1135.63/291.55 WORST_CASE(Omega(n^1), ?) 1140.84/292.85 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 1140.84/292.85 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1140.84/292.85 1140.84/292.85 1140.84/292.85 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1140.84/292.85 1140.84/292.85 (0) CpxTRS 1140.84/292.85 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 1140.84/292.85 (2) TRS for Loop Detection 1140.84/292.85 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 1140.84/292.85 (4) BEST 1140.84/292.85 (5) proven lower bound 1140.84/292.85 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 1140.84/292.85 (7) BOUNDS(n^1, INF) 1140.84/292.85 (8) TRS for Loop Detection 1140.84/292.85 1140.84/292.85 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (0) 1140.84/292.85 Obligation: 1140.84/292.85 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1140.84/292.85 1140.84/292.85 1140.84/292.85 The TRS R consists of the following rules: 1140.84/292.85 1140.84/292.85 qsort(xs) -> qs(half(length(xs)), xs) 1140.84/292.85 qs(n, nil) -> nil 1140.84/292.85 qs(n, cons(x, xs)) -> append(qs(half(n), filterlow(get(n, cons(x, xs)), cons(x, xs))), cons(get(n, cons(x, xs)), qs(half(n), filterhigh(get(n, cons(x, xs)), cons(x, xs))))) 1140.84/292.85 filterlow(n, nil) -> nil 1140.84/292.85 filterlow(n, cons(x, xs)) -> if1(ge(n, x), n, x, xs) 1140.84/292.85 if1(true, n, x, xs) -> filterlow(n, xs) 1140.84/292.85 if1(false, n, x, xs) -> cons(x, filterlow(n, xs)) 1140.84/292.85 filterhigh(n, nil) -> nil 1140.84/292.85 filterhigh(n, cons(x, xs)) -> if2(ge(x, n), n, x, xs) 1140.84/292.85 if2(true, n, x, xs) -> filterhigh(n, xs) 1140.84/292.85 if2(false, n, x, xs) -> cons(x, filterhigh(n, xs)) 1140.84/292.85 ge(x, 0) -> true 1140.84/292.85 ge(0, s(x)) -> false 1140.84/292.85 ge(s(x), s(y)) -> ge(x, y) 1140.84/292.85 append(nil, ys) -> ys 1140.84/292.85 append(cons(x, xs), ys) -> cons(x, append(xs, ys)) 1140.84/292.85 length(nil) -> 0 1140.84/292.85 length(cons(x, xs)) -> s(length(xs)) 1140.84/292.85 half(0) -> 0 1140.84/292.85 half(s(0)) -> 0 1140.84/292.85 half(s(s(x))) -> s(half(x)) 1140.84/292.85 get(n, nil) -> 0 1140.84/292.85 get(n, cons(x, nil)) -> x 1140.84/292.85 get(0, cons(x, cons(y, xs))) -> x 1140.84/292.85 get(s(n), cons(x, cons(y, xs))) -> get(n, cons(y, xs)) 1140.84/292.85 1140.84/292.85 S is empty. 1140.84/292.85 Rewrite Strategy: INNERMOST 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 1140.84/292.85 Transformed a relative TRS into a decreasing-loop problem. 