135.55/104.24 MAYBE 137.98/104.92 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 137.98/104.92 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 137.98/104.92 137.98/104.92 137.98/104.92 H-Termination with start terms of the given HASKELL could not be shown: 137.98/104.92 137.98/104.92 (0) HASKELL 137.98/104.92 (1) LR [EQUIVALENT, 0 ms] 137.98/104.92 (2) HASKELL 137.98/104.92 (3) CR [EQUIVALENT, 0 ms] 137.98/104.92 (4) HASKELL 137.98/104.92 (5) BR [EQUIVALENT, 0 ms] 137.98/104.92 (6) HASKELL 137.98/104.92 (7) COR [EQUIVALENT, 17 ms] 137.98/104.92 (8) HASKELL 137.98/104.92 (9) LetRed [EQUIVALENT, 0 ms] 137.98/104.92 (10) HASKELL 137.98/104.92 (11) NumRed [SOUND, 0 ms] 137.98/104.92 (12) HASKELL 137.98/104.92 137.98/104.92 137.98/104.92 ---------------------------------------- 137.98/104.92 137.98/104.92 (0) 137.98/104.92 Obligation: 137.98/104.92 mainModule Main 137.98/104.92 module FiniteMap where { 137.98/104.92 import qualified Main; 137.98/104.92 import qualified Maybe; 137.98/104.92 import qualified Prelude; 137.98/104.92 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 137.98/104.92 137.98/104.92 instance (Eq a, Eq b) => Eq FiniteMap b a where { 137.98/104.92 } 137.98/104.92 addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; 137.98/104.92 addToFM fm key elt = addToFM_C (\old new ->new) fm key elt; 137.98/104.92 137.98/104.92 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 137.98/104.92 addToFM_C combiner EmptyFM key elt = unitFM key elt; 137.98/104.92 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 137.98/104.92 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 137.98/104.92 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 137.98/104.92 137.98/104.92 emptyFM :: FiniteMap a b; 137.98/104.92 emptyFM = EmptyFM; 137.98/104.92 137.98/104.92 findMax :: FiniteMap b a -> (b,a); 137.98/104.92 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 137.98/104.92 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 137.98/104.92 137.98/104.92 findMin :: FiniteMap a b -> (a,b); 137.98/104.92 findMin (Branch key elt _ EmptyFM _) = (key,elt); 137.98/104.92 findMin (Branch key elt _ fm_l _) = findMin fm_l; 137.98/104.92 137.98/104.92 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 137.98/104.92 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 137.98/104.92 | size_r > sIZE_RATIO * size_l = case fm_R of { 137.98/104.92 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 137.98/104.92 | otherwise -> double_L fm_L fm_R; 137.98/104.92 } 137.98/104.92 | size_l > sIZE_RATIO * size_r = case fm_L of { 137.98/104.92 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 137.98/104.92 | otherwise -> double_R fm_L fm_R; 137.98/104.92 } 137.98/104.92 | otherwise = mkBranch 2 key elt fm_L fm_R where { 137.98/104.92 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 137.98/104.92 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 137.98/104.92 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 137.98/104.92 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 137.98/104.92 size_l = sizeFM fm_L; 137.98/104.92 size_r = sizeFM fm_R; 137.98/104.92 }; 137.98/104.92 137.98/104.92 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 137.98/104.92 mkBranch which key elt fm_l fm_r = let { 137.98/104.92 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 137.98/104.92 } in result where { 137.98/104.92 balance_ok = True; 137.98/104.92 left_ok = case fm_l of { 137.98/104.92 EmptyFM-> True; 137.98/104.92 Branch left_key _ _ _ _-> let { 137.98/104.92 biggest_left_key = fst (findMax fm_l); 137.98/104.92 } in biggest_left_key < key; 137.98/104.92 } ; 137.98/104.92 left_size = sizeFM fm_l; 137.98/104.92 right_ok = case fm_r of { 137.98/104.92 EmptyFM-> True; 137.98/104.92 Branch right_key _ _ _ _-> let { 137.98/104.92 smallest_right_key = fst (findMin fm_r); 137.98/104.92 } in key < smallest_right_key; 137.98/104.92 } ; 137.98/104.92 right_size = sizeFM fm_r; 137.98/104.92 unbox :: Int -> Int; 137.98/104.92 unbox x = x; 137.98/104.92 }; 137.98/104.92 137.98/104.92 sIZE_RATIO :: Int; 137.98/104.92 sIZE_RATIO = 5; 137.98/104.92 137.98/104.92 sizeFM :: FiniteMap b a -> Int; 137.98/104.92 sizeFM EmptyFM = 0; 137.98/104.92 sizeFM (Branch _ _ size _ _) = size; 137.98/104.92 137.98/104.92 unitFM :: a -> b -> FiniteMap a b; 137.98/104.92 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 137.98/104.92 137.98/104.92 } 137.98/104.92 module Maybe where { 137.98/104.92 import qualified FiniteMap; 137.98/104.92 import qualified Main; 137.98/104.92 import qualified Prelude; 137.98/104.92 } 137.98/104.92 module Main where { 137.98/104.92 import