> cond1:cond2 32.04/9.49 true :: true:false 32.04/9.49 cond2 :: true:false -> 0':s -> 0':s -> cond1:cond2 32.04/9.49 gr :: 0':s -> 0':s -> true:false 32.04/9.49 0' :: 0':s 32.04/9.49 p :: 0':s -> 0':s 32.04/9.49 false :: true:false 32.04/9.49 s :: 0':s -> 0':s 32.04/9.49 hole_cond1:cond21_0 :: cond1:cond2 32.04/9.49 hole_true:false2_0 :: true:false 32.04/9.49 hole_0':s3_0 :: 0':s 32.04/9.49 gen_0':s4_0 :: Nat -> 0':s 32.04/9.49 32.04/9.49 32.04/9.49 Lemmas: 32.04/9.49 gr(gen_0':s4_0(n6_0), gen_0':s4_0(n6_0)) -> false, rt in Omega(1 + n6_0) 32.04/9.49 32.04/9.49 32.04/9.49 Generator Equations: 32.04/9.49 gen_0':s4_0(0) <=> 0' 32.04/9.49 gen_0':s4_0(+(x, 1)) <=> s(gen_0':s4_0(x)) 32.04/9.49 32.04/9.49 32.04/9.49 The following defined symbols remain to be analysed: 32.04/9.49 cond2, cond1 32.04/9.49 32.04/9.49 They will be analysed ascendingly in the following order: 32.04/9.49 cond1 = cond2 32.13/12.11 EOF