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (2) 1140.84/292.85 Obligation: 1140.84/292.85 Analyzing the following TRS for decreasing loops: 1140.84/292.85 1140.84/292.85 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1140.84/292.85 1140.84/292.85 1140.84/292.85 The TRS R consists of the following rules: 1140.84/292.85 1140.84/292.85 qsort(xs) -> qs(half(length(xs)), xs) 1140.84/292.85 qs(n, nil) -> nil 1140.84/292.85 qs(n, cons(x, xs)) -> append(qs(half(n), filterlow(get(n, cons(x, xs)), cons(x, xs))), cons(get(n, cons(x, xs)), qs(half(n), filterhigh(get(n, cons(x, xs)), cons(x, xs))))) 1140.84/292.85 filterlow(n, nil) -> nil 1140.84/292.85 filterlow(n, cons(x, xs)) -> if1(ge(n, x), n, x, xs) 1140.84/292.85 if1(true, n, x, xs) -> filterlow(n, xs) 1140.84/292.85 if1(false, n, x, xs) -> cons(x, filterlow(n, xs)) 1140.84/292.85 filterhigh(n, nil) -> nil 1140.84/292.85 filterhigh(n, cons(x, xs)) -> if2(ge(x, n), n, x, xs) 1140.84/292.85 if2(true, n, x, xs) -> filterhigh(n, xs) 1140.84/292.85 if2(false, n, x, xs) -> cons(x, filterhigh(n, xs)) 1140.84/292.85 ge(x, 0) -> true 1140.84/292.85 ge(0, s(x)) -> false 1140.84/292.85 ge(s(x), s(y)) -> ge(x, y) 1140.84/292.85 append(nil, ys) -> ys 1140.84/292.85 append(cons(x, xs), ys) -> cons(x, append(xs, ys)) 1140.84/292.85 length(nil) -> 0 1140.84/292.85 length(cons(x, xs)) -> s(length(xs)) 1140.84/292.85 half(0) -> 0 1140.84/292.85 half(s(0)) -> 0 1140.84/292.85 half(s(s(x))) -> s(half(x)) 1140.84/292.85 get(n, nil) -> 0 1140.84/292.85 get(n, cons(x, nil)) -> x 1140.84/292.85 get(0, cons(x, cons(y, xs))) -> x 1140.84/292.85 get(s(n), cons(x, cons(y, xs))) -> get(n, cons(y, xs)) 1140.84/292.85 1140.84/292.85 S is empty. 1140.84/292.85 Rewrite Strategy: INNERMOST 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (3) DecreasingLoopProof (LOWER BOUND(ID)) 1140.84/292.85 The following loop(s) give(s) rise to the lower bound Omega(n^1): 1140.84/292.85 1140.84/292.85 The rewrite sequence 1140.84/292.85 1140.84/292.85 append(cons(x, xs), ys) ->^+ cons(x, append(xs, ys)) 1140.84/292.85 1140.84/292.85 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 1140.84/292.85 1140.84/292.85 The pumping substitution is [xs / cons(x, xs)]. 1140.84/292.85 1140.84/292.85 The result substitution is [ ]. 1140.84/292.85 1140.84/292.85 1140.84/292.85 1140.84/292.85 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (4) 1140.84/292.85 Complex Obligation (BEST) 1140.84/292.85 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (5) 1140.84/292.85 Obligation: 1140.84/292.85 Proved the lower bound n^1 for the following obligation: 1140.84/292.85 1140.84/292.85 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1140.84/292.85 1140.84/292.85 1140.84/292.85 The TRS R consists of the following rules: 1140.84/292.85 1140.84/292.85 qsort(xs) -> qs(half(length(xs)), xs) 1140.84/292.85 qs(n, nil) -> nil 1140.84/292.85 qs(n, cons(x, xs)) -> append(qs(half(n), filterlow(get(n, cons(x, xs)), cons(x, xs))), cons(get(n, cons(x, xs)), qs(half(n), filterhigh(get(n, cons(x, xs)), cons(x, xs))))) 1140.84/292.85 filterlow(n, nil) -> nil 1140.84/292.85 filterlow(n, cons(x, xs)) -> if1(ge(n, x), n, x, xs) 1140.84/292.85 if1(true, n, x, xs) -> filterlow(n, xs) 1140.84/292.85 if1(false, n, x, xs) -> cons(x, filterlow(n, xs)) 1140.84/292.85 