99.85/76.69 MAYBE 102.27/77.37 proof of /export/starexec/sandbox2/benchmark/theBenchmark.hs 102.27/77.37 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 102.27/77.37 102.27/77.37 102.27/77.37 H-Termination with start terms of the given HASKELL could not be shown: 102.27/77.37 102.27/77.37 (0) HASKELL 102.27/77.37 (1) LR [EQUIVALENT, 0 ms] 102.27/77.37 (2) HASKELL 102.27/77.37 (3) CR [EQUIVALENT, 0 ms] 102.27/77.37 (4) HASKELL 102.27/77.37 (5) BR [EQUIVALENT, 0 ms] 102.27/77.37 (6) HASKELL 102.27/77.37 (7) COR [EQUIVALENT, 17 ms] 102.27/77.37 (8) HASKELL 102.27/77.37 (9) LetRed [EQUIVALENT, 0 ms] 102.27/77.37 (10) HASKELL 102.27/77.37 (11) NumRed [SOUND, 0 ms] 102.27/77.37 (12) HASKELL 102.27/77.37 102.27/77.37 102.27/77.37 ---------------------------------------- 102.27/77.37 102.27/77.37 (0) 102.27/77.37 Obligation: 102.27/77.37 mainModule Main 102.27/77.37 module FiniteMap where { 102.27/77.37 import qualified Main; 102.27/77.37 import qualified Maybe; 102.27/77.37 import qualified Prelude; 102.27/77.37 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 102.27/77.37 102.27/77.37 instance (Eq a, Eq b) => Eq FiniteMap a b where { 102.27/77.37 } 102.27/77.37 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 102.27/77.37 addListToFM fm key_elt_pairs = addListToFM_C (\old new ->new) fm key_elt_pairs; 102.27/77.37 102.27/77.37 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 102.27/77.37 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 102.27/77.37 add fmap (key,elt) = addToFM_C combiner fmap key elt; 102.27/77.37 }; 102.27/77.37 102.27/77.37 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 102.27/77.37 addToFM_C combiner EmptyFM key elt = unitFM key elt; 102.27/77.37 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 102.27/77.37 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 102.27/77.37 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 102.27/77.37 102.27/77.37 emptyFM :: FiniteMap b a; 102.27/77.37 emptyFM = EmptyFM; 102.27/77.37 102.27/77.37 findMax :: FiniteMap a b -> (a,b); 102.27/77.37 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 102.27/77.37 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 102.27/77.37 102.27/77.37 findMin :: FiniteMap a b -> (a,b); 102.27/77.37 findMin (Branch key elt _ EmptyFM _) = (key,elt); 102.27/77.37 findMin (Branch key elt _ fm_l _) = findMin fm_l; 102.27/77.37 102.27/77.37 listToFM :: Ord b => [(b,a)] -> FiniteMap b a; 102.27/77.37 listToFM = addListToFM emptyFM; 102.27/77.37 102.27/77.37 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 102.27/77.37 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 102.27/77.37 | size_r > sIZE_RATIO * size_l = case fm_R of { 102.27/77.37 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 102.27/77.37 | otherwise -> double_L fm_L fm_R; 102.27/77.37 } 102.27/77.37 | size_l > sIZE_RATIO * size_r = case fm_L of { 102.27/77.37 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 102.27/77.37 | otherwise -> double_R fm_L fm_R; 102.27/77.37 } 102.27/77.37 | otherwise = mkBranch 2 key elt fm_L fm_R where { 102.27/77.37 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 102.27/77.37 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 102.27/77.37 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 102.27/77.37 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 102.27/77.37 size_l = sizeFM fm_L; 102.27/77.37 size_r = sizeFM fm_R; 102.27/77.37 }; 102.27/77.37 102.27/77.37 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 102.27/77.37 mkBranch which key elt fm_l fm_r = let { 102.27/77.37 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 102.27/77.37 } in result where { 102.27/77.37 balance_ok = True; 102.27/77.37 left_ok = case fm_l of { 102.27/77.37 EmptyFM-> True; 102.27/77.37 Branch left_key _ _ _ _-> let { 102.27/77.37 biggest_left_key = fst (findMax fm_l); 102.27/77.37 } in biggest_left_key < key; 102.27/77.37 } ; 102.27/77.37 left_size = sizeFM fm_l; 102.27/77.37 right_ok = case fm_r of { 102.27/77.37 EmptyFM-> True; 102.27/77.37 Branch right_key _ _ _ _-> let { 102.27/77.37 smallest_right_key = fst (findMin fm_r); 102.27/77.37 } in key < smallest_right_key; 102.27/77.37 } ; 102.27/77.37 right_size = sizeFM fm_r; 102.27/77.37 unbox :: Int -> Int; 102.27/77.37 unbox x = x; 102.27/77.37 }; 102.27/77.37 102.27/77.37 sIZE_RATIO :: Int; 102.27/77.37 sIZE_RATIO = 5; 102.27/77.37 102.27/77.37 sizeFM :: FiniteMap a b -> Int; 102.27/77.37 sizeFM EmptyFM = 0; 102.27/77.37 sizeFM (Branch _ _ size _ _) = size; 102.27/77.37 102.27/77.37 unitFM :: a -> b -> FiniteMap a b; 102.27/77.37 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 102.27/77.37 102.27/77.37 } 102.27/77.37 module Maybe where { 102.27/77.37 import qualified FiniteMap; 102.27/77.37 import qualified Main; 102.27/77.37 import qualified Prelude; 102.27/77.37 } 102.27/77.37 module Main where { 102.27/77.37 import qualified FiniteMap; 102.27/77.37 import qualified Maybe; 102.27/77.37 import qualified Prelude; 102.27/77.37 } 102.27/77.37 102.27/77.37 ---------------------------------------- 102.27/77.37 102.27/77.37 (1) LR (EQUIVALENT) 102.27/77.37 Lambda Reductions: 102.27/77.37 The following Lambda expression 102.27/77.37 "\oldnew->new" 102.27/77.37 is transformed to 102.27/77.37 "addListToFM0 old new = new; 102.27/77.37 " 102.27/77.37 102.27/77.37 ---------------------------------------- 102.27/77.37 102.27/77.37 (2) 102.27/77.37 Obligation: 102.27/77.37 mainModule Main 102.27/77.37 module FiniteMap where { 102.27/77.37 import qualified Main; 102.27/77.37 import qualified Maybe; 102.27/77.37 import qualified Prelude; 102.27/77.37 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 102.27/77.37 102.27/77.37 instance (Eq a, Eq b) => Eq FiniteMap b a where { 102.27/77.37 } 102.27/77.37 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 102.27/77.37 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 102.27/77.37 102.27/77.37 addListToFM0 old new = new; 102.27/77.37 102.27/77.37 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 102.27/77.37 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 102.27/77.38 add fmap (key,elt) = addToFM_C combiner fmap key elt; 102.27/77.38 }; 102.27/77.38 102.27/77.38 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 102.27/77.38 addToFM_C combiner EmptyFM key elt = unitFM key elt; 102.27/77.38 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 102.27/77.38 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 102.27/77.38 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 102.27/77.38 102.27/77.38 emptyFM :: FiniteMap a b; 102.27/77.38 emptyFM = EmptyFM; 102.27/77.38 102.27/77.38 findMax :: FiniteMap a b -> (a,b); 102.27/77.38 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 102.27/77.38 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 102.27/77.38 102.27/77.38 findMin :: FiniteMap a b -> (a,b); 102.27/77.38 findMin (Branch key elt _ EmptyFM _) = (key,elt); 102.27/77.38 findMin (Branch key elt _ fm_l _) = findMin fm_l; 102.27/77.38 102.27/77.38 listToFM :: Ord b => [(b,a)] -> FiniteMap b a; 102.27/77.38 listToFM = addListToFM emptyFM; 102.27/77.38 102.27/77.38 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 102.27/77.38 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 102.27/77.38 | size_r > sIZE_RATIO * size_l = case fm_R of { 102.27/77.38 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 102.27/77.38 | otherwise -> double_L fm_L fm_R; 102.27/77.38 } 102.27/77.38 | size_l > sIZE_RATIO * size_r = case fm_L of { 102.27/77.38 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 102.27/77.38 | otherwise -> double_R fm_L fm_R; 102.27/77.38 } 102.27/77.38 | otherwise = mkBranch 2 key elt fm_L fm_R where { 102.27/77.38 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 102.27/77.38 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 102.27/77.38 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 102.27/77.38 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 102.27/77.38 size_l = sizeFM fm_L; 102.27/77.38 size_r = sizeFM fm_R; 102.27/77.38 }; 102.27/77.38 102.27/77.38 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 102.27/77.38 mkBranch which key elt fm_l fm_r = let { 102.27/77.38 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 102.27/77.38 } in result where { 102.27/77.38 balance_ok = True; 102.27/77.38 left_ok = case fm_l of { 102.27/77.38 EmptyFM-> True; 102.27/77.38 Branch left_key _ _ _ _-> let { 102.27/77.38 biggest_left_key = fst (findMax fm_l); 102.27/77.38 } in biggest_left_key < key; 102.27/77.38 } ; 102.27/77.38 left_size = sizeFM fm_l; 102.27/77.38 right_ok = case fm_r of { 102.27/77.38 EmptyFM-> True; 102.27/77.38 Branch right_key _ _ _ _-> let { 102.27/77.38 smallest_right_key = fst (findMin fm_r); 102.27/77.38 } in key < smallest_right_key; 102.27/77.38 } ; 102.27/77.38 right_size = sizeFM fm_r; 102.27/77.38 unbox :: Int -> Int; 102.27/77.38 unbox x = x; 102.27/77.38 }; 102.27/77.38 102.27/77.38 sIZE_RATIO :: Int; 102.27/77.38 sIZE_RATIO = 5; 102.27/77.38 102.27/77.38 sizeFM :: FiniteMap a b -> Int; 102.27/77.38 sizeFM EmptyFM = 0; 102.27/77.38 sizeFM (Branch _ _ size _ _) = size; 102.27/77.38 102.27/77.38 unitFM :: a -> b -> FiniteMap a b; 102.27/77.38 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 102.27/77.38 102.27/77.38 } 102.27/77.38 module Maybe where { 102.27/77.38 import qualified FiniteMap; 102.27/77.38 import qualified Main; 102.27/77.38 import qualified Prelude; 102.27/77.38 } 102.27/77.38 module Main where { 102.27/77.38 import qualified FiniteMap; 102.27/77.38 import qualified Maybe; 102.27/77.38 import qualified Prelude; 102.27/77.38 } 102.27/77.38 102.27/77.38 ---------------------------------------- 102.27/77.38 102.27/77.38 (3) CR (EQUIVALENT) 102.27/77.38 Case Reductions: 102.27/77.38 The following Case expression 102.27/77.38 "case fm_r of { 102.27/77.38 EmptyFM -> True; 102.27/77.38 Branch right_key _ _ _ _ -> let { 102.27/77.38 smallest_right_key = fst (findMin fm_r); 102.27/77.38 } in key < smallest_right_key} 102.27/77.38 " 102.27/77.38 is transformed to 102.27/77.38 "right_ok0 fm_r key EmptyFM = True; 102.27/77.38 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 102.27/77.38 smallest_right_key = fst (findMin fm_r); 102.27/77.38 } in key < smallest_right_key; 102.27/77.38 " 102.27/77.38 The following Case expression 102.27/77.38 "case fm_l of { 102.27/77.38 EmptyFM -> True; 102.27/77.38 Branch left_key _ _ _ _ -> let { 102.27/77.38 biggest_left_key = fst (findMax fm_l); 102.27/77.38 } in biggest_left_key < key} 102.27/77.38 " 102.27/77.38 is transformed to 102.27/77.38 "left_ok0 fm_l key EmptyFM = True; 102.27/77.38 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 102.27/77.38 biggest_left_key = fst (findMax fm_l); 102.27/77.38 } in biggest_left_key < key; 102.27/77.38 " 102.27/77.38 The following Case expression 102.27/77.38 "case fm_R of { 102.27/77.38 Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} 102.27/77.38 " 102.27/77.38 is transformed to 102.27/77.38 "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 102.27/77.38 " 102.27/77.38 The following Case expression 102.27/77.38 "case fm_L of { 102.27/77.38 Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} 102.27/77.38 " 102.27/77.38 is transformed to 102.27/77.38 "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 102.27/77.38 " 102.27/77.38 102.27/77.38 ---------------------------------------- 102.27/77.38 102.27/77.38 (4) 102.27/77.38 Obligation: 102.27/77.38 mainModule Main 102.27/77.38 module FiniteMap where { 102.27/77.38 import qualified Main; 102.27/77.38 import qualified Maybe; 102.27/77.38 import qualified Prelude; 102.27/77.38 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 102.27/77.38 102.27/77.38 instance (Eq a, Eq b) => Eq FiniteMap a b where { 102.27/77.38 } 102.27/77.38 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 102.27/77.38 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 102.27/77.38 102.27/77.38 addListToFM0 old new = new; 102.27/77.38 102.27/77.38 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 102.27/77.38 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 102.27/77.38 add fmap (key,elt) = addToFM_C combiner fmap key elt; 102.27/77.38 }; 102.27/77.38 102.27/77.38 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 102.27/77.38 addToFM_C combiner EmptyFM key elt = unitFM key elt; 102.27/77.38 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 102.27/77.38 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 102.27/77.38 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 102.27/77.38 102.27/77.38 emptyFM :: FiniteMap a b; 102.27/77.38 