qualified FiniteMap; 137.98/104.92 import qualified Maybe; 137.98/104.92 import qualified Prelude; 137.98/104.92 } 137.98/104.92 137.98/104.92 ---------------------------------------- 137.98/104.92 137.98/104.92 (1) LR (EQUIVALENT) 137.98/104.92 Lambda Reductions: 137.98/104.92 The following Lambda expression 137.98/104.92 "\oldnew->new" 137.98/104.92 is transformed to 137.98/104.92 "addToFM0 old new = new; 137.98/104.92 " 137.98/104.92 137.98/104.92 ---------------------------------------- 137.98/104.92 137.98/104.92 (2) 137.98/104.92 Obligation: 137.98/104.92 mainModule Main 137.98/104.92 module FiniteMap where { 137.98/104.92 import qualified Main; 137.98/104.92 import qualified Maybe; 137.98/104.92 import qualified Prelude; 137.98/104.92 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 137.98/104.92 137.98/104.92 instance (Eq a, Eq b) => Eq FiniteMap b a where { 137.98/104.92 } 137.98/104.92 addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; 137.98/104.92 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 137.98/104.92 137.98/104.92 addToFM0 old new = new; 137.98/104.92 137.98/104.92 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 137.98/104.92 addToFM_C combiner EmptyFM key elt = unitFM key elt; 137.98/104.92 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 137.98/104.92 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 137.98/104.92 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 137.98/104.92 137.98/104.92 emptyFM :: FiniteMap b a; 137.98/104.92 emptyFM = EmptyFM; 137.98/104.92 137.98/104.92 findMax :: FiniteMap b a -> (b,a); 137.98/104.93 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 137.98/104.93 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 137.98/104.93 137.98/104.93 findMin :: FiniteMap a b -> (a,b); 137.98/104.93 findMin (Branch key elt _ EmptyFM _) = (key,elt); 137.98/104.93 findMin (Branch key elt _ fm_l _) = findMin fm_l; 137.98/104.93 137.98/104.93 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 137.98/104.93 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 137.98/104.93 | size_r > sIZE_RATIO * size_l = case fm_R of { 137.98/104.93 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 137.98/104.93 | otherwise -> double_L fm_L fm_R; 137.98/104.93 } 137.98/104.93 | size_l > sIZE_RATIO * size_r = case fm_L of { 137.98/104.93 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 137.98/104.93 | otherwise -> double_R fm_L fm_R; 137.98/104.93 } 137.98/104.93 | otherwise = mkBranch 2 key elt fm_L fm_R where { 137.98/104.93 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 137.98/104.93 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 137.98/104.93 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 137.98/104.93 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 137.98/104.93 size_l = sizeFM fm_L; 137.98/104.93 size_r = sizeFM fm_R; 137.98/104.93 }; 137.98/104.93 137.98/104.93 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 137.98/104.93 mkBranch which key elt fm_l fm_r = let { 137.98/104.93 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 137.98/104.93 } in result where { 137.98/104.93 balance_ok = True; 137.98/104.93 left_ok = case fm_l of { 137.98/104.93 EmptyFM-> True; 137.98/104.93 Branch left_key _ _ _ _-> let { 137.98/104.93 biggest_left_key = fst (findMax fm_l); 137.98/104.93 } in biggest_left_key < key; 137.98/104.93 } ; 137.98/104.93 left_size = sizeFM fm_l; 137.98/104.93 right_ok = case fm_r of { 137.98/104.93 EmptyFM-> True; 137.98/104.93 Branch right_key _ _ _ _-> let { 137.98/104.93 smallest_right_key = fst (findMin fm_r); 137.98/104.93 } in key < smallest_right_key; 137.98/104.93 } ; 137.98/104.93 right_size = sizeFM fm_r; 137.98/104.93 unbox :: Int -> Int; 137.98/104.93 unbox x = x; 137.98/104.93 }; 137.98/104.93 137.98/104.93 sIZE_RATIO :: Int; 137.98/104.93 sIZE_RATIO = 5; 137.98/104.93 137.98/104.93 sizeFM :: FiniteMap b a -> Int; 137.98/104.93 sizeFM EmptyFM = 0; 137.98/104.93 sizeFM (Branch _ _ size _ _) = size; 137.98/104.93 137.98/104.93 unitFM :: b -> a -> FiniteMap b a; 137.98/104.93 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 137.98/104.93 137.98/104.93 } 137.98/104.93 module Maybe where { 137.98/104.93 import qualified FiniteMap; 137.98/104.93 import qualified Main; 137.98/104.93 import qualified Prelude; 137.98/104.93 } 137.98/104.93 module Main where { 137.98/104.93 import qualified FiniteMap; 137.98/104.93 import qualified Maybe; 137.98/104.93 import qualified Prelude; 137.98/104.93 } 137.98/104.93 137.98/104.93 ---------------------------------------- 137.98/104.93 137.98/104.93 (3) CR (EQUIVALENT) 137.98/104.93 Case Reductions: 