9.89/4.51 YES 12.86/5.26 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 12.86/5.26 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 12.86/5.26 12.86/5.26 12.86/5.26 H-Termination with start terms of the given HASKELL could be proven: 12.86/5.26 12.86/5.26 (0) HASKELL 12.86/5.26 (1) LR [EQUIVALENT, 0 ms] 12.86/5.26 (2) HASKELL 12.86/5.26 (3) CR [EQUIVALENT, 0 ms] 12.86/5.26 (4) HASKELL 12.86/5.26 (5) BR [EQUIVALENT, 0 ms] 12.86/5.26 (6) HASKELL 12.86/5.26 (7) COR [EQUIVALENT, 19 ms] 12.86/5.26 (8) HASKELL 12.86/5.26 (9) LetRed [EQUIVALENT, 0 ms] 12.86/5.26 (10) HASKELL 12.86/5.26 (11) NumRed [SOUND, 0 ms] 12.86/5.26 (12) HASKELL 12.86/5.26 (13) Narrow [EQUIVALENT, 22 ms] 12.86/5.26 (14) YES 12.86/5.26 12.86/5.26 12.86/5.26 ---------------------------------------- 12.86/5.26 12.86/5.26 (0) 12.86/5.26 Obligation: 12.86/5.26 mainModule Main 12.86/5.26 module FiniteMap where { 12.86/5.26 import qualified Main; 12.86/5.26 import qualified Maybe; 12.86/5.26 import qualified Prelude; 12.86/5.26 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 12.86/5.26 12.86/5.26 instance (Eq a, Eq b) => Eq FiniteMap a b where { 12.86/5.26 } 12.86/5.26 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 12.86/5.26 addToFM fm key elt = addToFM_C (\old new ->new) fm key elt; 12.86/5.26 12.86/5.26 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 13.59/5.47 addToFM_C combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 13.59/5.47 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 13.59/5.47 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 13.59/5.47 emptyFM :: FiniteMap b a; 13.59/5.47 emptyFM = EmptyFM; 13.59/5.47 13.59/5.47 findMax :: FiniteMap a b -> (a,b); 13.59/5.47 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 13.59/5.47 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 13.59/5.47 13.59/5.47 findMin :: FiniteMap a b -> (a,b); 13.59/5.47 findMin (Branch key elt _ EmptyFM _) = (key,elt); 13.59/5.47 findMin (Branch key elt _ fm_l _) = findMin fm_l; 13.59/5.47 13.59/5.47 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 13.59/5.47 | size_r > sIZE_RATIO * size_l = case fm_R of { 13.59/5.47 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 13.59/5.47 | otherwise -> double_L fm_L fm_R; 13.59/5.47 } 13.59/5.47 | size_l > sIZE_RATIO * size_r = case fm_L of { 13.59/5.47 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 13.59/5.47 | otherwise -> double_R fm_L fm_R; 13.59/5.47 } 13.59/5.47 | otherwise = mkBranch 2 key elt fm_L fm_R where { 13.59/5.47 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.59/5.47 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.59/5.47 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.59/5.47 size_l = sizeFM fm_L; 13.59/5.47 size_r = sizeFM fm_R; 13.59/5.47 }; 13.59/5.47 13.59/5.47 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBranch which key elt fm_l fm_r = let { 13.59/5.47 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.59/5.47 } in result where { 13.59/5.47 balance_ok = True; 13.59/5.47 left_ok = case fm_l of { 13.59/5.47 EmptyFM-> True; 13.59/5.47 Branch left_key _ _ _ _-> let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key; 13.59/5.47 } ; 13.59/5.47 left_size = sizeFM fm_l; 13.59/5.47 right_ok = case fm_r of { 13.59/5.47 EmptyFM-> True; 13.59/5.47 Branch right_key _ _ _ _-> let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key; 13.59/5.47 } ; 13.59/5.47 right_size = sizeFM fm_r; 13.59/5.47 unbox :: Int -> Int; 13.59/5.47 unbox x = x; 13.59/5.47 }; 13.59/5.47 13.59/5.47 sIZE_RATIO :: Int; 13.59/5.47 sIZE_RATIO = 5; 13.59/5.47 13.59/5.47 sizeFM :: FiniteMap b a -> Int; 13.59/5.47 sizeFM EmptyFM = 0; 13.59/5.47 sizeFM (Branch _ _ size _ _) = size; 13.59/5.47 13.59/5.47 unitFM :: a -> b -> FiniteMap a b; 13.59/5.47 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.59/5.47 13.59/5.47 } 13.59/5.47 module Maybe where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 module Main where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (1) LR (EQUIVALENT) 13.59/5.47 Lambda Reductions: 13.59/5.47 The following Lambda expression 13.59/5.47 "\oldnew->new" 13.59/5.47 is transformed to 13.59/5.47 "addToFM0 old new = new; 13.59/5.47 " 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (2) 13.59/5.47 Obligation: 13.59/5.47 mainModule Main 13.59/5.47 module FiniteMap where { 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 13.59/5.47 13.59/5.47 instance (Eq a, Eq b) => Eq FiniteMap b a where { 13.59/5.47 } 13.59/5.47 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 13.59/5.47 13.59/5.47 addToFM0 old new = new; 13.59/5.47 13.59/5.47 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM_C combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 13.59/5.47 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 13.59/5.47 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 13.59/5.47 emptyFM :: FiniteMap a b; 13.59/5.47 emptyFM = EmptyFM; 13.59/5.47 13.59/5.47 findMax :: FiniteMap b a -> (b,a); 13.59/5.47 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 13.59/5.47 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 13.59/5.47 13.59/5.47 findMin :: FiniteMap b a -> (b,a); 13.59/5.47 findMin (Branch key elt _ EmptyFM _) = (key,elt); 13.59/5.47 findMin (Branch key elt _ fm_l _) = findMin fm_l; 13.59/5.47 13.59/5.47 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 