108.38/78.67 MAYBE 111.00/79.38 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 111.00/79.38 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 111.00/79.38 111.00/79.38 111.00/79.38 H-Termination with start terms of the given HASKELL could not be shown: 111.00/79.38 111.00/79.38 (0) HASKELL 111.00/79.38 (1) CR [EQUIVALENT, 0 ms] 111.00/79.38 (2) HASKELL 111.00/79.38 (3) BR [EQUIVALENT, 0 ms] 111.00/79.38 (4) HASKELL 111.00/79.38 (5) COR [EQUIVALENT, 20 ms] 111.00/79.38 (6) HASKELL 111.00/79.38 (7) LetRed [EQUIVALENT, 0 ms] 111.00/79.38 (8) HASKELL 111.00/79.38 (9) NumRed [SOUND, 0 ms] 111.00/79.38 (10) HASKELL 111.00/79.38 111.00/79.38 111.00/79.38 ---------------------------------------- 111.00/79.38 111.00/79.38 (0) 111.00/79.38 Obligation: 111.00/79.38 mainModule Main 111.00/79.38 module FiniteMap where { 111.00/79.38 import qualified Main; 111.00/79.38 import qualified Maybe; 111.00/79.38 import qualified Prelude; 111.00/79.38 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 111.00/79.38 111.00/79.38 instance (Eq a, Eq b) => Eq FiniteMap b a where { 111.00/79.38 } 111.00/79.38 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 111.00/79.38 addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.00/79.38 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 111.00/79.38 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 111.00/79.38 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.00/79.38 111.00/79.38 emptyFM :: FiniteMap a b; 111.00/79.38 emptyFM = EmptyFM; 111.00/79.38 111.00/79.38 findMax :: FiniteMap b a -> (b,a); 111.00/79.38 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 111.00/79.38 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 111.00/79.38 111.00/79.38 findMin :: FiniteMap a b -> (a,b); 111.00/79.38 findMin (Branch key elt _ EmptyFM _) = (key,elt); 111.00/79.38 findMin (Branch key elt _ fm_l _) = findMin fm_l; 111.00/79.38 111.00/79.38 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 111.00/79.38 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 111.00/79.38 | size_r > sIZE_RATIO * size_l = case fm_R of { 111.00/79.38 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 111.00/79.38 | otherwise -> double_L fm_L fm_R; 111.00/79.38 } 111.00/79.38 | size_l > sIZE_RATIO * size_r = case fm_L of { 111.00/79.38 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 111.00/79.38 | otherwise -> double_R fm_L fm_R; 111.00/79.38 } 111.00/79.38 | otherwise = mkBranch 2 key elt fm_L fm_R where { 111.00/79.38 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.00/79.38 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.00/79.38 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.00/79.38 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.00/79.38 size_l = sizeFM fm_L; 111.00/79.38 size_r = sizeFM fm_R; 111.00/79.38 }; 111.00/79.38 111.00/79.38 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.00/79.38 mkBranch which key elt fm_l fm_r = let { 111.00/79.38 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.00/79.38 } in result where { 111.00/79.38 balance_ok = True; 111.00/79.38 left_ok = case fm_l of { 111.00/79.38 EmptyFM-> True; 111.00/79.38 Branch left_key _ _ _ _-> let { 111.00/79.38 biggest_left_key = fst (findMax fm_l); 111.00/79.38 } in biggest_left_key < key; 111.00/79.38 } ; 111.00/79.38 left_size = sizeFM fm_l; 111.00/79.38 right_ok = case fm_r of { 111.00/79.38 EmptyFM-> True; 111.00/79.38 Branch right_key _ _ _ _-> let { 111.00/79.38 smallest_right_key = fst (findMin fm_r); 111.00/79.38 } in key < smallest_right_key; 111.00/79.38 } ; 111.00/79.38 right_size = sizeFM fm_r; 111.00/79.38 unbox :: Int -> Int; 111.00/79.38 unbox x = x; 111.00/79.38 }; 111.00/79.38 111.00/79.38 sIZE_RATIO :: Int; 111.00/79.38 sIZE_RATIO = 5; 111.00/79.38 111.00/79.38 sizeFM :: FiniteMap b a -> Int; 111.00/79.38 sizeFM EmptyFM = 0; 111.00/79.38 sizeFM (Branch _ _ size _ _) = size; 111.00/79.38 111.00/79.38 unitFM :: a -> b -> FiniteMap a b; 111.00/79.38 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.00/79.38 111.00/79.38 } 111.00/79.38 module Maybe where { 111.00/79.38 import qualified FiniteMap; 111.00/79.38 import qualified Main; 111.00/79.38 import qualified Prelude; 111.00/79.38 } 111.00/79.38 module Main where { 111.00/79.38 import qualified FiniteMap; 111.00/79.38 import qualified Maybe; 111.00/79.38 import qualified Prelude; 111.00/79.38 } 111.00/79.38 111.00/79.38 ---------------------------------------- 111.00/79.38 111.00/79.38 (1) CR (EQUIVALENT) 111.00/79.38 Case Reductions: 111.00/79.38 The following Case expression 111.00/79.38 "case fm_r of { 111.00/79.38 EmptyFM -> True; 111.00/79.38 Branch right_key _ _ _ _ -> let { 111.00/79.38 smallest_right_key = fst (findMin fm_r); 111.00/79.38 } in key < smallest_right_key} 111.00/79.38 " 111.00/79.38 is transformed to 111.00/79.38 "right_ok0 fm_r key EmptyFM = True; 111.00/79.38 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 111.00/79.38 smallest_right_key = fst (findMin fm_r); 111.00/79.38 } in key < smallest_right_key; 111.00/79.38 " 111.00/79.38 The following Case expression 