3.39/1.53 YES 3.39/1.54 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.39/1.54 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.39/1.54 3.39/1.54 3.39/1.54 Outermost Termination of the given OTRS could be proven: 3.39/1.54 3.39/1.54 (0) OTRS 3.39/1.54 (1) Raffelsieper-Zantema-Transformation [SOUND, 0 ms] 3.39/1.54 (2) QTRS 3.39/1.54 (3) QTRSRRRProof [EQUIVALENT, 23 ms] 3.39/1.54 (4) QTRS 3.39/1.54 (5) QTRSRRRProof [EQUIVALENT, 0 ms] 3.39/1.54 (6) QTRS 3.39/1.54 (7) AAECC Innermost [EQUIVALENT, 0 ms] 3.39/1.54 (8) QTRS 3.39/1.54 (9) DependencyPairsProof [EQUIVALENT, 0 ms] 3.39/1.54 (10) QDP 3.39/1.54 (11) DependencyGraphProof [EQUIVALENT, 0 ms] 3.39/1.54 (12) QDP 3.39/1.54 (13) UsableRulesProof [EQUIVALENT, 0 ms] 3.39/1.54 (14) QDP 3.39/1.54 (15) QReductionProof [EQUIVALENT, 0 ms] 3.39/1.54 (16) QDP 3.39/1.54 (17) RFCMatchBoundsDPProof [EQUIVALENT, 0 ms] 3.39/1.54 (18) YES 3.39/1.54 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (0) 3.39/1.54 Obligation: 3.39/1.54 Term rewrite system R: 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 f(x) -> g(f(x)) 3.39/1.54 g(f(x)) -> x 3.39/1.54 g(x) -> a 3.39/1.54 3.39/1.54 3.39/1.54 3.39/1.54 Outermost Strategy. 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (1) Raffelsieper-Zantema-Transformation (SOUND) 3.39/1.54 We applied the Raffelsieper-Zantema transformation to transform the outermost TRS to a standard TRS. 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (2) 3.39/1.54 Obligation: 3.39/1.54 Q restricted rewrite system: 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(f(x))) -> up(x) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 top(up(x)) -> top(down(x)) 3.39/1.54 f_flat(up(x_1)) -> up(f(x_1)) 3.39/1.54 g_flat(up(x_1)) -> up(g(x_1)) 3.39/1.54 3.39/1.54 Q is empty. 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (3) QTRSRRRProof (EQUIVALENT) 3.39/1.54 Used ordering: 3.39/1.54 Polynomial interpretation [POLO]: 3.39/1.54 3.39/1.54 POL(a) = 0 3.39/1.54 POL(down(x_1)) = 2 + 2*x_1 3.39/1.54 POL(f(x_1)) = x_1 3.39/1.54 POL(f_flat(x_1)) = 1 + 2*x_1 3.39/1.54 POL(g(x_1)) = x_1 3.39/1.54 POL(g_flat(x_1)) = 2*x_1 3.39/1.54 POL(top(x_1)) = 2*x_1 3.39/1.54 POL(up(x_1)) = 2 + 2*x_1 3.39/1.54 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: 3.39/1.54 3.39/1.54 f_flat(up(x_1)) -> up(f(x_1)) 3.39/1.54 g_flat(up(x_1)) -> up(g(x_1)) 3.39/1.54 3.39/1.54 3.39/1.54 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (4) 3.39/1.54 Obligation: 3.39/1.54 Q restricted rewrite system: 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(f(x))) -> up(x) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 top(up(x)) -> top(down(x)) 3.39/1.54 3.39/1.54 Q is empty. 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (5) QTRSRRRProof (EQUIVALENT) 3.39/1.54 Used ordering: 3.39/1.54 Polynomial interpretation [POLO]: 3.39/1.54 3.39/1.54 POL(a) = 0 3.39/1.54 POL(down(x_1)) = 2*x_1 3.39/1.54 POL(f(x_1)) = 1 + x_1 3.39/1.54 POL(g(x_1)) = x_1 3.39/1.54 POL(top(x_1)) = 2*x_1 3.39/1.54 POL(up(x_1)) = 2*x_1 3.39/1.54 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: 3.39/1.54 3.39/1.54 down(g(f(x))) -> up(x) 3.39/1.54 3.39/1.54 3.39/1.54 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (6) 3.39/1.54 Obligation: 3.39/1.54 Q restricted rewrite system: 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 top(up(x)) -> top(down(x)) 3.39/1.54 3.39/1.54 Q is empty. 