13.59/5.47 | size_r > sIZE_RATIO * size_l = case fm_R of { 13.59/5.47 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 13.59/5.47 | otherwise -> double_L fm_L fm_R; 13.59/5.47 } 13.59/5.47 | size_l > sIZE_RATIO * size_r = case fm_L of { 13.59/5.47 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 13.59/5.47 | otherwise -> double_R fm_L fm_R; 13.59/5.47 } 13.59/5.47 | otherwise = mkBranch 2 key elt fm_L fm_R where { 13.59/5.47 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.59/5.47 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.59/5.47 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.59/5.47 size_l = sizeFM fm_L; 13.59/5.47 size_r = sizeFM fm_R; 13.59/5.47 }; 13.59/5.47 13.59/5.47 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 13.59/5.47 mkBranch which key elt fm_l fm_r = let { 13.59/5.47 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.59/5.47 } in result where { 13.59/5.47 balance_ok = True; 13.59/5.47 left_ok = case fm_l of { 13.59/5.47 EmptyFM-> True; 13.59/5.47 Branch left_key _ _ _ _-> let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key; 13.59/5.47 } ; 13.59/5.47 left_size = sizeFM fm_l; 13.59/5.47 right_ok = case fm_r of { 13.59/5.47 EmptyFM-> True; 13.59/5.47 Branch right_key _ _ _ _-> let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key; 13.59/5.47 } ; 13.59/5.47 right_size = sizeFM fm_r; 13.59/5.47 unbox :: Int -> Int; 13.59/5.47 unbox x = x; 13.59/5.47 }; 13.59/5.47 13.59/5.47 sIZE_RATIO :: Int; 13.59/5.47 sIZE_RATIO = 5; 13.59/5.47 13.59/5.47 sizeFM :: FiniteMap a b -> Int; 13.59/5.47 sizeFM EmptyFM = 0; 13.59/5.47 sizeFM (Branch _ _ size _ _) = size; 13.59/5.47 13.59/5.47 unitFM :: b -> a -> FiniteMap b a; 13.59/5.47 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.59/5.47 13.59/5.47 } 13.59/5.47 module Maybe where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 module Main where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (3) CR (EQUIVALENT) 13.59/5.47 Case Reductions: 13.59/5.47 The following Case expression 13.59/5.47 "case fm_r of { 13.59/5.47 EmptyFM -> True; 13.59/5.47 Branch right_key _ _ _ _ -> let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key} 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "right_ok0 fm_r key EmptyFM = True; 13.59/5.47 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key; 13.59/5.47 " 13.59/5.47 The following Case expression 13.59/5.47 "case fm_l of { 13.59/5.47 EmptyFM -> True; 13.59/5.47 Branch left_key _ _ _ _ -> let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key} 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "left_ok0 fm_l key EmptyFM = True; 13.59/5.47 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key; 13.59/5.47 " 13.59/5.47 The following Case expression 13.59/5.47 "case fm_R of { 13.59/5.47 Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 13.59/5.47 " 13.59/5.47 The following Case expression 13.59/5.47 "case fm_L of { 13.59/5.47 Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 13.59/5.47 " 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (4) 13.59/5.47 Obligation: 13.59/5.47 mainModule Main 13.59/5.47 module FiniteMap where { 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 13.59/5.47 13.59/5.47 instance (Eq a, Eq b) => Eq FiniteMap b a where { 13.59/5.47 } 13.59/5.47 addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; 13.59/5.47 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 13.59/5.47 13.59/5.47 addToFM0 old new = new; 13.59/5.47 13.59/5.47 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM_C combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 13.59/5.47 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 13.59/5.47 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 13.59/5.47 emptyFM :: FiniteMap a b; 13.59/5.47 emptyFM = EmptyFM; 13.59/5.47 13.59/5.47 findMax :: FiniteMap a b -> (a,b); 13.59/5.47 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 13.59/5.47 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 13.59/5.47 13.59/5.47 findMin :: FiniteMap b a -> (b,a); 13.59/5.47 findMin (Branch key elt _ EmptyFM _) = (key,elt); 13.59/5.47 findMin (Branch key elt _ fm_l _) = findMin fm_l; 13.59/5.47 13.59/5.47 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 13.59/5.47 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 13.59/5.47 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 13.59/5.47 | otherwise = mkBranch 2 key elt fm_L fm_R where { 13.59/5.47 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.59/5.47 mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 13.59/5.47 | otherwise = double_L fm_L fm_R; 13.59/5.47 mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 13.59/5.47 | otherwise = double_R fm_L fm_R; 13.59/5.47 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.59/5.47 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.59/5.47 size_l = sizeFM fm_L; 13.59/5.47 size_r = sizeFM fm_R; 13.59/5.47 }; 13.59/5.47 13.59/5.47 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 13.59/5.47 mkBranch which key elt fm_l fm_r = let { 13.59/5.47 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.59/5.47 } in result where { 13.59/5.47 balance_ok = True; 13.59/5.47 left_ok = left_ok0 fm_l key fm_l; 13.59/5.47 left_ok0 fm_l key EmptyFM = True; 13.59/5.47 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key; 13.59/5.47 left_size = sizeFM fm_l; 13.59/5.47 