111.00/79.38 "case fm_l of { 111.00/79.38 EmptyFM -> True; 111.00/79.38 Branch left_key _ _ _ _ -> let { 111.00/79.38 biggest_left_key = fst (findMax fm_l); 111.00/79.38 } in biggest_left_key < key} 111.00/79.38 " 111.00/79.38 is transformed to 111.00/79.38 "left_ok0 fm_l key EmptyFM = True; 111.00/79.38 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 111.00/79.38 biggest_left_key = fst (findMax fm_l); 111.00/79.38 } in biggest_left_key < key; 111.00/79.38 " 111.00/79.38 The following Case expression 111.00/79.38 "case fm_R of { 111.00/79.38 Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} 111.00/79.38 " 111.00/79.38 is transformed to 111.00/79.38 "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 111.00/79.38 " 111.00/79.38 The following Case expression 111.00/79.38 "case fm_L of { 111.00/79.38 Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} 111.00/79.38 " 111.00/79.38 is transformed to 111.00/79.38 "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 111.00/79.38 " 111.00/79.38 111.00/79.38 ---------------------------------------- 111.00/79.38 111.00/79.38 (2) 111.00/79.38 Obligation: 111.00/79.38 mainModule Main 111.00/79.38 module FiniteMap where { 111.00/79.38 import qualified Main; 111.00/79.38 import qualified Maybe; 111.00/79.38 import qualified Prelude; 111.00/79.38 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 111.00/79.38 111.00/79.38 instance (Eq a, Eq b) => Eq FiniteMap b a where { 111.00/79.38 } 111.00/79.38 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 111.00/79.38 addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.00/79.38 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 111.00/79.38 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 111.00/79.38 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.00/79.38 111.00/79.38 emptyFM :: FiniteMap a b; 111.00/79.38 emptyFM = EmptyFM; 111.00/79.38 111.00/79.38 findMax :: FiniteMap a b -> (a,b); 111.00/79.38 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 111.00/79.38 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 111.00/79.38 111.00/79.38 findMin :: FiniteMap a b -> (a,b); 111.00/79.38 findMin (Branch key elt _ EmptyFM _) = (key,elt); 111.00/79.38 findMin (Branch key elt _ fm_l _) = findMin fm_l; 111.00/79.38 111.00/79.38 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 111.00/79.38 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 111.00/79.38 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 111.00/79.38 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 111.00/79.38 | otherwise = mkBranch 2 key elt fm_L fm_R where { 111.00/79.38 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.00/79.38 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.00/79.38 mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 111.00/79.38 | otherwise = double_L fm_L fm_R; 111.00/79.38 mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 111.00/79.38 | otherwise = double_R fm_L fm_R; 111.00/79.38 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.00/79.38 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.00/79.38 size_l = sizeFM fm_L; 111.00/79.38 size_r = sizeFM fm_R; 111.00/79.38 }; 111.00/79.38 111.00/79.38 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.00/79.38 mkBranch which key elt fm_l fm_r = let { 111.00/79.38 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.00/79.38 } in result where { 111.00/79.38 balance_ok = True; 111.00/79.38 left_ok = left_ok0 fm_l key fm_l; 111.00/79.38 left_ok0 fm_l key EmptyFM = True; 111.00/79.38 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 111.00/79.38 biggest_left_key = fst (findMax fm_l); 111.00/79.38 } in biggest_left_key < key; 111.00/79.38 left_size = sizeFM fm_l; 111.00/79.38 right_ok = right_ok0 fm_r key fm_r; 111.00/79.38 right_ok0 fm_r key EmptyFM = True; 111.00/79.38 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 111.00/79.38 smallest_right_key = fst (findMin fm_r); 111.00/79.38 } in key < smallest_right_key; 111.16/79.42 right_size = sizeFM fm_r; 111.16/79.42 unbox :: Int -> Int; 111.16/79.42 unbox x = x; 111.16/79.42 }; 111.16/79.42 111.16/79.42 sIZE_RATIO :: Int; 111.16/79.42 sIZE_RATIO = 5; 111.16/79.42 111.16/79.42 sizeFM :: FiniteMap b a -> Int; 111.16/79.42 sizeFM EmptyFM = 0; 111.16/79.42 sizeFM (Branch _ _ size _ _) = size; 111.16/79.42 111.16/79.42 unitFM :: b -> a -> FiniteMap b a; 111.16/79.42 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.16/79.42 111.16/79.42 } 111.16/79.42 module Maybe where { 111.16/79.42 import qualified FiniteMap; 111.16/79.42 import qualified Main; 111.16/79.42 import qualified Prelude; 111.16/79.42 } 111.16/79.42 module Main where { 111.16/79.42 import qualified FiniteMap; 111.16/79.42 import qualified Maybe; 111.16/79.42 import qualified Prelude; 111.16/79.42 } 111.16/79.42 111.16/79.42 ---------------------------------------- 111.16/79.42 111.16/79.42 (3) BR (EQUIVALENT) 111.16/79.42 Replaced joker patterns by fresh variables and removed binding patterns. 