137.98/104.93 The following Case expression 137.98/104.93 "case fm_r of { 137.98/104.93 EmptyFM -> True; 137.98/104.93 Branch right_key _ _ _ _ -> let { 137.98/104.93 smallest_right_key = fst (findMin fm_r); 137.98/104.93 } in key < smallest_right_key} 137.98/104.93 " 137.98/104.93 is transformed to 137.98/104.93 "right_ok0 fm_r key EmptyFM = True; 137.98/104.93 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 137.98/104.93 smallest_right_key = fst (findMin fm_r); 137.98/104.93 } in key < smallest_right_key; 137.98/104.93 " 137.98/104.93 The following Case expression 137.98/104.93 "case fm_l of { 137.98/104.93 EmptyFM -> True; 137.98/104.93 Branch left_key _ _ _ _ -> let { 138.88/105.16 biggest_left_key = fst (findMax fm_l); 138.88/105.16 } in biggest_left_key < key} 138.88/105.16 " 138.88/105.16 is transformed to 138.88/105.16 "left_ok0 fm_l key EmptyFM = True; 138.88/105.16 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 138.88/105.16 biggest_left_key = fst (findMax fm_l); 138.88/105.16 } in biggest_left_key < key; 138.88/105.16 " 138.88/105.16 The following Case expression 138.88/105.16 "case fm_R of { 138.88/105.16 Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} 138.88/105.16 " 138.88/105.16 is transformed to 138.88/105.16 "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 138.88/105.16 " 138.88/105.16 The following Case expression 138.88/105.16 "case fm_L of { 138.88/105.16 Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} 138.88/105.16 " 138.88/105.16 is transformed to 138.88/105.16 "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 138.88/105.16 " 138.88/105.16 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (4) 138.88/105.16 Obligation: 138.88/105.16 mainModule Main 138.88/105.16 module FiniteMap where { 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 138.88/105.16 138.88/105.16 instance (Eq a, Eq b) => Eq FiniteMap a b where { 138.88/105.16 } 138.88/105.16 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 138.88/105.16 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 138.88/105.16 138.88/105.16 addToFM0 old new = new; 138.88/105.16 138.88/105.16 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 138.88/105.16 addToFM_C combiner EmptyFM key elt = unitFM key elt; 138.88/105.16 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 138.88/105.16 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 138.88/105.16 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 138.88/105.16 138.88/105.16 emptyFM :: FiniteMap b a; 138.88/105.16 emptyFM = EmptyFM; 138.88/105.16 138.88/105.16 findMax :: FiniteMap a b -> (a,b); 138.88/105.16 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 138.88/105.16 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 138.88/105.16 138.88/105.16 findMin :: FiniteMap b a -> (b,a); 138.88/105.16 findMin (Branch key elt _ EmptyFM _) = (key,elt); 138.88/105.16 findMin (Branch key elt _ fm_l _) = findMin fm_l; 138.88/105.16 138.88/105.16 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 138.88/105.16 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 138.88/105.16 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 138.88/105.16 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 138.88/105.16 | otherwise = mkBranch 2 key elt fm_L fm_R where { 138.88/105.16 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 138.88/105.16 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 138.88/105.16 mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 138.88/105.16 | otherwise = double_L fm_L fm_R; 138.88/105.16 mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 138.88/105.16 | otherwise = double_R fm_L fm_R; 138.88/105.16 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 138.88/105.16 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 138.88/105.16 size_l = sizeFM fm_L; 138.88/105.16 size_r = sizeFM fm_R; 138.88/105.16 }; 138.88/105.16 138.88/105.16 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 138.88/105.16 mkBranch which key elt fm_l fm_r = let { 138.88/105.16 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 138.88/105.16 } in result where { 138.88/105.16 balance_ok = True; 138.88/105.16 left_ok = left_ok0 fm_l key fm_l; 138.88/105.16 left_ok0 fm_l key EmptyFM = True; 138.88/105.16 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 138.88/105.16 biggest_left_key = fst (findMax fm_l); 138.88/105.16 } in biggest_left_key < key; 138.88/105.16 left_size = sizeFM fm_l; 138.88/105.16 right_ok = right_ok0 fm_r key fm_r; 138.88/105.16 right_ok0 fm_r key EmptyFM = True; 138.88/105.16 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 138.88/105.16 