right_ok = right_ok0 fm_r key fm_r; 13.59/5.47 right_ok0 fm_r key EmptyFM = True; 13.59/5.47 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key; 13.59/5.47 right_size = sizeFM fm_r; 13.59/5.47 unbox :: Int -> Int; 13.59/5.47 unbox x = x; 13.59/5.47 }; 13.59/5.47 13.59/5.47 sIZE_RATIO :: Int; 13.59/5.47 sIZE_RATIO = 5; 13.59/5.47 13.59/5.47 sizeFM :: FiniteMap a b -> Int; 13.59/5.47 sizeFM EmptyFM = 0; 13.59/5.47 sizeFM (Branch _ _ size _ _) = size; 13.59/5.47 13.59/5.47 unitFM :: a -> b -> FiniteMap a b; 13.59/5.47 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.59/5.47 13.59/5.47 } 13.59/5.47 module Maybe where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 module Main where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (5) BR (EQUIVALENT) 13.59/5.47 Replaced joker patterns by fresh variables and removed binding patterns. 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (6) 13.59/5.47 Obligation: 13.59/5.47 mainModule Main 13.59/5.47 module FiniteMap where { 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 13.59/5.47 13.59/5.47 instance (Eq a, Eq b) => Eq FiniteMap b a where { 13.59/5.47 } 13.59/5.47 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 13.59/5.47 13.59/5.47 addToFM0 old new = new; 13.59/5.47 13.59/5.47 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM_C combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 13.59/5.47 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 13.59/5.47 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 13.59/5.47 emptyFM :: FiniteMap a b; 13.59/5.47 emptyFM = EmptyFM; 13.59/5.47 13.59/5.47 findMax :: FiniteMap b a -> (b,a); 13.59/5.47 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 13.59/5.47 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 13.59/5.47 13.59/5.47 findMin :: FiniteMap a b -> (a,b); 13.59/5.47 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 13.59/5.47 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 13.59/5.47 13.59/5.47 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 13.59/5.47 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 13.59/5.47 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 13.59/5.47 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 13.59/5.47 | otherwise = mkBranch 2 key elt fm_L fm_R where { 13.59/5.47 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.59/5.47 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 13.59/5.47 | otherwise = double_L fm_L fm_R; 13.59/5.47 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 13.59/5.47 | otherwise = double_R fm_L fm_R; 13.59/5.47 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.59/5.47 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.59/5.47 size_l = sizeFM fm_L; 13.59/5.47 size_r = sizeFM fm_R; 13.59/5.47 }; 13.59/5.47 13.59/5.47 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBranch which key elt fm_l fm_r = let { 13.59/5.47 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.59/5.47 } in result where { 13.59/5.47 balance_ok = True; 13.59/5.47 left_ok = left_ok0 fm_l key fm_l; 13.59/5.47 left_ok0 fm_l key EmptyFM = True; 13.59/5.47 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key; 13.59/5.47 left_size = sizeFM fm_l; 13.59/5.47 right_ok = right_ok0 fm_r key fm_r; 13.59/5.47 right_ok0 fm_r key EmptyFM = True; 13.59/5.47 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key; 13.59/5.47 right_size = sizeFM fm_r; 13.59/5.47 unbox :: Int -> Int; 13.59/5.47 unbox x = x; 13.59/5.47 }; 13.59/5.47 13.59/5.47 sIZE_RATIO :: Int; 13.59/5.47 sIZE_RATIO = 5; 13.59/5.47 13.59/5.47 sizeFM :: FiniteMap b a -> Int; 13.59/5.47 sizeFM EmptyFM = 0; 13.59/5.47 sizeFM (Branch vz wu size wv ww) = size; 13.59/5.47 13.59/5.47 unitFM :: a -> b -> FiniteMap a b; 13.59/5.47 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.59/5.47 13.59/5.47 } 13.59/5.47 module Maybe where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 module Main where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (7) COR (EQUIVALENT) 13.59/5.47 Cond Reductions: 13.59/5.47 The following Function with conditions 13.59/5.47 "undefined |Falseundefined; 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "undefined = undefined1; 13.59/5.47 " 13.59/5.47 "undefined0 True = undefined; 13.59/5.47 " 13.59/5.47 "undefined1 = undefined0 False; 13.59/5.47 " 13.59/5.47 The following Function with conditions 13.59/5.47 "addToFM_C combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 13.59/5.47 " 13.59/5.47 "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 13.59/5.47 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 13.59/5.47 " 13.59/5.47 "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 13.59/5.47 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 13.59/5.47 " 13.59/5.47 "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 " 13.59/5.47 "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 13.59/5.47 " 13.59/5.47 "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 13.59/5.47 " 13.59/5.47 The following Function with conditions 13.59/5.47 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.59/5.47 " 13.59/5.47 "mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 13.59/5.47 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.59/5.47 " 13.59/5.47 "mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 13.59/5.47 " 13.59/5.47 "mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.59/5.47 " 13.59/5.47 The following Function with conditions 13.59/5.47 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.59/5.47 " 13.59/5.47 "mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 13.59/5.47 " 13.59/5.47 "mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 13.59/5.47 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.59/5.47 " 13.59/5.47 "mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.59/5.47 " 13.59/5.47 The following Function with conditions 13.59/5.47 "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { 13.59/5.47 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 ; 13.59/5.47 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.59/5.47 ; 13.59/5.47 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 13.59/5.47 ; 13.59/5.47 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 13.59/5.47 ; 13.59/5.47 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.59/5.47 ; 13.59/5.47 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.59/5.47 ; 13.59/5.47 size_l = sizeFM fm_L; 13.59/5.47 ; 13.59/5.47 size_r = sizeFM fm_R; 13.59/5.47 } 13.59/5.47 ; 13.59/5.47 " 13.59/5.47 is transformed to 13.59/5.47 "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 13.59/5.47 " 13.59/5.47 "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 13.59/5.47 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 ; 13.59/5.47 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.59/5.47 ; 13.59/5.47 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.59/5.47 ; 13.59/5.47 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 13.59/5.47 ; 13.59/5.47 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 13.59/5.47 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.59/5.47 ; 13.59/5.47 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.59/5.47 ; 13.59/5.47 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.59/5.47 ; 13.59/5.47 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 13.59/5.47 ; 13.59/5.47 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 13.59/5.47 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.59/5.47 ; 13.59/5.47 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.59/5.47 ; 13.59/5.47 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.59/5.47 ; 13.59/5.47 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 13.59/5.47 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 13.59/5.47 ; 13.59/5.47 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 13.59/5.47 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 13.59/5.47 ; 13.59/5.47 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.59/5.47 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 13.59/5.47 ; 13.59/5.47 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.59/5.47 ; 13.59/5.47 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.59/5.47 ; 13.59/5.47 size_l = sizeFM fm_L; 13.59/5.47 ; 13.59/5.47 size_r = sizeFM fm_R; 13.59/5.47 } 13.59/5.47 ; 13.59/5.47 " 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (8) 13.59/5.47 Obligation: 13.59/5.47 mainModule Main 13.59/5.47 module FiniteMap where { 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 13.59/5.47 13.59/5.47 instance (Eq a, Eq b) => Eq FiniteMap b a where { 13.59/5.47 } 13.59/5.47 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 13.59/5.47 13.59/5.47 addToFM0 old new = new; 13.59/5.47 13.59/5.47 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 13.59/5.47 13.59/5.47 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 13.59/5.47 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 13.59/5.47 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 13.59/5.47 13.59/5.47 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 13.59/5.47 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 13.59/5.47 13.59/5.47 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 13.59/5.47 13.59/5.47 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 13.59/5.47 13.59/5.47 emptyFM :: FiniteMap b a; 13.59/5.47 emptyFM = EmptyFM; 13.59/5.47 13.59/5.47 findMax :: FiniteMap b a -> (b,a); 13.59/5.47 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 13.59/5.47 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 13.59/5.47 13.59/5.47 findMin :: FiniteMap a b -> (a,b); 13.59/5.47 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 13.59/5.47 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 13.59/5.47 13.59/5.47 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 13.59/5.47 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.59/5.47 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.59/5.47 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 13.59/5.47 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 13.59/5.47 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.59/5.47 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.59/5.47 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.59/5.47 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 13.59/5.47 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 13.59/5.47 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.59/5.47 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.59/5.47 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.59/5.47 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 13.59/5.47 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 13.59/5.47 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 