111.16/79.42 ---------------------------------------- 111.16/79.42 111.16/79.42 (4) 111.16/79.42 Obligation: 111.16/79.42 mainModule Main 111.16/79.42 module FiniteMap where { 111.16/79.42 import qualified Main; 111.16/79.42 import qualified Maybe; 111.16/79.42 import qualified Prelude; 111.16/79.42 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 111.16/79.42 111.16/79.42 instance (Eq a, Eq b) => Eq FiniteMap a b where { 111.16/79.42 } 111.16/79.42 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 111.16/79.42 addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.16/79.42 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 111.16/79.42 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 111.16/79.42 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.16/79.42 111.16/79.42 emptyFM :: FiniteMap a b; 111.16/79.42 emptyFM = EmptyFM; 111.16/79.42 111.16/79.42 findMax :: FiniteMap b a -> (b,a); 111.16/79.42 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 111.16/79.42 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 111.16/79.42 111.16/79.42 findMin :: FiniteMap a b -> (a,b); 111.16/79.42 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 111.16/79.42 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 111.16/79.42 111.16/79.42 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.16/79.42 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 111.16/79.42 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 111.16/79.42 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 111.16/79.42 | otherwise = mkBranch 2 key elt fm_L fm_R where { 111.16/79.42 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.16/79.42 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.16/79.42 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 111.16/79.42 | otherwise = double_L fm_L fm_R; 111.16/79.42 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 111.16/79.42 | otherwise = double_R fm_L fm_R; 111.16/79.42 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.16/79.42 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.16/79.42 size_l = sizeFM fm_L; 111.16/79.42 size_r = sizeFM fm_R; 111.16/79.42 }; 111.16/79.42 111.16/79.42 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 111.16/79.42 mkBranch which key elt fm_l fm_r = let { 111.16/79.42 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.16/79.42 } in result where { 111.16/79.42 balance_ok = True; 111.16/79.42 left_ok = left_ok0 fm_l key fm_l; 111.16/79.42 left_ok0 fm_l key EmptyFM = True; 111.16/79.42 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 111.16/79.42 biggest_left_key = fst (findMax fm_l); 111.16/79.42 } in biggest_left_key < key; 111.16/79.42 left_size = sizeFM fm_l; 111.16/79.42 right_ok = right_ok0 fm_r key fm_r; 111.16/79.42 right_ok0 fm_r key EmptyFM = True; 111.16/79.42 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 111.16/79.42 smallest_right_key = fst (findMin fm_r); 111.16/79.42 } in key < smallest_right_key; 111.16/79.42 right_size = sizeFM fm_r; 111.16/79.42 unbox :: Int -> Int; 111.16/79.42 unbox x = x; 111.16/79.42 }; 111.16/79.42 111.16/79.42 sIZE_RATIO :: Int; 111.16/79.42 sIZE_RATIO = 5; 111.16/79.42 111.16/79.42 sizeFM :: FiniteMap a b -> Int; 111.16/79.42 sizeFM EmptyFM = 0; 111.16/79.42 sizeFM (Branch vz wu size wv ww) = size; 111.16/79.42 111.16/79.42 unitFM :: b -> a -> FiniteMap b a; 111.16/79.42 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.16/79.42 111.16/79.42 } 111.16/79.42 module Maybe where { 111.16/79.42 import qualified FiniteMap; 111.16/79.42 import qualified Main; 111.16/79.42 import qualified Prelude; 111.16/79.42 } 111.16/79.42 module Main where { 111.16/79.42 import qualified FiniteMap; 111.16/79.42 import qualified Maybe; 111.16/79.42 import qualified Prelude; 111.16/79.42 } 111.16/79.42 111.16/79.42 ---------------------------------------- 111.16/79.42 111.16/79.42 (5) COR (EQUIVALENT) 111.16/79.42 Cond Reductions: 111.16/79.42 The following Function with conditions 111.16/79.42 "compare x y|x == yEQ|x <= yLT|otherwiseGT; 111.16/79.42 " 111.16/79.42 is transformed to 111.16/79.42 "compare x y = compare3 x y; 111.16/79.42 " 111.16/79.42 "compare0 x y True = GT; 111.16/79.42 " 111.16/79.42 "compare1 x y True = LT; 111.16/79.42 compare1 x y False = compare0 x y otherwise; 111.16/79.42 " 111.16/79.42 "compare2 x y True = EQ; 111.16/79.42 compare2 x y False = compare1 x y (x <= y); 111.16/79.42 " 111.16/79.42 "compare3 x y = compare2 x y (x == y); 111.16/79.42 " 111.16/79.42 The following Function with conditions 111.16/79.42 "undefined |Falseundefined; 111.16/79.42 " 111.16/79.42 is transformed to 111.16/79.42 "undefined = undefined1; 111.16/79.42 " 111.16/79.42 "undefined0 True = undefined; 111.16/79.42 " 111.16/79.42 "undefined1 = undefined0 False; 111.16/79.42 " 111.16/79.42 The following Function with conditions 111.16/79.42 "addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.16/79.42 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; 111.16/79.42 " 111.16/79.42 is transformed to 111.16/79.42 "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 111.16/79.42 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 111.16/79.42 " 111.16/79.42 "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.16/79.42 " 111.16/79.42 "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 111.16/79.42 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 111.16/79.42 " 111.16/79.42 "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 111.16/79.42 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 111.16/79.42 " 111.16/79.42 "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 111.16/79.42 " 111.16/79.42 "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 111.16/79.42 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 111.16/79.42 " 111.16/79.42 The following Function with conditions 111.16/79.42 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 111.16/79.42 " 111.16/79.42 is transformed to 111.16/79.42 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.16/79.42 " 111.16/79.42 "mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 111.16/79.42 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.16/79.42 " 111.16/79.42 "mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 111.16/79.42 " 111.16/79.42 "mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 111.16/79.42 " 111.16/79.42 The following Function with conditions 111.16/79.42 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 111.16/79.42 " 111.16/79.42 is transformed to 111.16/79.42 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.16/79.42 " 111.16/79.42 "mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 111.16/79.42 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.16/79.42 " 111.16/79.42 "mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 111.16/79.42 " 111.16/79.42 "mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 111.16/79.42 " 111.16/79.42 The following Function with conditions 111.16/79.42 "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { 111.16/79.42 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.16/79.42 ; 111.16/79.42 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.16/79.42 ; 111.16/79.42 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 111.16/79.42 ; 111.16/79.42 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 111.16/79.42 ; 111.16/79.42 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.16/79.42 ; 111.16/79.42 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.16/79.42 ; 111.16/79.42 size_l = sizeFM fm_L; 111.16/79.42 ; 111.16/79.42 size_r = sizeFM fm_R; 111.16/79.42 } 111.16/79.42 ; 111.16/79.42 " 111.16/79.42 is transformed to 111.16/79.42 "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 111.16/79.42 " 111.16/79.42 "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 111.16/79.42 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.16/79.42 ; 111.16/79.42 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.16/79.42 ; 111.16/79.42 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.16/79.42 ; 111.16/79.42 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 111.16/79.42 ; 111.16/79.42 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 111.16/79.42 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.16/79.42 ; 111.16/79.42 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 111.16/79.42 ; 111.16/79.42 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.16/79.42 ; 111.16/79.42 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 111.16/79.42 ; 111.16/79.42 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 111.16/79.42 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.16/79.42 ; 111.16/79.42 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 111.16/79.42 ; 111.16/79.42 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 111.16/79.42 ; 111.16/79.42 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 111.16/79.42 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 111.16/79.42 ; 111.16/79.42 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 111.16/79.42 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 111.16/79.42 ; 111.16/79.42 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 111.16/79.42 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 111.16/79.42 ; 111.16/79.42 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.16/79.42 ; 111.16/79.42 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.16/79.42 ; 111.16/79.42 size_l = sizeFM fm_L; 111.16/79.42 ; 111.16/79.42 size_r = sizeFM fm_R; 111.16/79.42 } 111.16/79.42 ; 111.16/79.42 " 111.16/79.42 111.16/79.42 ---------------------------------------- 111.16/79.42 111.16/79.42 (6) 111.16/79.42 Obligation: 111.16/79.42 mainModule Main 111.16/79.42 module FiniteMap where { 111.16/79.42 import qualified Main; 111.16/79.42 import qualified Maybe; 111.16/79.42 import qualified Prelude; 111.16/79.42 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 111.16/79.42 111.16/79.42 instance (Eq a, Eq b) => Eq FiniteMap b a where { 111.16/79.42 } 111.16/79.42 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 111.16/79.42 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 111.16/79.42 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 111.16/79.42 111.16/79.42 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.16/79.42 