emptyFM = EmptyFM; 102.27/77.38 102.27/77.38 findMax :: FiniteMap b a -> (b,a); 102.27/77.38 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 102.27/77.38 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 102.27/77.38 102.27/77.38 findMin :: FiniteMap b a -> (b,a); 102.27/77.38 findMin (Branch key elt _ EmptyFM _) = (key,elt); 102.27/77.38 findMin (Branch key elt _ fm_l _) = findMin fm_l; 102.27/77.38 102.27/77.38 listToFM :: Ord a => [(a,b)] -> FiniteMap a b; 102.27/77.38 listToFM = addListToFM emptyFM; 102.27/77.38 102.27/77.38 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 102.27/77.38 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 102.27/77.38 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 102.27/77.38 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 102.27/77.38 | otherwise = mkBranch 2 key elt fm_L fm_R where { 102.27/77.38 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 102.27/77.38 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 102.27/77.38 mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 102.27/77.38 | otherwise = double_L fm_L fm_R; 102.27/77.38 mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 102.27/77.38 | otherwise = double_R fm_L fm_R; 102.27/77.38 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 102.27/77.38 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 102.27/77.38 size_l = sizeFM fm_L; 102.27/77.38 size_r = sizeFM fm_R; 102.27/77.38 }; 102.27/77.38 102.27/77.38 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 102.27/77.38 mkBranch which key elt fm_l fm_r = let { 102.27/77.38 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 102.27/77.38 } in result where { 102.27/77.38 balance_ok = True; 102.27/77.38 left_ok = left_ok0 fm_l key fm_l; 102.27/77.38 left_ok0 fm_l key EmptyFM = True; 102.27/77.38 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 102.27/77.38 biggest_left_key = fst (findMax fm_l); 102.27/77.38 } in biggest_left_key < key; 102.27/77.38 left_size = sizeFM fm_l; 102.27/77.38 right_ok = right_ok0 fm_r key fm_r; 102.27/77.38 right_ok0 fm_r key EmptyFM = True; 102.27/77.38 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 102.27/77.38 smallest_right_key = fst (findMin fm_r); 102.27/77.38 } in key < smallest_right_key; 102.27/77.38 right_size = sizeFM fm_r; 102.27/77.38 unbox :: Int -> Int; 102.27/77.38 unbox x = x; 102.27/77.38 }; 102.27/77.38 102.27/77.38 sIZE_RATIO :: Int; 102.27/77.38 sIZE_RATIO = 5; 102.27/77.38 102.27/77.38 sizeFM :: FiniteMap b a -> Int; 102.27/77.38 sizeFM EmptyFM = 0; 102.27/77.38 sizeFM (Branch _ _ size _ _) = size; 102.27/77.38 102.27/77.38 unitFM :: b -> a -> FiniteMap b a; 102.27/77.38 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 102.27/77.38 102.27/77.38 } 102.27/77.38 module Maybe where { 102.27/77.38 import qualified FiniteMap; 102.27/77.38 import qualified Main; 102.27/77.38 import qualified Prelude; 102.27/77.38 } 102.27/77.38 module Main where { 102.27/77.38 import qualified FiniteMap; 102.27/77.38 import qualified Maybe; 102.27/77.38 import qualified Prelude; 102.27/77.38 } 102.27/77.38 102.27/77.38 ---------------------------------------- 102.27/77.38 102.27/77.38 (5) BR (EQUIVALENT) 102.27/77.38 Replaced joker patterns by fresh variables and removed binding patterns. 102.27/77.38 ---------------------------------------- 102.27/77.38 102.27/77.38 (6) 102.27/77.38 Obligation: 102.27/77.38 mainModule Main 102.27/77.38 module FiniteMap where { 102.27/77.38 import qualified Main; 102.27/77.38 import qualified Maybe; 102.27/77.38 import qualified Prelude; 102.27/77.38 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 102.27/77.38 102.27/77.38 instance (Eq a, Eq b) => Eq FiniteMap a b where { 102.27/77.38 } 102.27/77.38 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 102.27/77.38 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 102.27/77.38 102.27/77.38 addListToFM0 old new = new; 102.27/77.38 102.27/77.38 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 102.27/77.38 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 102.27/77.38 add fmap (key,elt) = addToFM_C combiner fmap key elt; 102.27/77.38 }; 102.27/77.38 102.27/77.38 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 102.27/77.38 addToFM_C combiner EmptyFM key elt = unitFM key elt; 102.27/77.38 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 102.27/77.38 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 102.27/77.38 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 102.27/77.38 102.27/77.38 emptyFM :: FiniteMap a b; 102.27/77.38 emptyFM = EmptyFM; 102.27/77.38 102.27/77.38 findMax :: FiniteMap a b -> (a,b); 102.27/77.38 findMax (Branch key elt xv xw EmptyFM) = (key,elt); 102.27/77.38 findMax (Branch key elt xx xy fm_r) = findMax fm_r; 102.27/77.38 102.27/77.38 findMin :: FiniteMap a b -> (a,b); 102.27/77.38 findMin (Branch key elt vux EmptyFM vuy) = (key,elt); 102.27/77.38 findMin (Branch key elt vuz fm_l vvu) = findMin fm_l; 102.27/77.38 102.27/77.38 listToFM :: Ord a => [(a,b)] -> FiniteMap a b; 102.27/77.38 listToFM = addListToFM emptyFM; 102.27/77.38 102.27/77.38 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 102.27/77.38 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 102.27/77.38 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 102.27/77.38 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 102.27/77.38 | otherwise = mkBranch 2 key elt fm_L fm_R where { 102.27/77.38 double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 102.27/77.38 double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 102.27/77.38 mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 102.27/77.38 | otherwise = double_L fm_L fm_R; 102.27/77.38 mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 103.13/77.64 | otherwise = double_R fm_L fm_R; 103.13/77.64 single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 103.13/77.64 single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 103.13/77.64 size_l = sizeFM fm_L; 103.13/77.64 size_r = sizeFM fm_R; 103.13/77.64 }; 103.13/77.64 103.13/77.64 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 103.13/77.64 mkBranch which key elt fm_l fm_r = let { 103.13/77.64 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 103.13/77.64 } in result where { 103.13/77.64 balance_ok = True; 103.13/77.64 left_ok = left_ok0 fm_l key fm_l; 103.13/77.64 left_ok0 fm_l key EmptyFM = True; 103.13/77.64 left_ok0 fm_l key (Branch left_key vz wu wv ww) = let { 103.13/77.64 biggest_left_key = fst (findMax fm_l); 103.13/77.64 } in biggest_left_key < key; 103.13/77.64 left_size = sizeFM fm_l; 103.13/77.64 right_ok = right_ok0 fm_r key fm_r; 103.13/77.64 right_ok0 fm_r key EmptyFM = True; 103.13/77.64 right_ok0 fm_r key (Branch right_key wx wy wz xu) = let { 103.13/77.64 smallest_right_key = fst (findMin fm_r); 103.13/77.64 } in key < smallest_right_key; 103.13/77.64 right_size = sizeFM fm_r; 103.13/77.64 unbox :: Int -> Int; 103.13/77.64 unbox x = x; 103.13/77.64 }; 103.13/77.64 103.13/77.64 sIZE_RATIO :: Int; 103.13/77.64 sIZE_RATIO = 5; 103.13/77.64 103.13/77.64 sizeFM :: FiniteMap b a -> Int; 103.13/77.64 sizeFM EmptyFM = 0; 103.13/77.64 sizeFM (Branch zz vuu size vuv vuw) = size; 103.13/77.64 103.13/77.64 unitFM :: a -> b -> FiniteMap a b; 103.13/77.64 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 103.13/77.64 103.13/77.64 } 103.13/77.64 module Maybe where { 103.13/77.64 import qualified FiniteMap; 103.13/77.64 import qualified Main; 103.13/77.64 import qualified Prelude; 103.13/77.64 } 103.13/77.64 module Main where { 103.13/77.64 import qualified FiniteMap; 103.13/77.64 import qualified Maybe; 103.13/77.64 import qualified Prelude; 103.13/77.64 } 103.13/77.64 103.13/77.64 ---------------------------------------- 103.13/77.64 103.13/77.64 (7) COR (EQUIVALENT) 103.13/77.64 Cond Reductions: 103.13/77.64 The following Function with conditions 103.13/77.64 "undefined |Falseundefined; 103.13/77.64 " 103.13/77.64 is transformed to 103.13/77.64 "undefined = undefined1; 103.13/77.64 " 103.13/77.64 "undefined0 True = undefined; 103.13/77.64 " 103.13/77.64 "undefined1 = undefined0 False; 103.13/77.64 " 103.13/77.64 The following Function with conditions 103.13/77.64 "addToFM_C combiner EmptyFM key elt = unitFM key elt; 103.13/77.64 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; 103.13/77.64 " 103.13/77.64 is transformed to 103.13/77.64 "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 103.13/77.64 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 103.13/77.64 " 103.13/77.64 "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 103.13/77.64 " 103.13/77.64 "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 103.13/77.64 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 103.13/77.64 " 103.13/77.64 "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 103.13/77.64 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 103.13/77.64 " 103.13/77.64 "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 103.13/77.64 " 103.13/77.64 "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 103.13/77.64 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 103.13/77.64 " 103.13/77.64 The following Function with conditions 103.13/77.64 "mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 103.13/77.64 " 103.13/77.64 is transformed to 103.13/77.64 "mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr); 103.13/77.64 " 103.13/77.64 "mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr True = single_R fm_L fm_R; 103.13/77.64 mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr otherwise; 103.13/77.64 " 103.13/77.64 "mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr True = double_R fm_L fm_R; 103.13/77.64 " 103.13/77.64 "mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 103.13/77.64 " 103.13/77.64 The following Function with conditions 103.13/77.64 "mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 103.13/77.64 " 103.13/77.64 is transformed to 103.13/77.64 "mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr); 103.13/77.64 " 103.13/77.64 "mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr True = double_L fm_L fm_R; 103.13/77.64 " 103.13/77.64 "mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr True = single_L fm_L fm_R; 103.13/77.64 mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr otherwise; 103.13/77.64 " 103.13/77.64 "mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 103.13/77.64 " 103.13/77.64 The following Function with conditions 103.13/77.64 "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { 103.13/77.64 double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 103.13/77.64 ; 103.13/77.64 double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 103.13/77.64 ; 103.13/77.64 mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 103.13/77.64 ; 103.13/77.64 mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 103.13/77.64 ; 103.13/77.64 single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 103.13/77.64 ; 103.13/77.64 single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 103.13/77.64 ; 103.13/77.64 size_l = sizeFM fm_L; 103.13/77.64 ; 103.13/77.64 size_r = sizeFM fm_R; 103.13/77.64 } 103.13/77.64 ; 103.13/77.64 " 103.13/77.64 is transformed to 103.13/77.64 "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 103.13/77.64 " 103.13/77.64 "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 103.13/77.64 double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 103.13/77.64 ; 103.13/77.64 double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 103.13/77.64 ; 103.13/77.64 mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr); 103.13/77.64 ; 103.13/77.64 mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr True = double_L fm_L fm_R; 103.13/77.64 ; 103.13/77.64 mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr True = single_L fm_L fm_R; 103.13/77.64 mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr otherwise; 103.13/77.64 ; 103.13/77.64 mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 103.13/77.64 ; 103.13/77.64 mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr); 103.13/77.64 ; 103.13/77.64 mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr True = double_R fm_L fm_R; 103.13/77.64 ; 103.13/77.64 mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr True = single_R fm_L fm_R; 103.13/77.64 mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr otherwise; 103.13/77.64 ; 103.13/77.64 mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 103.13/77.64 ; 103.13/77.64 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 103.13/77.64 ; 103.13/77.64 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 