13.59/5.47 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 13.59/5.47 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.59/5.47 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 13.59/5.47 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.59/5.47 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.59/5.47 size_l = sizeFM fm_L; 13.59/5.47 size_r = sizeFM fm_R; 13.59/5.47 }; 13.59/5.47 13.59/5.47 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBranch which key elt fm_l fm_r = let { 13.59/5.47 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.59/5.47 } in result where { 13.59/5.47 balance_ok = True; 13.59/5.47 left_ok = left_ok0 fm_l key fm_l; 13.59/5.47 left_ok0 fm_l key EmptyFM = True; 13.59/5.47 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key; 13.59/5.47 left_size = sizeFM fm_l; 13.59/5.47 right_ok = right_ok0 fm_r key fm_r; 13.59/5.47 right_ok0 fm_r key EmptyFM = True; 13.59/5.47 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key; 13.59/5.47 right_size = sizeFM fm_r; 13.59/5.47 unbox :: Int -> Int; 13.59/5.47 unbox x = x; 13.59/5.47 }; 13.59/5.47 13.59/5.47 sIZE_RATIO :: Int; 13.59/5.47 sIZE_RATIO = 5; 13.59/5.47 13.59/5.47 sizeFM :: FiniteMap b a -> Int; 13.59/5.47 sizeFM EmptyFM = 0; 13.59/5.47 sizeFM (Branch vz wu size wv ww) = size; 13.59/5.47 13.59/5.47 unitFM :: b -> a -> FiniteMap b a; 13.59/5.47 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.59/5.47 13.59/5.47 } 13.59/5.47 module Maybe where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 module Main where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (9) LetRed (EQUIVALENT) 13.59/5.47 Let/Where Reductions: 13.59/5.47 The bindings of the following Let/Where expression 13.59/5.47 "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 13.59/5.47 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 ; 13.59/5.47 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.59/5.47 ; 13.59/5.47 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.59/5.47 ; 13.59/5.47 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 13.59/5.47 ; 13.59/5.47 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 13.59/5.47 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.59/5.47 ; 13.59/5.47 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.59/5.47 ; 13.59/5.47 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.59/5.47 ; 13.59/5.47 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 13.59/5.47 ; 13.59/5.47 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 13.59/5.47 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.59/5.47 ; 13.59/5.47 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.59/5.47 ; 13.59/5.47 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.59/5.47 ; 13.59/5.47 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 13.59/5.47 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 13.59/5.47 ; 13.59/5.47 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 13.59/5.47 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 13.59/5.47 ; 13.59/5.47 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.59/5.47 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 13.59/5.47 ; 13.59/5.47 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.59/5.47 ; 13.59/5.47 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.59/5.47 ; 13.59/5.47 size_l = sizeFM fm_L; 13.59/5.47 ; 13.59/5.47 size_r = sizeFM fm_R; 13.59/5.47 } 13.59/5.47 " 13.59/5.47 are unpacked to the following functions on top level 13.59/5.47 "mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.59/5.47 " 13.59/5.47 "mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 " 13.59/5.47 "mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 13.59/5.47 " 13.59/5.47 "mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 13.59/5.47 " 13.59/5.47 "mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 13.59/5.47 " 13.59/5.47 "mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 13.59/5.47 " 13.59/5.47 "mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 13.59/5.47 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 13.59/5.47 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 13.59/5.47 " 13.59/5.47 "mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.59/5.47 " 13.59/5.47 The bindings of the following Let/Where expression 13.59/5.47 "let { 13.59/5.47 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.59/5.47 } in result where { 13.59/5.47 balance_ok = True; 13.59/5.47 ; 13.59/5.47 left_ok = left_ok0 fm_l key fm_l; 13.59/5.47 ; 13.59/5.47 left_ok0 fm_l key EmptyFM = True; 13.59/5.47 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key; 13.59/5.47 ; 13.59/5.47 left_size = sizeFM fm_l; 13.59/5.47 ; 13.59/5.47 right_ok = right_ok0 fm_r key fm_r; 13.59/5.47 ; 13.59/5.47 right_ok0 fm_r key EmptyFM = True; 13.59/5.47 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key; 13.59/5.47 ; 13.59/5.47 right_size = sizeFM fm_r; 13.59/5.47 ; 13.59/5.47 unbox x = x; 13.59/5.47 } 13.59/5.47 " 13.59/5.47 are unpacked to the following functions on top level 13.59/5.47 "mkBranchUnbox vxv vxw vxx x = x; 13.59/5.47 " 13.59/5.47 "mkBranchRight_size vxv vxw vxx = sizeFM vxv; 13.59/5.47 " 13.59/5.47 "mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxw vxx vxw; 13.59/5.47 " 13.59/5.47 "mkBranchLeft_size vxv vxw vxx = sizeFM vxw; 13.59/5.47 " 13.59/5.47 "mkBranchBalance_ok vxv