111.16/79.42 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 111.16/79.43 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 111.16/79.43 111.16/79.43 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 111.16/79.43 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 111.16/79.43 111.16/79.43 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 111.16/79.43 111.16/79.43 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 111.16/79.43 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 111.16/79.43 111.16/79.43 emptyFM :: FiniteMap b a; 111.16/79.43 emptyFM = EmptyFM; 111.16/79.43 111.16/79.43 findMax :: FiniteMap b a -> (b,a); 111.16/79.43 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 111.16/79.43 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 111.16/79.43 111.16/79.43 findMin :: FiniteMap b a -> (b,a); 111.16/79.43 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 111.16/79.43 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 111.16/79.43 111.16/79.43 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.16/79.43 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 111.16/79.43 111.16/79.43 mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 111.16/79.43 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.16/79.43 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.16/79.43 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.16/79.43 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 111.16/79.43 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 111.16/79.43 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.16/79.43 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 111.16/79.43 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.16/79.43 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 111.16/79.43 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 111.16/79.43 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.16/79.43 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 111.16/79.43 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 111.16/79.43 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 111.16/79.43 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 111.16/79.43 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 111.16/79.43 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 111.16/79.43 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 111.16/79.43 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 111.16/79.43 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.16/79.43 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.16/79.43 size_l = sizeFM fm_L; 111.16/79.43 size_r = sizeFM fm_R; 111.16/79.43 }; 111.16/79.43 111.16/79.43 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.16/79.43 mkBranch which key elt fm_l fm_r = let { 111.16/79.43 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.16/79.43 } in result where { 111.16/79.43 balance_ok = True; 111.16/79.43 left_ok = left_ok0 fm_l key fm_l; 111.16/79.43 left_ok0 fm_l key EmptyFM = True; 111.16/79.43 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 111.16/79.43 biggest_left_key = fst (findMax fm_l); 111.16/79.43 } in biggest_left_key < key; 111.16/79.43 left_size = sizeFM fm_l; 111.16/79.43 right_ok = right_ok0 fm_r key fm_r; 111.16/79.43 right_ok0 fm_r key EmptyFM = True; 111.16/79.43 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 111.20/79.48 smallest_right_key = fst (findMin fm_r); 111.20/79.48 } in key < smallest_right_key; 111.20/79.48 right_size = sizeFM fm_r; 111.20/79.48 unbox :: Int -> Int; 111.20/79.48 unbox x = x; 111.20/79.48 }; 111.20/79.48 111.20/79.48 sIZE_RATIO :: Int; 111.20/79.48 sIZE_RATIO = 5; 111.20/79.48 111.20/79.48 sizeFM :: FiniteMap a b -> Int; 111.20/79.48 sizeFM EmptyFM = 0; 111.20/79.48 sizeFM (Branch vz wu size wv ww) = size; 111.20/79.48 111.20/79.48 unitFM :: a -> b -> FiniteMap a b; 111.20/79.48 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.20/79.48 111.20/79.48 } 111.20/79.48 module Maybe where { 111.20/79.48 import qualified FiniteMap; 111.20/79.48 import qualified Main; 111.20/79.48 import qualified Prelude; 111.20/79.48 } 111.20/79.48 module Main where { 111.20/79.48 import qualified FiniteMap; 111.20/79.48 import qualified Maybe; 111.20/79.48 import qualified Prelude; 111.20/79.48 } 111.20/79.48 111.20/79.48 ---------------------------------------- 111.20/79.48 111.20/79.48 (7) LetRed (EQUIVALENT) 111.20/79.48 Let/Where Reductions: 111.20/79.48 The bindings of the following Let/Where expression 111.20/79.48 "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 111.20/79.48 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.20/79.48 ; 111.20/79.48 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.20/79.48 ; 111.20/79.48 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.20/79.48 ; 111.20/79.48 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 111.20/79.48 ; 111.20/79.48 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 111.20/79.48 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.20/79.48 ; 111.20/79.48 