smallest_right_key = fst (findMin fm_r); 138.88/105.16 } in key < smallest_right_key; 138.88/105.16 right_size = sizeFM fm_r; 138.88/105.16 unbox :: Int -> Int; 138.88/105.16 unbox x = x; 138.88/105.16 }; 138.88/105.16 138.88/105.16 sIZE_RATIO :: Int; 138.88/105.16 sIZE_RATIO = 5; 138.88/105.16 138.88/105.16 sizeFM :: FiniteMap b a -> Int; 138.88/105.16 sizeFM EmptyFM = 0; 138.88/105.16 sizeFM (Branch _ _ size _ _) = size; 138.88/105.16 138.88/105.16 unitFM :: b -> a -> FiniteMap b a; 138.88/105.16 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 138.88/105.16 138.88/105.16 } 138.88/105.16 module Maybe where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 module Main where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (5) BR (EQUIVALENT) 138.88/105.16 Replaced joker patterns by fresh variables and removed binding patterns. 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (6) 138.88/105.16 Obligation: 138.88/105.16 mainModule Main 138.88/105.16 module FiniteMap where { 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 138.88/105.16 138.88/105.16 instance (Eq a, Eq b) => Eq FiniteMap a b where { 138.88/105.16 } 138.88/105.16 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 138.88/105.16 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 138.88/105.16 138.88/105.16 addToFM0 old new = new; 138.88/105.16 138.88/105.16 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 138.88/105.16 addToFM_C combiner EmptyFM key elt = unitFM key elt; 138.88/105.16 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 138.88/105.16 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 138.88/105.16 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 138.88/105.16 138.88/105.16 emptyFM :: FiniteMap b a; 138.88/105.16 emptyFM = EmptyFM; 138.88/105.16 138.88/105.16 findMax :: FiniteMap b a -> (b,a); 138.88/105.16 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 138.88/105.16 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 138.88/105.16 138.88/105.16 findMin :: FiniteMap a b -> (a,b); 138.88/105.16 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 138.88/105.16 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 138.88/105.16 138.88/105.16 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 138.88/105.16 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 138.88/105.16 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 138.88/105.16 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 138.88/105.16 | otherwise = mkBranch 2 key elt fm_L fm_R where { 138.88/105.16 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 138.88/105.16 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 138.88/105.16 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 138.88/105.16 | otherwise = double_L fm_L fm_R; 138.88/105.16 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 138.88/105.16 | otherwise = double_R fm_L fm_R; 138.88/105.16 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 138.88/105.16 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 138.88/105.16 size_l = sizeFM fm_L; 138.88/105.16 size_r = sizeFM fm_R; 138.88/105.16 }; 138.88/105.16 138.88/105.16 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 138.88/105.16 mkBranch which key elt fm_l fm_r = let { 138.88/105.16 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 138.88/105.16 } in result where { 138.88/105.16 balance_ok = True; 138.88/105.16 left_ok = left_ok0 fm_l key fm_l; 138.88/105.16 left_ok0 fm_l key EmptyFM = True; 138.88/105.16 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 138.88/105.16 biggest_left_key = fst (findMax fm_l); 138.88/105.16 } in biggest_left_key < key; 138.88/105.16 left_size = sizeFM fm_l; 138.88/105.16 right_ok = right_ok0 fm_r key fm_r; 138.88/105.16 right_ok0 fm_r key EmptyFM = True; 138.88/105.16 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 138.88/105.16 smallest_right_key = fst (findMin fm_r); 138.88/105.16 } in key < smallest_right_key; 138.88/105.16 right_size = sizeFM fm_r; 138.88/105.16 unbox :: Int -> Int; 138.88/105.16 unbox x = x; 138.88/105.16 }; 138.88/105.16 138.88/105.16 sIZE_RATIO :: Int; 138.88/105.16 sIZE_RATIO = 5; 138.88/105.16 138.88/105.16 sizeFM :: FiniteMap b a -> Int; 138.88/105.16 sizeFM EmptyFM = 0; 138.88/105.16 sizeFM (Branch vz wu size wv ww) = size; 138.88/105.16 138.88/105.16 unitFM :: a -> b -> FiniteMap a b; 138.88/105.16 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 138.88/105.16 138.88/105.16 } 138.88/105.16 module Maybe where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 module Main where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (7) COR (EQUIVALENT) 138.88/105.16 