vxw vxx = True; 13.59/5.47 " 13.59/5.47 "mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 13.59/5.47 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 13.59/5.47 " 13.59/5.47 "mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 13.59/5.47 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 13.59/5.47 " 13.59/5.47 "mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxv vxx vxv; 13.59/5.47 " 13.59/5.47 The bindings of the following Let/Where expression 13.59/5.47 "let { 13.59/5.47 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.59/5.47 } in result" 13.59/5.47 are unpacked to the following functions on top level 13.59/5.47 "mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (1 + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyv vyu; 13.59/5.47 " 13.59/5.47 The bindings of the following Let/Where expression 13.59/5.47 "let { 13.59/5.47 biggest_left_key = fst (findMax fm_l); 13.59/5.47 } in biggest_left_key < key" 13.59/5.47 are unpacked to the following functions on top level 13.59/5.47 "mkBranchLeft_ok0Biggest_left_key vyw = fst (findMax vyw); 13.59/5.47 " 13.59/5.47 The bindings of the following Let/Where expression 13.59/5.47 "let { 13.59/5.47 smallest_right_key = fst (findMin fm_r); 13.59/5.47 } in key < smallest_right_key" 13.59/5.47 are unpacked to the following functions on top level 13.59/5.47 "mkBranchRight_ok0Smallest_right_key vyx = fst (findMin vyx); 13.59/5.47 " 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (10) 13.59/5.47 Obligation: 13.59/5.47 mainModule Main 13.59/5.47 module FiniteMap where { 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 13.59/5.47 13.59/5.47 instance (Eq a, Eq b) => Eq FiniteMap b a where { 13.59/5.47 } 13.59/5.47 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 13.59/5.47 13.59/5.47 addToFM0 old new = new; 13.59/5.47 13.59/5.47 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 13.59/5.47 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 13.59/5.47 13.59/5.47 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 13.59/5.47 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 13.59/5.47 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 13.59/5.47 13.59/5.47 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 13.59/5.47 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 13.59/5.47 13.59/5.47 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 13.59/5.47 13.59/5.47 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 13.59/5.47 13.59/5.47 emptyFM :: FiniteMap a b; 13.59/5.47 emptyFM = EmptyFM; 13.59/5.47 13.59/5.47 findMax :: FiniteMap a b -> (a,b); 13.59/5.47 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 13.59/5.47 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 13.59/5.47 13.59/5.47 findMin :: FiniteMap b a -> (b,a); 13.59/5.47 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 13.59/5.47 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 13.59/5.47 13.59/5.47 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 13.59/5.47 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < 2); 13.59/5.47 13.59/5.47 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.59/5.47 13.59/5.47 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 13.59/5.47 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 13.59/5.47 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 13.59/5.47 13.59/5.47 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 13.59/5.47 13.59/5.47 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 13.59/5.47 13.59/5.47 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 13.59/5.47 13.59/5.47 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 13.59/5.47 13.59/5.47 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_r fm_l; 13.59/5.47 13.59/5.47 mkBranchBalance_ok vxv vxw vxx = True; 13.59/5.47 13.59/5.47 mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxw vxx vxw; 13.59/5.47 13.59/5.47 mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 13.59/5.47 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 13.59/5.47 13.59/5.47 mkBranchLeft_ok0Biggest_left_key vyw = fst (findMax vyw); 13.59/5.47 13.59/5.47 mkBranchLeft_size vxv vxw vxx = sizeFM vxw; 13.59/5.47 13.59/5.47 mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (1 + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyv vyu; 13.59/5.47 13.59/5.47 mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxv vxx vxv; 13.59/5.47 13.59/5.47 mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 13.59/5.47 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 13.59/5.47 13.59/5.47 mkBranchRight_ok0Smallest_right_key vyx = fst (findMin vyx); 13.59/5.47 13.59/5.47 mkBranchRight_size vxv vxw vxx = sizeFM vxv; 13.59/5.47 13.59/5.47 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 13.59/5.47 mkBranchUnbox vxv vxw vxx x = x; 13.59/5.47 13.59/5.47 sIZE_RATIO :: Int; 13.59/5.47 sIZE_RATIO = 5; 13.59/5.47 13.59/5.47 sizeFM :: FiniteMap a b -> Int; 13.59/5.47 sizeFM EmptyFM = 0; 13.59/5.47 sizeFM (Branch vz wu size wv ww) = size; 13.59/5.47 13.59/5.47 unitFM :: a -> b -> FiniteMap a b; 13.59/5.47 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.59/5.47 13.59/5.47 } 13.59/5.47 module Maybe where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 module Main where { 13.59/5.47 import qualified FiniteMap; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 } 13.59/5.47 