103.13/77.64 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 103.13/77.64 ; 103.13/77.64 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 103.13/77.64 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 103.13/77.64 ; 103.13/77.64 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 103.13/77.64 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 103.13/77.64 ; 103.13/77.64 single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 103.13/77.64 ; 103.13/77.64 single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 103.13/77.64 ; 103.13/77.64 size_l = sizeFM fm_L; 103.13/77.64 ; 103.13/77.64 size_r = sizeFM fm_R; 103.13/77.64 } 103.13/77.64 ; 103.13/77.64 " 103.13/77.64 103.13/77.64 ---------------------------------------- 103.13/77.64 103.13/77.64 (8) 103.13/77.64 Obligation: 103.13/77.64 mainModule Main 103.13/77.64 module FiniteMap where { 103.13/77.64 import qualified Main; 103.13/77.64 import qualified Maybe; 103.13/77.64 import qualified Prelude; 103.13/77.64 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 103.13/77.64 103.13/77.64 instance (Eq a, Eq b) => Eq FiniteMap b a where { 103.13/77.64 } 103.13/77.64 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 103.13/77.64 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 103.13/77.64 103.13/77.64 addListToFM0 old new = new; 103.13/77.64 103.13/77.64 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 103.13/77.64 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 103.13/77.64 add fmap (key,elt) = addToFM_C combiner fmap key elt; 103.13/77.64 }; 103.13/77.64 103.13/77.64 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 103.13/77.64 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 103.13/77.64 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 103.13/77.64 103.13/77.64 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 103.13/77.64 103.13/77.64 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 103.13/77.64 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 103.13/77.64 103.13/77.64 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 103.13/77.64 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 103.13/77.64 103.13/77.64 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 103.13/77.64 103.13/77.64 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 103.13/77.64 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 103.13/77.64 103.13/77.64 emptyFM :: FiniteMap a b; 103.13/77.64 emptyFM = EmptyFM; 103.13/77.64 103.13/77.64 findMax :: FiniteMap b a -> (b,a); 103.13/77.64 findMax (Branch key elt xv xw EmptyFM) = (key,elt); 103.13/77.64 findMax (Branch key elt xx xy fm_r) = findMax fm_r; 103.13/77.64 103.13/77.64 findMin :: FiniteMap a b -> (a,b); 103.13/77.64 findMin (Branch key elt vux EmptyFM vuy) = (key,elt); 103.13/77.64 findMin (Branch key elt vuz fm_l vvu) = findMin fm_l; 103.13/77.64 103.13/77.64 listToFM :: Ord b => [(b,a)] -> FiniteMap b a; 103.13/77.64 listToFM = addListToFM emptyFM; 103.13/77.64 103.13/77.64 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 103.13/77.64 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 103.13/77.64 double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 103.13/77.64 double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 103.13/77.64 mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr); 103.13/77.64 mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr True = double_L fm_L fm_R; 103.13/77.64 mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr True = single_L fm_L fm_R; 103.13/77.64 mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr otherwise; 103.13/77.64 mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 103.13/77.64 mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr); 103.13/77.64 mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr True = double_R fm_L fm_R; 103.13/77.64 mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr True = single_R fm_L fm_R; 103.13/77.64 mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr otherwise; 103.13/77.64 mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 103.13/77.64 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 103.13/77.64 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 103.13/77.64 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 103.13/77.64 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 103.13/77.64 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 103.13/77.64 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 103.13/77.64 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 103.13/77.64 single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 103.13/77.64 single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 103.13/77.64 size_l = sizeFM fm_L; 103.13/77.64 size_r = sizeFM fm_R; 103.13/77.64 }; 103.13/77.64 103.13/77.64 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 103.13/77.64 mkBranch which key elt fm_l fm_r = let { 103.13/77.64 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 103.13/77.64 } in result where { 103.13/77.64 balance_ok = True; 103.13/77.64 left_ok = left_ok0 fm_l key fm_l; 103.13/77.64 left_ok0 fm_l key EmptyFM = True; 103.13/77.64 left_ok0 fm_l key (Branch left_key vz wu wv ww) = let { 103.13/77.64 biggest_left_key = fst (findMax fm_l); 103.13/77.64 } in biggest_left_key < key; 103.13/77.64 left_size = sizeFM fm_l; 103.13/77.64 right_ok = right_ok0 fm_r key fm_r; 103.13/77.64 right_ok0 fm_r key EmptyFM = True; 103.13/77.64 right_ok0 fm_r key (Branch right_key wx wy wz xu) = let { 103.13/77.64 smallest_right_key = fst (findMin fm_r); 103.13/77.64 } in key < smallest_right_key; 103.13/77.64 right_size = sizeFM fm_r; 103.13/77.64 unbox :: Int -> Int; 103.13/77.64 unbox x = x; 103.13/77.64 }; 103.13/77.64 103.13/77.64 sIZE_RATIO :: Int; 103.13/77.64 sIZE_RATIO = 5; 103.13/77.64 103.13/77.64 sizeFM :: FiniteMap a b -> Int; 103.13/77.64 sizeFM EmptyFM = 0; 103.13/77.64 sizeFM (Branch zz vuu size vuv vuw) = size; 103.13/77.64 103.13/77.64 unitFM :: b -> a -> FiniteMap b a; 103.13/77.64 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 103.13/77.64 103.13/77.64 } 103.13/77.64 module Maybe where { 103.13/77.64 import qualified FiniteMap; 103.13/77.64 import qualified Main; 103.13/77.64 import qualified Prelude; 103.13/77.64 } 103.13/77.64 module Main where { 103.13/77.64 import qualified