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 111.20/79.48 ; 111.20/79.48 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.20/79.48 ; 111.20/79.48 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 111.20/79.48 ; 111.20/79.48 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 111.20/79.48 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.20/79.48 ; 111.20/79.48 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 111.20/79.48 ; 111.20/79.48 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 111.20/79.48 ; 111.20/79.48 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 111.20/79.48 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 111.20/79.48 ; 111.20/79.48 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 111.20/79.48 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 111.20/79.48 ; 111.20/79.48 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 111.20/79.48 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 111.20/79.48 ; 111.20/79.48 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.20/79.48 ; 111.20/79.48 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.20/79.48 ; 111.20/79.48 size_l = sizeFM fm_L; 111.20/79.48 ; 111.20/79.48 size_r = sizeFM fm_R; 111.20/79.48 } 111.20/79.48 " 111.20/79.48 are unpacked to the following functions on top level 111.20/79.48 "mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwx; 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.20/79.48 " 111.20/79.48 "mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwy vwz fm_l fm_rl) fm_rr; 111.20/79.48 " 111.20/79.48 "mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 " 111.20/79.48 "mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwy vwz fm_lr fm_r); 111.20/79.48 " 111.20/79.48 "mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwy vwz fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 111.20/79.48 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 111.20/79.48 " 111.20/79.48 "mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwy vwz fm_lrr fm_r); 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 111.20/79.48 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.20/79.48 " 111.20/79.48 "mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 111.20/79.48 " 111.20/79.48 The bindings of the following Let/Where expression 111.20/79.48 "let { 111.20/79.48 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.20/79.48 } in result where { 111.20/79.48 balance_ok = True; 111.20/79.48 ; 111.20/79.48 left_ok = left_ok0 fm_l key fm_l; 111.20/79.48 ; 111.20/79.48 left_ok0 fm_l key EmptyFM = True; 111.20/79.48 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 111.20/79.48 biggest_left_key = fst (findMax fm_l); 111.20/79.48 } in biggest_left_key < key; 111.20/79.48 ; 111.20/79.48 left_size = sizeFM fm_l; 111.20/79.48 ; 111.20/79.48 right_ok = right_ok0 fm_r key fm_r; 111.20/79.48 ; 111.20/79.48 right_ok0 fm_r key EmptyFM = True; 111.20/79.48 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 111.20/79.48 smallest_right_key = fst (findMin fm_r); 111.20/79.48 } in key < smallest_right_key; 111.20/79.48 ; 111.20/79.48 right_size = sizeFM fm_r; 111.20/79.48 ; 111.20/79.48 unbox x = x; 111.20/79.48 } 111.20/79.48 " 111.20/79.48 are unpacked to the following functions on top level 111.20/79.48 "mkBranchUnbox vxv vxw vxx x = x; 111.20/79.48 " 111.20/79.48 "mkBranchBalance_ok vxv vxw vxx = True; 111.20/79.48 " 111.20/79.48 "mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxw vxv; 111.20/79.48 " 111.20/79.48 "mkBranchRight_size vxv vxw vxx = sizeFM vxx; 111.20/79.48 " 111.20/79.48 "mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxx vxw vxx; 111.20/79.48 " 111.20/79.48 "mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 111.20/79.48 " 111.20/79.48 "mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 111.20/79.48 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 111.20/79.48 " 111.20/79.48 "mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 111.20/79.48 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 111.20/79.48 " 111.20/79.48 The bindings of the following Let/Where expression 111.20/79.48 "let { 111.20/79.48 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.20/79.48 } in result" 111.20/79.48 are unpacked to the following functions on top level 111.20/79.48 "mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vxy vyv (1 + mkBranchLeft_size vyu vxy vyv + mkBranchRight_size vyu vxy vyv)) vyu vyv; 111.20/79.48 " 111.20/79.48 The bindings of the following Let/Where expression 111.20/79.48 "let { 111.20/79.48 smallest_right_key = fst (findMin fm_r); 111.20/79.48 } in key < smallest_right_key" 111.20/79.48 are unpacked to the following functions on top level 111.20/79.48 "mkBranchRight_ok0Smallest_right_key vyw = fst (findMin vyw); 111.20/79.48 " 111.20/79.48 The bindings of the following Let/Where expression 111.20/79.48 "let { 111.20/79.48 biggest_left_key = fst (findMax fm_l); 111.20/79.48 } in biggest_left_key < key" 111.20/79.48 are unpacked to the following functions on top level 111.20/79.48 "mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 