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (11) NumRed (SOUND) 13.59/5.47 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 13.59/5.47 ---------------------------------------- 13.59/5.47 13.59/5.47 (12) 13.59/5.47 Obligation: 13.59/5.47 mainModule Main 13.59/5.47 module FiniteMap where { 13.59/5.47 import qualified Main; 13.59/5.47 import qualified Maybe; 13.59/5.47 import qualified Prelude; 13.59/5.47 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 13.59/5.47 13.59/5.47 instance (Eq a, Eq b) => Eq FiniteMap b a where { 13.59/5.47 } 13.59/5.47 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 13.59/5.47 13.59/5.47 addToFM0 old new = new; 13.59/5.47 13.59/5.47 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 13.59/5.47 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 13.59/5.47 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 13.59/5.47 13.59/5.47 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.59/5.47 13.59/5.47 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 13.59/5.47 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 13.59/5.47 13.59/5.47 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 13.59/5.47 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 13.59/5.47 13.59/5.47 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 13.59/5.47 13.59/5.47 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 13.59/5.47 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 13.59/5.47 13.59/5.47 emptyFM :: FiniteMap b a; 13.59/5.47 emptyFM = EmptyFM; 13.59/5.47 13.59/5.47 findMax :: FiniteMap a b -> (a,b); 13.59/5.47 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 13.59/5.47 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 13.59/5.47 13.59/5.47 findMin :: FiniteMap a b -> (a,b); 13.59/5.47 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 13.59/5.47 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 13.59/5.47 13.59/5.47 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.59/5.47 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < Pos (Succ (Succ Zero))); 13.59/5.47 13.59/5.47 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) vwx vwy fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); 13.59/5.47 13.59/5.47 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) vwx vwy fm_lrr fm_r); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 13.59/5.47 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 13.59/5.47 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 13.59/5.47 13.59/5.47 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; 13.59/5.47 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 13.59/5.47 13.59/5.47 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) vwx vwy fm_l fm_rl) fm_rr; 13.59/5.47 13.59/5.47 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) vwx vwy fm_lr fm_r); 13.59/5.47 13.59/5.47 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 13.59/5.47 13.59/5.47 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 13.59/5.47 13.59/5.47 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 13.59/5.47 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_r fm_l; 13.59/5.47 13.59/5.47 mkBranchBalance_ok vxv vxw vxx = True; 13.59/5.47 13.59/5.47 mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxw vxx vxw; 13.59/5.47 13.59/5.47 mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 13.59/5.47 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 13.59/5.47 13.59/5.47 mkBranchLeft_ok0Biggest_left_key vyw = fst (findMax vyw); 13.59/5.47 13.59/5.47 mkBranchLeft_size vxv vxw vxx = sizeFM vxw; 13.59/5.47 13.59/5.47 mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (Pos (Succ Zero) + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyv vyu; 13.59/5.47 13.59/5.47 mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxv vxx vxv; 13.59/5.48 13.59/5.48 mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 13.59/5.48 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 13.59/5.48 13.59/5.48 mkBranchRight_ok0Smallest_right_key vyx = fst (findMin vyx); 13.59/5.48 13.59/5.48 mkBranchRight_size vxv vxw vxx = sizeFM vxv; 13.59/5.48 13.59/5.48 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 13.59/5.48 mkBranchUnbox vxv vxw vxx x = x; 13.59/5.48 13.59/5.48 sIZE_RATIO :: Int; 13.59/5.48 sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); 13.59/5.48 13.59/5.48 sizeFM :: FiniteMap b a -> Int; 13.59/5.48 sizeFM EmptyFM = Pos Zero; 13.59/5.48 sizeFM (Branch vz wu size wv ww) = size; 13.59/5.48 13.59/5.48 unitFM :: b -> a -> FiniteMap b a; 13.59/5.48 unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; 13.59/5.48 13.59/5.48 } 13.59/5.48 module Maybe where { 13.59/5.48 import qualified FiniteMap; 13.59/5.48 import qualified Main; 13.59/5.48 import qualified Prelude; 13.59/5.48 } 13.59/5.48 module Main where { 13.59/5.48 import qualified FiniteMap; 13.59/5.48 import qualified Maybe; 13.59/5.48 import qualified Prelude; 13.59/5.48 } 13.59/5.48 13.59/5.48 ---------------------------------------- 13.59/5.48 13.59/5.48 (13) Narrow (EQUIVALENT) 13.59/5.48 Haskell To QDPs 13.59/5.48 13.59/5.48 digraph dp_graph { 13.59/5.48 node [outthreshold=100, inthreshold=100];1[label="FiniteMap.addToFM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 13.59/5.48 3[label="FiniteMap.addToFM vyy3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 13.59/5.48 4[label="FiniteMap.addToFM vyy3 