1113.26/291.49 WORST_CASE(Omega(n^1), ?) 1113.54/291.50 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 1113.54/291.50 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1113.54/291.50 1113.54/291.50 1113.54/291.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.54/291.50 1113.54/291.50 (0) CpxTRS 1113.54/291.50 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 1113.54/291.50 (2) TRS for Loop Detection 1113.54/291.50 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 1113.54/291.50 (4) BEST 1113.54/291.50 (5) proven lower bound 1113.54/291.50 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 1113.54/291.50 (7) BOUNDS(n^1, INF) 1113.54/291.50 (8) TRS for Loop Detection 1113.54/291.50 1113.54/291.50 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (0) 1113.54/291.50 Obligation: 1113.54/291.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.54/291.50 1113.54/291.50 1113.54/291.50 The TRS R consists of the following rules: 1113.54/291.50 1113.54/291.50 le(0, y) -> true 1113.54/291.50 le(s(x), 0) -> false 1113.54/291.50 le(s(x), s(y)) -> le(x, y) 1113.54/291.50 eq(0, 0) -> true 1113.54/291.50 eq(0, s(y)) -> false 1113.54/291.50 eq(s(x), 0) -> false 1113.54/291.50 eq(s(x), s(y)) -> eq(x, y) 1113.54/291.50 minsort(nil) -> nil 1113.54/291.50 minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) 1113.54/291.50 min(nil) -> 0 1113.54/291.50 min(cons(x, nil)) -> x 1113.54/291.50 min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) 1113.54/291.50 if1(true, x, y, xs) -> min(cons(x, xs)) 1113.54/291.50 if1(false, x, y, xs) -> min(cons(y, xs)) 1113.54/291.50 rm(x, nil) -> nil 1113.54/291.50 rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 1113.54/291.50 if2(true, x, y, xs) -> rm(x, xs) 1113.54/291.50 if2(false, x, y, xs) -> cons(y, rm(x, xs)) 1113.54/291.50 1113.54/291.50 S is empty. 1113.54/291.50 Rewrite Strategy: INNERMOST 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 1113.54/291.50 Transformed a relative TRS into a decreasing-loop problem. 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (2) 1113.54/291.50 Obligation: 1113.54/291.50 Analyzing the following TRS for decreasing loops: 1113.54/291.50 1113.54/291.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.54/291.50 1113.54/291.50 1113.54/291.50 The TRS R consists of the following rules: 1113.54/291.50 1113.54/291.50 le(0, y) -> true 1113.54/291.50 le(s(x), 0) -> false 1113.54/291.50 le(s(x), s(y)) -> le(x, y) 1113.54/291.50 eq(0, 0) -> true 1113.54/291.50 eq(0, s(y)) -> false 1113.54/291.50 eq(s(x), 0) -> false 1113.54/291.50 eq(s(x), s(y)) -> eq(x, y) 1113.54/291.50 minsort(nil) -> nil 1113.54/291.50 minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) 1113.54/291.50 min(nil) -> 0 1113.54/291.50 min(cons(x, nil)) -> x 1113.54/291.50 min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) 1113.54/291.50 if1(true, x, y, xs) -> min(cons(x, xs)) 1113.54/291.50 if1(false, x, y, xs) -> min(cons(y, xs)) 1113.54/291.50 rm(x, nil) -> nil 1113.54/291.50 rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 1113.54/291.50 if2(true, x, y, xs) -> rm(x, xs) 1113.54/291.50 if2(false, x, y, xs) -> cons(y, rm(x, xs)) 1113.54/291.50 1113.54/291.50 S is empty. 