filterhigh(n, nil) -> nil 1140.84/292.85 filterhigh(n, cons(x, xs)) -> if2(ge(x, n), n, x, xs) 1140.84/292.85 if2(true, n, x, xs) -> filterhigh(n, xs) 1140.84/292.85 if2(false, n, x, xs) -> cons(x, filterhigh(n, xs)) 1140.84/292.85 ge(x, 0) -> true 1140.84/292.85 ge(0, s(x)) -> false 1140.84/292.85 ge(s(x), s(y)) -> ge(x, y) 1140.84/292.85 append(nil, ys) -> ys 1140.84/292.85 append(cons(x, xs), ys) -> cons(x, append(xs, ys)) 1140.84/292.85 length(nil) -> 0 1140.84/292.85 length(cons(x, xs)) -> s(length(xs)) 1140.84/292.85 half(0) -> 0 1140.84/292.85 half(s(0)) -> 0 1140.84/292.85 half(s(s(x))) -> s(half(x)) 1140.84/292.85 get(n, nil) -> 0 1140.84/292.85 get(n, cons(x, nil)) -> x 1140.84/292.85 get(0, cons(x, cons(y, xs))) -> x 1140.84/292.85 get(s(n), cons(x, cons(y, xs))) -> get(n, cons(y, xs)) 1140.84/292.85 1140.84/292.85 S is empty. 1140.84/292.85 Rewrite Strategy: INNERMOST 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (6) LowerBoundPropagationProof (FINISHED) 1140.84/292.85 Propagated lower bound. 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (7) 1140.84/292.85 BOUNDS(n^1, INF) 1140.84/292.85 1140.84/292.85 ---------------------------------------- 1140.84/292.85 1140.84/292.85 (8) 1140.84/292.85 Obligation: 1140.84/292.85 Analyzing the following TRS for decreasing loops: 1140.84/292.85 1140.84/292.85 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1140.84/292.85 1140.84/292.85 1140.84/292.85 The TRS R consists of the following rules: 1140.84/292.85 1140.84/292.85 qsort(xs) -> qs(half(length(xs)), xs) 1140.84/292.85 qs(n, nil) -> nil 1140.84/292.85 qs(n, cons(x, xs)) -> append(qs(half(n), filterlow(get(n, cons(x, xs)), cons(x, xs))), cons(get(n, cons(x, xs)), qs(half(n), filterhigh(get(n, cons(x, xs)), cons(x, xs))))) 1140.84/292.85 filterlow(n, nil) -> nil 1140.84/292.85 filterlow(n, cons(x, xs)) -> if1(ge(n, x), n, x, xs) 1140.84/292.85 if1(true, n, x, xs) -> filterlow(n, xs) 1140.84/292.85 if1(false, n, x, xs) -> cons(x, filterlow(n, xs)) 1140.84/292.85 filterhigh(n, nil) -> nil 1140.84/292.85 filterhigh(n, cons(x, xs)) -> if2(ge(x, n), n, x, xs) 1140.84/292.85 if2(true, n, x, xs) -> filterhigh(n, xs) 1140.84/292.85 if2(false, n, x, xs) -> cons(x, filterhigh(n, xs)) 1140.84/292.85 ge(x, 0) -> true 1140.84/292.85 ge(0, s(x)) -> false 1140.84/292.86 ge(s(x), s(y)) -> ge(x, y) 1140.84/292.86 append(nil, ys) -> ys 1140.84/292.86 append(cons(x, xs), ys) -> cons(x, append(xs, ys)) 1140.84/292.86 length(nil) -> 0 1140.84/292.86 length(cons(x, xs)) -> s(length(xs)) 1140.84/292.86 half(0) -> 0 1140.84/292.86 half(s(0)) -> 0 1140.84/292.86 half(s(s(x))) -> s(half(x)) 1140.84/292.86 get(n, nil) -> 0 1140.84/292.86 get(n, cons(x, nil)) -> x 1140.84/292.86 get(0, cons(x, cons(y, xs))) -> x 1140.84/292.86 get(s(n), cons(x, cons(y, xs))) -> get(n, cons(y, xs)) 1140.84/292.86 1140.84/292.86 S is empty. 1140.84/292.86 Rewrite Strategy: INNERMOST 1140.93/292.92 EOF