vyy4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 13.59/5.48 5[label="FiniteMap.addToFM vyy3 vyy4 vyy5",fontsize=16,color="black",shape="triangle"];5 -> 6[label="",style="solid", color="black", weight=3]; 13.59/5.48 6[label="FiniteMap.addToFM_C FiniteMap.addToFM0 vyy3 vyy4 vyy5",fontsize=16,color="burlywood",shape="box"];31[label="vyy3/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6 -> 31[label="",style="solid", color="burlywood", weight=9]; 13.59/5.48 31 -> 7[label="",style="solid", color="burlywood", weight=3]; 13.59/5.48 32[label="vyy3/FiniteMap.Branch vyy30 vyy31 vyy32 vyy33 vyy34",fontsize=10,color="white",style="solid",shape="box"];6 -> 32[label="",style="solid", color="burlywood", weight=9]; 13.59/5.48 32 -> 8[label="",style="solid", color="burlywood", weight=3]; 13.59/5.48 7[label="FiniteMap.addToFM_C FiniteMap.addToFM0 FiniteMap.EmptyFM vyy4 vyy5",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 13.59/5.48 8[label="FiniteMap.addToFM_C FiniteMap.addToFM0 (FiniteMap.Branch vyy30 vyy31 vyy32 vyy33 vyy34) vyy4 vyy5",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 13.59/5.48 9[label="FiniteMap.addToFM_C4 FiniteMap.addToFM0 FiniteMap.EmptyFM vyy4 vyy5",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 13.59/5.48 10[label="FiniteMap.addToFM_C3 FiniteMap.addToFM0 (FiniteMap.Branch vyy30 vyy31 vyy32 vyy33 vyy34) vyy4 vyy5",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 13.59/5.48 11[label="FiniteMap.unitFM vyy4 vyy5",fontsize=16,color="black",shape="box"];11 -> 13[label="",style="solid", color="black", weight=3]; 13.59/5.48 12[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 vyy30 vyy31 vyy32 vyy33 vyy34 vyy4 vyy5 (vyy4 < vyy30)",fontsize=16,color="black",shape="box"];12 -> 14[label="",style="solid", color="black", weight=3]; 13.59/5.48 13[label="FiniteMap.Branch vyy4 vyy5 (Pos (Succ Zero)) FiniteMap.emptyFM FiniteMap.emptyFM",fontsize=16,color="green",shape="box"];13 -> 15[label="",style="dashed", color="green", weight=3]; 13.59/5.48 13 -> 16[label="",style="dashed", color="green", weight=3]; 13.59/5.48 14[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 vyy30 vyy31 vyy32 vyy33 vyy34 vyy4 vyy5 (compare vyy4 vyy30 == LT)",fontsize=16,color="burlywood",shape="box"];33[label="vyy4/()",fontsize=10,color="white",style="solid",shape="box"];14 -> 33[label="",style="solid", color="burlywood", weight=9]; 13.59/5.48 33 -> 17[label="",style="solid", color="burlywood", weight=3]; 13.59/5.48 15[label="FiniteMap.emptyFM",fontsize=16,color="black",shape="triangle"];15 -> 18[label="",style="solid", color="black", weight=3]; 13.59/5.48 16 -> 15[label="",style="dashed", color="red", weight=0]; 13.59/5.48 16[label="FiniteMap.emptyFM",fontsize=16,color="magenta"];17[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 vyy30 vyy31 vyy32 vyy33 vyy34 () vyy5 (compare () vyy30 == LT)",fontsize=16,color="burlywood",shape="box"];34[label="vyy30/()",fontsize=10,color="white",style="solid",shape="box"];17 -> 34[label="",style="solid", color="burlywood", weight=9]; 13.59/5.48 34 -> 19[label="",style="solid", color="burlywood", weight=3]; 13.59/5.48 18[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];19[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 (compare () () == LT)",fontsize=16,color="black",shape="box"];19 -> 20[label="",style="solid", color="black", weight=3]; 13.59/5.48 20[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 (EQ == LT)",fontsize=16,color="black",shape="box"];20 -> 21[label="",style="solid", color="black", weight=3]; 13.59/5.48 21[label="FiniteMap.addToFM_C2 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 False",fontsize=16,color="black",shape="box"];21 -> 22[label="",style="solid", color="black", weight=3]; 13.59/5.48 22[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 (() > ())",fontsize=16,color="black",shape="box"];22 -> 23[label="",style="solid", color="black", weight=3]; 13.59/5.48 23[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 (compare () () == GT)",fontsize=16,color="black",shape="box"];23 -> 24[label="",style="solid", color="black", weight=3]; 13.59/5.48 24[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 (EQ == GT)",fontsize=16,color="black",shape="box"];24 -> 25[label="",style="solid", color="black", weight=3]; 13.59/5.48 25[label="FiniteMap.addToFM_C1 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 False",fontsize=16,color="black",shape="box"];25 -> 26[label="",style="solid", color="black", weight=3]; 13.59/5.48 26[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 otherwise",fontsize=16,color="black",shape="box"];26 -> 27[label="",style="solid", color="black", weight=3]; 13.59/5.48 27[label="FiniteMap.addToFM_C0 FiniteMap.addToFM0 () vyy31 vyy32 vyy33 vyy34 () vyy5 True",fontsize=16,color="black",shape="box"];27 -> 28[label="",style="solid", color="black", weight=3]; 13.59/5.48 28[label="FiniteMap.Branch () (FiniteMap.addToFM0 vyy31 vyy5) vyy32 vyy33 vyy34",fontsize=16,color="green",shape="box"];28 -> 29[label="",style="dashed", color="green", weight=3]; 13.59/5.48 29[label="FiniteMap.addToFM0 vyy31 vyy5",fontsize=16,color="black",shape="box"];29 -> 30[label="",style="solid", color="black", weight=3]; 13.59/5.48 30[label="vyy5",fontsize=16,color="green",shape="box"];} 13.59/5.48 13.59/5.48 ---------------------------------------- 13.59/5.48 13.59/5.48 (14) 13.59/5.48 YES 13.60/8.10 EOF