Cond Reductions: 138.88/105.16 The following Function with conditions 138.88/105.16 "undefined |Falseundefined; 138.88/105.16 " 138.88/105.16 is transformed to 138.88/105.16 "undefined = undefined1; 138.88/105.16 " 138.88/105.16 "undefined0 True = undefined; 138.88/105.16 " 138.88/105.16 "undefined1 = undefined0 False; 138.88/105.16 " 138.88/105.16 The following Function with conditions 138.88/105.16 "addToFM_C combiner EmptyFM key elt = unitFM key elt; 138.88/105.16 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; 138.88/105.16 " 138.88/105.16 is transformed to 138.88/105.16 "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 138.88/105.16 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 138.88/105.16 " 138.88/105.16 "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 138.88/105.16 " 138.88/105.16 "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 138.88/105.16 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 138.88/105.16 " 138.88/105.16 "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 138.88/105.16 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 138.88/105.16 " 138.88/105.16 "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 138.88/105.16 " 138.88/105.16 "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 138.88/105.16 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 138.88/105.16 " 138.88/105.16 The following Function with conditions 138.88/105.16 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 138.88/105.16 " 138.88/105.16 is transformed to 138.88/105.16 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 138.88/105.16 " 138.88/105.16 "mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 138.88/105.16 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 138.88/105.16 " 138.88/105.16 "mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 138.88/105.16 " 138.88/105.16 "mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 138.88/105.16 " 138.88/105.16 The following Function with conditions 138.88/105.16 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 138.88/105.16 " 138.88/105.16 is transformed to 138.88/105.16 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 138.88/105.16 " 138.88/105.16 "mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 138.88/105.16 " 138.88/105.16 "mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 138.88/105.16 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 138.88/105.16 " 138.88/105.16 "mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 138.88/105.16 " 138.88/105.16 The following Function with conditions 138.88/105.16 "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { 138.88/105.16 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 138.88/105.16 ; 138.88/105.16 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 138.88/105.16 ; 138.88/105.16 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 138.88/105.16 ; 138.88/105.16 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 138.88/105.16 ; 138.88/105.16 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 138.88/105.16 ; 138.88/105.16 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 138.88/105.16 ; 138.88/105.16 size_l = sizeFM fm_L; 138.88/105.16 ; 138.88/105.16 size_r = sizeFM fm_R; 138.88/105.16 } 138.88/105.16 ; 138.88/105.16 " 138.88/105.16 is transformed to 138.88/105.16 "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 138.88/105.16 " 138.88/105.16 "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 138.88/105.16 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 138.88/105.16 ; 138.88/105.16 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 138.88/105.16 ; 138.88/105.16 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 138.88/105.16 ; 138.88/105.16 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 138.88/105.16 ; 138.88/105.16 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 138.88/105.16 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 138.88/105.16 ; 138.88/105.16 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 138.88/105.16 ; 138.88/105.16 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 138.88/105.16 ; 138.88/105.16 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 138.88/105.16 ; 138.88/105.16 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 138.88/105.16 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 138.88/105.16 ; 138.88/105.16 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 138.88/105.16 ; 138.88/105.16 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 138.88/105.16 ; 138.88/105.16 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 138.88/105.16 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 