FiniteMap; 103.13/77.64 import qualified Maybe; 103.13/77.64 import qualified Prelude; 103.13/77.64 } 103.13/77.64 103.13/77.64 ---------------------------------------- 103.13/77.64 103.13/77.64 (9) LetRed (EQUIVALENT) 103.13/77.64 Let/Where Reductions: 103.13/77.64 The bindings of the following Let/Where expression 103.13/77.64 "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 103.13/77.64 double_L fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 103.13/77.64 ; 103.13/77.64 double_R (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 103.13/77.64 ; 103.13/77.64 mkBalBranch0 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr); 103.13/77.64 ; 103.13/77.64 mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr True = double_L fm_L fm_R; 103.13/77.64 ; 103.13/77.64 mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr True = single_L fm_L fm_R; 103.13/77.64 mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch00 fm_L fm_R zv zw zx fm_rl fm_rr otherwise; 103.13/77.64 ; 103.13/77.64 mkBalBranch02 fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch01 fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 103.13/77.64 ; 103.13/77.64 mkBalBranch1 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr); 103.13/77.64 ; 103.13/77.64 mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr True = double_R fm_L fm_R; 103.13/77.64 ; 103.13/77.64 mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr True = single_R fm_L fm_R; 103.13/77.64 mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch10 fm_L fm_R yw yx yy fm_ll fm_lr otherwise; 103.13/77.64 ; 103.13/77.64 mkBalBranch12 fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch11 fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 103.13/77.64 ; 103.13/77.64 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 103.13/77.64 ; 103.13/77.64 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 103.13/77.64 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 103.13/77.64 ; 103.13/77.64 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 103.13/77.64 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 103.13/77.64 ; 103.13/77.64 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 103.13/77.64 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 103.13/77.64 ; 103.13/77.64 single_L fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 103.13/77.64 ; 103.13/77.64 single_R (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 103.13/77.64 ; 103.13/77.64 size_l = sizeFM fm_L; 103.13/77.64 ; 103.13/77.64 size_r = sizeFM fm_R; 103.13/77.64 } 103.13/77.64 " 103.13/77.64 are unpacked to the following functions on top level 103.13/77.64 "mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 103.13/77.64 " 103.13/77.64 "mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 103.13/77.64 " 103.13/77.64 "mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 103.13/77.64 " 103.13/77.64 "mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr otherwise; 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 " 103.13/77.64 "mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwz; 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 103.13/77.64 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr otherwise; 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr); 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 103.13/77.64 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 103.13/77.64 " 103.13/77.64 "mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr); 103.13/77.64 " 103.13/77.64 "mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 " 103.13/77.64 The bindings of the following Let/Where expression 103.13/77.64 "foldl add fm key_elt_pairs where { 103.13/77.64 add fmap (key,elt) = addToFM_C combiner fmap key elt; 103.13/77.64 } 103.13/77.64 " 103.13/77.64 are unpacked to the following functions on top level 103.13/77.64 "addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 103.13/77.64 " 103.13/77.64 The bindings of the following Let/Where expression 103.13/77.64 "let { 103.13/77.64 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 103.13/77.64 } in result where { 103.13/77.64 balance_ok = True; 103.13/77.64 ; 103.13/77.64 left_ok = left_ok0 fm_l key fm_l; 103.13/77.64 ; 103.13/77.64 left_ok0 fm_l key EmptyFM = True; 103.13/77.64 left_ok0 fm_l key (Branch left_key vz wu wv ww) = let { 103.13/77.64 biggest_left_key = fst (findMax fm_l); 103.13/77.64 } in biggest_left_key < key; 103.13/77.64 ; 103.13/77.64 left_size = sizeFM fm_l; 103.13/77.64 ; 103.13/77.64 right_ok = right_ok0 fm_r key fm_r; 103.13/77.64 ; 103.13/77.64 right_ok0 fm_r key EmptyFM = True; 103.13/77.64 right_ok0 fm_r key (Branch right_key wx wy wz xu) = let { 103.13/77.64 smallest_right_key = fst (findMin fm_r); 103.13/77.64 } in key < smallest_right_key; 103.13/77.64 ; 103.13/77.64 right_size = sizeFM fm_r; 103.13/77.64 ; 103.13/77.64 unbox x = x; 103.13/77.64 } 103.13/77.64 " 103.13/77.64 are unpacked to the following functions on top level 103.13/77.64 "mkBranchLeft_size vxw vxx vxy = sizeFM vxw; 103.13/77.64 " 103.13/77.64 "mkBranchBalance_ok vxw vxx vxy = True; 103.13/77.64 " 103.13/77.64 "mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxx vxy vxx; 103.13/77.64 " 103.13/77.64 "mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxy vxw; 103.13/77.64 " 103.13/77.64 "mkBranchUnbox vxw vxx vxy x = x; 103.13/77.64 " 103.13/77.64 "mkBranchRight_size vxw vxx vxy = sizeFM vxx; 103.13/77.64 " 103.13/77.64 "mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 103.13/77.64 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key vz wu wv ww) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 103.13/77.64 " 103.13/77.64 "mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 103.13/77.64 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key wx wy wz xu) = key < mkBranchRight_ok0Smallest_right_key fm_r; 103.13/77.64 " 103.13/77.64 The bindings of the following Let/Where expression 103.13/77.64 "let { 103.13/77.64 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 103.13/77.64 } in result" 103.13/77.64 are unpacked to the following functions on top level 103.13/77.64 "mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vyw vxz (1 + mkBranchLeft_size vyv vyw vxz + mkBranchRight_size vyv vyw vxz)) vyv vyw; 103.13/77.64 " 103.13/77.64 The