1113.54/291.50 Rewrite Strategy: INNERMOST 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (3) DecreasingLoopProof (LOWER BOUND(ID)) 1113.54/291.50 The following loop(s) give(s) rise to the lower bound Omega(n^1): 1113.54/291.50 1113.54/291.50 The rewrite sequence 1113.54/291.50 1113.54/291.50 le(s(x), s(y)) ->^+ le(x, y) 1113.54/291.50 1113.54/291.50 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 1113.54/291.50 1113.54/291.50 The pumping substitution is [x / s(x), y / s(y)]. 1113.54/291.50 1113.54/291.50 The result substitution is [ ]. 1113.54/291.50 1113.54/291.50 1113.54/291.50 1113.54/291.50 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (4) 1113.54/291.50 Complex Obligation (BEST) 1113.54/291.50 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (5) 1113.54/291.50 Obligation: 1113.54/291.50 Proved the lower bound n^1 for the following obligation: 1113.54/291.50 1113.54/291.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.54/291.50 1113.54/291.50 1113.54/291.50 The TRS R consists of the following rules: 1113.54/291.50 1113.54/291.50 le(0, y) -> true 1113.54/291.50 le(s(x), 0) -> false 1113.54/291.50 le(s(x), s(y)) -> le(x, y) 1113.54/291.50 eq(0, 0) -> true 1113.54/291.50 eq(0, s(y)) -> false 1113.54/291.50 eq(s(x), 0) -> false 1113.54/291.50 eq(s(x), s(y)) -> eq(x, y) 1113.54/291.50 minsort(nil) -> nil 1113.54/291.50 minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) 1113.54/291.50 min(nil) -> 0 1113.54/291.50 min(cons(x, nil)) -> x 1113.54/291.50 min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) 1113.54/291.50 if1(true, x, y, xs) -> min(cons(x, xs)) 1113.54/291.50 if1(false, x, y, xs) -> min(cons(y, xs)) 1113.54/291.50 rm(x, nil) -> nil 1113.54/291.50 rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 1113.54/291.50 if2(true, x, y, xs) -> rm(x, xs) 1113.54/291.50 if2(false, x, y, xs) -> cons(y, rm(x, xs)) 1113.54/291.50 1113.54/291.50 S is empty. 1113.54/291.50 Rewrite Strategy: INNERMOST 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (6) LowerBoundPropagationProof (FINISHED) 1113.54/291.50 Propagated lower bound. 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (7) 1113.54/291.50 BOUNDS(n^1, INF) 1113.54/291.50 1113.54/291.50 ---------------------------------------- 1113.54/291.50 1113.54/291.50 (8) 1113.54/291.50 Obligation: 1113.54/291.50 Analyzing the following TRS for decreasing loops: 1113.54/291.50 1113.54/291.50 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1113.54/291.50 1113.54/291.50 1113.54/291.50 The TRS R consists of the following rules: 1113.54/291.50 1113.54/291.50 le(0, y) -> true 1113.54/291.50 le(s(x), 0) -> false 1113.54/291.50 le(s(x), s(y)) -> le(x, y) 1113.54/291.50 eq(0, 0) -> true 1113.54/291.50 eq(0, s(y)) -> false 1113.54/291.50 eq(s(x), 0) -> false 1113.54/291.50 eq(s(x), s(y)) -> eq(x, y) 1113.54/291.50 minsort(nil) -> nil 1113.54/291.50 minsort(cons(x, xs)) -> cons(min(cons(x, xs)), minsort(rm(min(cons(x, xs)), cons(x, xs)))) 1113.54/291.50 min(nil) -> 0 1113.54/291.50 min(cons(x, nil)) -> x 1113.54/291.50 min(cons(x, cons(y, xs))) -> if1(le(x, y), x, y, xs) 1113.54/291.50 if1(true, x, y, xs) -> min(cons(x, xs)) 1113.54/291.50 if1(false, x, y, xs) -> min(cons(y, xs)) 1113.54/291.50 rm(x, nil) -> nil 1113.54/291.50 rm(x, cons(y, xs)) -> if2(eq(x, y), x, y, xs) 1113.54/291.50 if2(true, x, y, xs) -> rm(x, xs) 1113.54/291.50 if2(false, x, y, xs) -> cons(y, rm(x, xs)) 1113.54/291.50 1113.54/291.50 S is empty. 1113.54/291.50 Rewrite Strategy: INNERMOST 1113.67/291.58 EOF