111.20/79.48 " 111.20/79.48 111.20/79.48 ---------------------------------------- 111.20/79.48 111.20/79.48 (8) 111.20/79.48 Obligation: 111.20/79.48 mainModule Main 111.20/79.48 module FiniteMap where { 111.20/79.48 import qualified Main; 111.20/79.48 import qualified Maybe; 111.20/79.48 import qualified Prelude; 111.20/79.48 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 111.20/79.48 111.20/79.48 instance (Eq a, Eq b) => Eq FiniteMap a b where { 111.20/79.48 } 111.20/79.48 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 111.20/79.48 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 111.20/79.48 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 111.20/79.48 111.20/79.48 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.20/79.48 111.20/79.48 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 111.20/79.48 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 111.20/79.48 111.20/79.48 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 111.20/79.48 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 111.20/79.48 111.20/79.48 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 111.20/79.48 111.20/79.48 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 111.20/79.48 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 111.20/79.48 111.20/79.48 emptyFM :: FiniteMap a b; 111.20/79.48 emptyFM = EmptyFM; 111.20/79.48 111.20/79.48 findMax :: FiniteMap a b -> (a,b); 111.20/79.48 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 111.20/79.48 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 111.20/79.48 111.20/79.48 findMin :: FiniteMap b a -> (b,a); 111.20/79.48 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 111.20/79.48 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 111.20/79.48 111.20/79.48 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.20/79.48 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 111.20/79.48 111.20/79.48 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 fm_R key elt fm_L key elt fm_L fm_R (mkBalBranch6Size_l fm_R key elt fm_L + mkBalBranch6Size_r fm_R key elt fm_L < 2); 111.20/79.48 111.20/79.48 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwy vwz fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.20/79.48 111.20/79.48 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwy vwz fm_lrr fm_r); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 111.20/79.48 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 111.20/79.48 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 111.20/79.48 111.20/79.48 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwy vwz fm_l fm_rl) fm_rr; 111.20/79.48 111.20/79.48 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwy vwz fm_lr fm_r); 111.20/79.48 111.20/79.48 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 111.20/79.48 111.20/79.48 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwx; 111.20/79.48 111.20/79.48 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.20/79.48 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 111.20/79.48 111.20/79.48 mkBranchBalance_ok vxv vxw vxx = True; 111.20/79.48 111.20/79.48 mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxw vxv; 111.20/79.48 111.20/79.48 mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 111.20/79.48 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 111.20/79.48 111.20/79.48 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 111.20/79.48 111.20/79.48 mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 111.20/79.48 111.20/79.48 mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vxy vyv (1 + mkBranchLeft_size vyu vxy vyv + mkBranchRight_size vyu vxy vyv)) vyu vyv; 111.20/79.48 111.20/79.48 mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxx vxw vxx; 111.20/79.48 111.20/79.48 mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 111.20/79.48 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 111.20/79.48 111.20/79.48 mkBranchRight_ok0Smallest_right_key vyw = fst (findMin vyw); 111.20/79.48 111.20/79.48 mkBranchRight_size vxv vxw vxx = sizeFM vxx; 111.20/79.48 111.20/79.48 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); 111.20/79.48 mkBranchUnbox vxv vxw vxx x = x; 111.20/79.48 111.20/79.48 sIZE_RATIO :: Int; 111.20/79.48 sIZE_RATIO = 5; 111.20/79.48 111.20/79.48 sizeFM :: FiniteMap b a -> Int; 111.20/79.48 sizeFM EmptyFM = 0; 111.20/79.48 sizeFM (Branch vz wu size wv ww) = size; 111.20/79.48 111.20/79.48 unitFM :: a -> b -> FiniteMap a b; 111.20/79.48 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.20/79.48 111.20/79.48 } 111.20/79.48 module Maybe where { 111.20/79.48 import qualified FiniteMap; 111.20/79.48 import qualified Main; 111.20/79.48 import qualified Prelude; 111.20/79.48 } 111.20/79.48 module Main where { 111.20/79.48 import qualified FiniteMap; 111.20/79.48 import qualified Maybe; 111.20/79.48 import qualified Prelude; 111.20/79.48 } 111.20/79.48 111.20/79.48 ---------------------------------------- 111.20/79.48 111.20/79.48 (9) NumRed (SOUND) 111.20/79.48 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 111.20/79.48 ---------------------------------------- 111.20/79.48 111.20/79.48 (10) 111.20/79.48 Obligation: 111.20/79.48 mainModule Main 111.20/79.48 module FiniteMap where { 111.20/79.48 import qualified Main; 111.20/79.48 import qualified Maybe; 111.20/79.48 import qualified Prelude; 111.20/79.48 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 111.20/79.48 111.20/79.48 instance (Eq a, Eq b) => Eq FiniteMap b a where { 111.20/79.48 } 111.20/79.48 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 111.20/79.48 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 111.20/79.48 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 111.20/79.48 111.20/79.48 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.20/79.48 111.20/79.48 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 111.20/79.48 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 111.20/79.48 111.20/79.48 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 111.20/79.48 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 111.20/79.48 111.20/79.48 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 111.20/79.48 111.20/79.48 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 111.20/79.48 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 111.20/79.48 111.20/79.48 emptyFM :: FiniteMap a b; 111.20/79.48 emptyFM = EmptyFM; 111.20/79.48 111.20/79.48 findMax :: FiniteMap b a -> (b,a); 111.20/79.48 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 111.20/79.48 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 111.20/79.48 111.20/79.48 findMin :: FiniteMap a b -> (a,b); 111.20/79.48 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 111.20/79.48 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 111.20/79.48 111.20/79.48 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 111.20/79.48 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 111.20/79.48 111.20/79.48 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 fm_R key elt fm_L key elt fm_L fm_R (mkBalBranch6Size_l fm_R key elt fm_L + mkBalBranch6Size_r fm_R key elt fm_L < Pos (Succ (Succ Zero))); 111.20/79.48 111.20/79.48 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) vwy vwz fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); 111.20/79.48 111.20/79.48 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) vwy vwz fm_lrr fm_r); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 111.20/79.48 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 111.20/79.48 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 111.20/79.48 111.20/79.48 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; 111.20/79.48 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 111.20/79.48 111.20/79.48 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) vwy vwz fm_l fm_rl) fm_rr; 111.20/79.48 111.20/79.48 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) vwy vwz fm_lr fm_r); 111.20/79.48 111.20/79.48 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 111.20/79.48 111.20/79.48 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwx; 111.20/79.48 111.20/79.48 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.20/79.48 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 111.20/79.48 111.20/79.48 mkBranchBalance_ok vxv vxw vxx = True; 111.20/79.48 111.20/79.48 mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxw vxv; 111.20/79.48 111.20/79.48 mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 111.20/79.48 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 111.20/79.48 111.20/79.48 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 111.20/79.48 111.20/79.48 mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 111.20/79.48 111.20/79.48 mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vxy vyv (Pos (Succ Zero) + mkBranchLeft_size vyu vxy vyv + mkBranchRight_size vyu vxy vyv)) vyu vyv; 111.20/79.48 111.20/79.48 mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxx vxw vxx; 111.20/79.48 111.20/79.48 mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 111.20/79.48 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 111.20/79.48 111.20/79.48 mkBranchRight_ok0Smallest_right_key vyw = fst (findMin vyw); 111.20/79.48 111.20/79.48 mkBranchRight_size vxv vxw vxx = sizeFM vxx; 111.20/79.48 111.20/79.48 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); 111.20/79.48 mkBranchUnbox vxv vxw vxx x = x; 111.20/79.48 111.20/79.48 sIZE_RATIO :: Int; 111.20/79.48 sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); 111.20/79.48 111.20/79.48 sizeFM :: FiniteMap b a -> Int; 111.20/79.48 sizeFM EmptyFM = Pos Zero; 111.20/79.48 sizeFM (Branch vz wu size wv ww) = size; 111.20/79.48 111.20/79.48 unitFM :: a -> b -> FiniteMap a b; 111.20/79.48 unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; 111.20/79.48 111.20/79.48 } 111.20/79.48 module Maybe where { 111.20/79.48 import qualified FiniteMap; 111.20/79.48 import qualified Main; 111.20/79.48 import qualified Prelude; 111.20/79.48 } 111.20/79.48 module Main where { 111.20/79.48 import qualified FiniteMap; 111.20/79.48 import qualified Maybe; 111.20/79.48 import qualified Prelude; 111.20/79.48 } 111.45/79.53 EOF