bindings of the following Let/Where expression 103.13/77.64 "let { 103.13/77.64 biggest_left_key = fst (findMax fm_l); 103.13/77.64 } in biggest_left_key < key" 103.13/77.64 are unpacked to the following functions on top level 103.13/77.64 "mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 103.13/77.64 " 103.13/77.64 The bindings of the following Let/Where expression 103.13/77.64 "let { 103.13/77.64 smallest_right_key = fst (findMin fm_r); 103.13/77.64 } in key < smallest_right_key" 103.13/77.64 are unpacked to the following functions on top level 103.13/77.64 "mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 103.13/77.64 " 103.13/77.64 103.13/77.64 ---------------------------------------- 103.13/77.64 103.13/77.64 (10) 103.13/77.64 Obligation: 103.13/77.64 mainModule Main 103.13/77.64 module FiniteMap where { 103.13/77.64 import qualified Main; 103.13/77.64 import qualified Maybe; 103.13/77.64 import qualified Prelude; 103.13/77.64 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 103.13/77.64 103.13/77.64 instance (Eq a, Eq b) => Eq FiniteMap b a where { 103.13/77.64 } 103.13/77.64 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 103.13/77.64 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 103.13/77.64 103.13/77.64 addListToFM0 old new = new; 103.13/77.64 103.13/77.64 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 103.13/77.64 addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; 103.13/77.64 103.13/77.64 addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 103.13/77.64 103.13/77.64 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 103.13/77.64 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 103.13/77.64 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 103.13/77.64 103.13/77.64 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 103.13/77.64 103.13/77.64 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 103.13/77.64 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 103.13/77.64 103.13/77.64 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 103.13/77.64 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 103.13/77.64 103.13/77.64 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 103.13/77.64 103.13/77.64 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 103.13/77.64 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 103.13/77.64 103.13/77.64 emptyFM :: FiniteMap b a; 103.13/77.64 emptyFM = EmptyFM; 103.13/77.64 103.13/77.64 findMax :: FiniteMap a b -> (a,b); 103.13/77.64 findMax (Branch key elt xv xw EmptyFM) = (key,elt); 103.13/77.64 findMax (Branch key elt xx xy fm_r) = findMax fm_r; 103.13/77.64 103.13/77.64 findMin :: FiniteMap a b -> (a,b); 103.13/77.64 findMin (Branch key elt vux EmptyFM vuy) = (key,elt); 103.13/77.64 findMin (Branch key elt vuz fm_l vvu) = findMin fm_l; 103.13/77.64 103.13/77.64 listToFM :: Ord b => [(b,a)] -> FiniteMap b a; 103.13/77.64 listToFM = addListToFM emptyFM; 103.13/77.64 103.13/77.64 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 103.13/77.64 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_R fm_L key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_R fm_L + mkBalBranch6Size_r key elt fm_R fm_L < 2); 103.13/77.64 103.13/77.64 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 103.13/77.64 103.13/77.64 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr otherwise; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr otherwise; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 103.13/77.64 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 103.13/77.64 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 103.13/77.64 103.13/77.64 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 103.13/77.64 103.13/77.64 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 103.13/77.64 103.13/77.64 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 103.13/77.64 103.13/77.64 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwz; 103.13/77.64 103.13/77.64 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 103.13/77.64 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 103.13/77.64 103.13/77.64 mkBranchBalance_ok vxw vxx vxy = True; 103.13/77.64 103.13/77.64 mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxy vxw; 103.13/77.64 103.13/77.64 mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 103.13/77.64 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key vz wu wv ww) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 103.13/77.64 103.13/77.64 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 103.13/77.64 103.13/77.64 mkBranchLeft_size vxw vxx vxy = sizeFM vxw; 103.13/77.64 103.13/77.64 mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vyw vxz (1 + mkBranchLeft_size vyv vyw vxz + mkBranchRight_size vyv vyw vxz)) vyv vyw; 103.13/77.64 103.13/77.64 mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxx vxy vxx; 103.13/77.64 103.13/77.64 mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 103.13/77.64 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key wx wy wz xu) = key < mkBranchRight_ok0Smallest_right_key fm_r; 103.13/77.64 103.13/77.64 mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 103.13/77.64 103.13/77.64 mkBranchRight_size vxw vxx vxy = sizeFM vxx; 103.13/77.64 103.13/77.64 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 103.13/77.64 mkBranchUnbox vxw vxx vxy x = x; 103.13/77.64 103.13/77.64 sIZE_RATIO :: Int; 103.13/77.64 sIZE_RATIO = 5; 103.13/77.64 103.13/77.64 sizeFM :: FiniteMap a b -> Int; 103.13/77.64 sizeFM EmptyFM = 0; 103.13/77.64 sizeFM (Branch zz vuu size vuv vuw) = size; 103.13/77.64 103.13/77.64 unitFM :: a -> b -> FiniteMap a b; 103.13/77.64 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 103.13/77.64 103.13/77.64 } 103.13/77.64 module Maybe where { 103.13/77.64 import qualified FiniteMap; 103.13/77.64 import qualified Main; 103.13/77.64 import qualified Prelude; 103.13/77.64 } 103.13/77.64 module Main where { 103.13/77.64 import qualified FiniteMap; 103.13/77.64 import qualified Maybe; 103.13/77.64 import qualified Prelude; 103.13/77.64 } 103.13/77.64 103.13/77.64 ---------------------------------------- 103.13/77.64 103.13/77.64 (11) NumRed (SOUND) 103.13/77.64 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 103.13/77.64 ---------------------------------------- 103.13/77.64 103.13/77.64 (12) 103.13/77.64 Obligation: 103.13/77.64 mainModule Main 103.13/77.64 module FiniteMap where { 103.13/77.64 import qualified Main; 103.13/77.64 import qualified Maybe; 103.13/77.64 import qualified Prelude; 103.13/77.64 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 103.13/77.64 103.13/77.64 instance (Eq a, Eq b) => Eq FiniteMap a b where { 103.13/77.64 } 103.13/77.64 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 103.13/77.64 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 103.13/77.64 103.13/77.64 addListToFM0 old new = new; 103.13/77.64 103.13/77.64 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 103.13/77.64 addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; 103.13/77.64 103.13/77.64 addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 103.13/77.64 103.13/77.64 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 103.13/77.64 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 103.13/77.64 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 103.13/77.64 103.13/77.64 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 103.13/77.64 103.13/77.64 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 103.13/77.64 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 103.13/77.64 103.13/77.64 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 103.13/77.64 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 103.13/77.64 103.13/77.64 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 103.13/77.64 103.13/77.64 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 103.13/77.64 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 103.13/77.64 103.13/77.64 emptyFM :: FiniteMap b a; 103.13/77.64 emptyFM = EmptyFM; 103.13/77.64 103.13/77.64 findMax :: FiniteMap a b -> (a,b); 103.13/77.64 findMax (Branch key elt xv xw EmptyFM) = (key,elt); 103.13/77.64 findMax (Branch key elt xx xy fm_r) = findMax fm_r; 103.13/77.64 103.13/77.64 findMin :: FiniteMap b a -> (b,a); 103.13/77.64 findMin (Branch key elt vux EmptyFM vuy) = (key,elt); 103.13/77.64 findMin (Branch key elt vuz fm_l vvu) = findMin fm_l; 103.13/77.64 103.13/77.64 listToFM :: Ord b => [(b,a)] -> FiniteMap b a; 103.13/77.64 listToFM = addListToFM emptyFM; 103.13/77.64 103.13/77.64 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 103.13/77.64 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_R fm_L key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_R fm_L + mkBalBranch6Size_r key elt fm_R fm_L < Pos (Succ (Succ Zero))); 103.13/77.64 103.13/77.64 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r yz (Branch key_rl elt_rl zu fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) vwx vwy fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); 103.13/77.64 103.13/77.64 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l yu fm_ll (Branch key_lr elt_lr yv fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) vwx vwy fm_lrr fm_r); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr otherwise; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch zv zw zx fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R zv zw zx fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr otherwise; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch yw yx yy fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R yw yx yy fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 103.13/77.64 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 103.13/77.64 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 103.13/77.64 103.13/77.64 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; 103.13/77.64 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 103.13/77.64 103.13/77.64 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r zy fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) vwx vwy fm_l fm_rl) fm_rr; 103.13/77.64 103.13/77.64 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l xz fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) vwx vwy fm_lr fm_r); 103.13/77.64 103.13/77.64 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 103.13/77.64 103.13/77.64 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwz; 103.13/77.64 103.13/77.64 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 103.13/77.64 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 103.13/77.64 103.13/77.64 mkBranchBalance_ok vxw vxx vxy = True; 103.13/77.64 103.13/77.64 mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxy vxw; 103.13/77.64 103.13/77.64 mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 103.13/77.64 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key vz wu wv ww) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 103.13/77.64 103.13/77.64 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 103.13/77.64 103.13/77.64 mkBranchLeft_size vxw vxx vxy = sizeFM vxw; 103.13/77.64 103.13/77.64 mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vyw vxz (Pos (Succ Zero) + mkBranchLeft_size vyv vyw vxz + mkBranchRight_size vyv vyw vxz)) vyv vyw; 103.13/77.64 103.13/77.64 mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxx vxy vxx; 103.13/77.64 103.13/77.64 mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 103.13/77.64 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key wx wy wz xu) = key < mkBranchRight_ok0Smallest_right_key fm_r; 103.13/77.64 103.13/77.64 mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 103.13/77.64 103.13/77.64 mkBranchRight_size vxw vxx vxy = sizeFM vxx; 103.13/77.64 103.13/77.64 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 103.13/77.64 mkBranchUnbox vxw vxx vxy x = x; 103.13/77.64 103.13/77.64 sIZE_RATIO :: Int; 103.13/77.64 sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); 103.13/77.64 103.13/77.64 sizeFM :: FiniteMap b a -> Int; 103.13/77.64 sizeFM EmptyFM = Pos Zero; 103.13/77.64 sizeFM (Branch zz vuu size vuv vuw) = size; 103.13/77.64 103.13/77.64 unitFM :: a -> b -> FiniteMap a b; 103.13/77.64 unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; 103.13/77.64 103.13/77.64 } 103.13/77.64 module Maybe where { 103.13/77.64 import qualified FiniteMap; 103.13/77.64 import qualified Main; 103.13/77.64 import qualified Prelude; 103.13/77.64 } 103.13/77.64 module Main where { 103.13/77.64 import qualified FiniteMap; 103.13/77.64 import qualified Maybe; 103.13/77.64 import qualified Prelude; 103.13/77.64 } 103.36/77.70 EOF