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (7) AAECC Innermost (EQUIVALENT) 3.39/1.54 We have applied [NOC,AAECCNOC] to switch to innermost. The TRS R 1 is 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 3.39/1.54 The TRS R 2 is 3.39/1.54 top(up(x)) -> top(down(x)) 3.39/1.54 3.39/1.54 The signature Sigma is {top_1} 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (8) 3.39/1.54 Obligation: 3.39/1.54 Q restricted rewrite system: 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 top(up(x)) -> top(down(x)) 3.39/1.54 3.39/1.54 The set Q consists of the following terms: 3.39/1.54 3.39/1.54 down(f(x0)) 3.39/1.54 down(g(x0)) 3.39/1.54 top(up(x0)) 3.39/1.54 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (9) DependencyPairsProof (EQUIVALENT) 3.39/1.54 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (10) 3.39/1.54 Obligation: 3.39/1.54 Q DP problem: 3.39/1.54 The TRS P consists of the following rules: 3.39/1.54 3.39/1.54 TOP(up(x)) -> TOP(down(x)) 3.39/1.54 TOP(up(x)) -> DOWN(x) 3.39/1.54 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 top(up(x)) -> top(down(x)) 3.39/1.54 3.39/1.54 The set Q consists of the following terms: 3.39/1.54 3.39/1.54 down(f(x0)) 3.39/1.54 down(g(x0)) 3.39/1.54 top(up(x0)) 3.39/1.54 3.39/1.54 We have to consider all minimal (P,Q,R)-chains. 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (11) DependencyGraphProof (EQUIVALENT) 3.39/1.54 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (12) 3.39/1.54 Obligation: 3.39/1.54 Q DP problem: 3.39/1.54 The TRS P consists of the following rules: 3.39/1.54 3.39/1.54 TOP(up(x)) -> TOP(down(x)) 3.39/1.54 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 top(up(x)) -> top(down(x)) 3.39/1.54 3.39/1.54 The set Q consists of the following terms: 3.39/1.54 3.39/1.54 down(f(x0)) 3.39/1.54 down(g(x0)) 3.39/1.54 top(up(x0)) 3.39/1.54 3.39/1.54 We have to consider all minimal (P,Q,R)-chains. 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (13) UsableRulesProof (EQUIVALENT) 3.39/1.54 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (14) 3.39/1.54 Obligation: 3.39/1.54 Q DP problem: 3.39/1.54 The TRS P consists of the following rules: 3.39/1.54 3.39/1.54 TOP(up(x)) -> TOP(down(x)) 3.39/1.54 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 3.39/1.54 The set Q consists of the following terms: 3.39/1.54 3.39/1.54 down(f(x0)) 3.39/1.54 down(g(x0)) 3.39/1.54 top(up(x0)) 3.39/1.54 3.39/1.54 We have to consider all minimal (P,Q,R)-chains. 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (15) QReductionProof (EQUIVALENT) 3.39/1.54 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 3.39/1.54 3.39/1.54 top(up(x0)) 3.39/1.54 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (16) 3.39/1.54 Obligation: 3.39/1.54 Q DP problem: 3.39/1.54 The TRS P consists of the following rules: 3.39/1.54 3.39/1.54 TOP(up(x)) -> TOP(down(x)) 3.39/1.54 3.39/1.54 The TRS R consists of the following rules: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 3.39/1.54 The set Q consists of the following terms: 3.39/1.54 3.39/1.54 down(f(x0)) 3.39/1.54 down(g(x0)) 3.39/1.54 3.39/1.54 We have to consider all minimal (P,Q,R)-chains. 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (17) RFCMatchBoundsDPProof (EQUIVALENT) 3.39/1.54 Finiteness of the DP problem can be shown by a matchbound of 2. 3.39/1.54 As the DP problem is minimal we only have to initialize the certificate graph by the rules of P: 3.39/1.54 3.39/1.54 TOP(up(x)) -> TOP(down(x)) 3.39/1.54 3.39/1.54 To find matches we regarded all rules of R and P: 3.39/1.54 3.39/1.54 down(f(x)) -> up(g(f(x))) 3.39/1.54 down(g(x)) -> up(a) 3.39/1.54 TOP(up(x)) -> TOP(down(x)) 3.39/1.54 3.39/1.54 The certificate found is represented by the following graph. 3.39/1.54 The certificate consists of the following enumerated nodes: 3.39/1.54 162, 163, 164, 165, 166, 167, 168, 169 3.39/1.54 3.39/1.54 Node 162 is start node and node 163 is final node. 3.39/1.54 3.39/1.54 Those nodes are connected through the following edges: 3.39/1.54 3.39/1.54 * 162 to 164 labelled TOP_1(0)* 162 to 167 labelled TOP_1(1)* 162 to 169 labelled TOP_1(2)* 163 to 163 labelled #_1(0)* 164 to 163 labelled down_1(0)* 164 to 165 labelled up_1(1)* 165 to 166 labelled g_1(1)* 165 to 163 labelled a(1)* 166 to 163 labelled f_1(1)* 167 to 165 labelled down_1(1)* 167 to 168 labelled up_1(2)* 168 to 166 labelled a(2)* 169 to 168 labelled down_1(2) 3.39/1.54 3.39/1.54 3.39/1.54 ---------------------------------------- 3.39/1.54 3.39/1.54 (18) 3.39/1.54 YES 3.49/1.57 EOF