138.88/105.16 ; 138.88/105.16 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 138.88/105.16 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 138.88/105.16 ; 138.88/105.16 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 138.88/105.16 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 138.88/105.16 ; 138.88/105.16 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 138.88/105.16 ; 138.88/105.16 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 138.88/105.16 ; 138.88/105.16 size_l = sizeFM fm_L; 138.88/105.16 ; 138.88/105.16 size_r = sizeFM fm_R; 138.88/105.16 } 138.88/105.16 ; 138.88/105.16 " 138.88/105.16 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (8) 138.88/105.16 Obligation: 138.88/105.16 mainModule Main 138.88/105.16 module FiniteMap where { 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 138.88/105.16 138.88/105.16 instance (Eq a, Eq b) => Eq FiniteMap a b where { 138.88/105.16 } 138.88/105.16 addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; 138.88/105.16 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 138.88/105.16 138.88/105.16 addToFM0 old new = new; 138.88/105.16 138.88/105.16 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 138.88/105.16 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 138.88/105.16 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 138.88/105.16 138.88/105.16 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 138.88/105.16 138.88/105.16 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 138.88/105.16 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 138.88/105.16 138.88/105.16 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 138.88/105.16 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 138.88/105.16 138.88/105.16 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 138.88/105.16 138.88/105.16 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 138.88/105.16 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 138.88/105.16 138.88/105.16 emptyFM :: FiniteMap b a; 138.88/105.16 emptyFM = EmptyFM; 138.88/105.16 138.88/105.16 findMax :: FiniteMap b a -> (b,a); 138.88/105.16 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 138.88/105.16 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 138.88/105.16 138.88/105.16 findMin :: FiniteMap b a -> (b,a); 138.88/105.16 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 138.88/105.16 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 138.88/105.16 138.88/105.16 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 138.88/105.16 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 138.88/105.16 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 138.88/105.16 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 138.88/105.16 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 138.88/105.16 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 138.88/105.16 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 138.88/105.16 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 138.88/105.16 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 138.88/105.16 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 138.88/105.16 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 138.88/105.16 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 138.88/105.16 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 138.88/105.16 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 138.88/105.16 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 138.88/105.16 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 138.88/105.16 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 138.88/105.16 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 138.88/105.16 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 138.88/105.16 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 138.88/105.16 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 138.88/105.16 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 138.88/105.16 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 138.88/105.16 size_l = sizeFM fm_L; 138.88/105.16 size_r = sizeFM fm_R; 138.88/105.16 }; 138.88/105.16 138.88/105.16 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 138.88/105.16 mkBranch which key elt fm_l fm_r = let { 138.88/105.16 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 138.88/105.16 } in result where { 138.88/105.16 balance_ok = True; 138.88/105.16 left_ok = left_ok0 fm_l key fm_l; 138.88/105.16 left_ok0 fm_l key EmptyFM = True; 138.88/105.16 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 138.88/105.16 biggest_left_key = fst (findMax fm_l); 138.88/105.16 } in biggest_left_key < key; 138.88/105.16 left_size = sizeFM fm_l; 138.88/105.16 right_ok = right_ok0 fm_r key fm_r; 138.88/105.16 right_ok0 fm_r key EmptyFM = True; 138.88/105.16 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 138.88/105.16 smallest_right_key = fst (findMin fm_r); 138.88/105.16 } in key < smallest_right_key; 138.88/105.16 right_size = sizeFM fm_r; 138.88/105.16 unbox :: Int -> Int; 138.88/105.16 unbox x = x; 138.88/105.16 }; 138.88/105.16 138.88/105.16 sIZE_RATIO :: Int; 138.88/105.16 sIZE_RATIO = 5; 138.88/105.16 138.88/105.16 sizeFM :: FiniteMap b a -> Int; 138.88/105.16 sizeFM EmptyFM = 0; 138.88/105.16 sizeFM (Branch vz wu size wv ww) = size; 138.88/105.16 138.88/105.16 unitFM :: b -> a -> FiniteMap b a; 138.88/105.16 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 138.88/105.16 138.88/105.16 } 138.88/105.16 module Maybe where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 module Main where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (9) LetRed (EQUIVALENT) 138.88/105.16 Let/Where Reductions: 138.88/105.16 The bindings of the following Let/Where expression 138.88/105.16 "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 138.88/105.16 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 138.88/105.16 ; 138.88/105.16 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 138.88/105.16 ; 138.88/105.16 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 138.88/105.16 ; 138.88/105.16 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 138.88/105.16 ; 138.88/105.16 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 138.88/105.16 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 138.88/105.16 ; 138.88/105.16 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 138.88/105.16 ; 138.88/105.16 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 138.88/105.16 ; 138.88/105.16 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 138.88/105.16 ; 138.88/105.16 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 138.88/105.16 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 138.88/105.16 ; 138.88/105.16 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 138.88/105.16 ; 138.88/105.16 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 138.88/105.16 ; 138.88/105.16 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 138.88/105.16 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 138.88/105.16 ; 138.88/105.16 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 138.88/105.16 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 138.88/105.16 ; 138.88/105.16 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 138.88/105.16 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 138.88/105.16 ; 138.88/105.16 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 138.88/105.16 ; 138.88/105.16 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 138.88/105.16 ; 138.88/105.16 size_l = sizeFM fm_L; 138.88/105.16 ; 138.88/105.16 size_r = sizeFM fm_R; 138.88/105.16 } 138.88/105.16 " 138.88/105.16 are unpacked to the following functions on top level 138.88/105.16 "mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 138.88/105.16 " 138.88/105.16 "mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 138.88/105.16 " 138.88/105.16 "mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 138.88/105.16 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 138.88/105.16 " 138.88/105.16 "mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 138.88/105.16 " 138.88/105.16 "mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 138.88/105.16 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 138.88/105.16 " 138.88/105.16 "mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 138.88/105.16 " 138.88/105.16 "mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 138.88/105.16 " 138.88/105.16 The bindings of the following Let/Where expression 138.88/105.16 "let { 138.88/105.16 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 138.88/105.16 } in result where { 138.88/105.16 balance_ok = True; 138.88/105.16 ; 138.88/105.16 left_ok = left_ok0 fm_l key fm_l; 138.88/105.16 ; 138.88/105.16 left_ok0 fm_l key EmptyFM = True; 138.88/105.16 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 138.88/105.16 biggest_left_key = fst (findMax fm_l); 138.88/105.16 } in biggest_left_key < key; 138.88/105.16 ; 138.88/105.16 left_size = sizeFM fm_l; 138.88/105.16 ; 138.88/105.16 right_ok = right_ok0 fm_r key fm_r; 138.88/105.16 ; 138.88/105.16 right_ok0 fm_r key EmptyFM = True; 138.88/105.16 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 138.88/105.16 smallest_right_key = fst (findMin fm_r); 138.88/105.16 } in key < smallest_right_key; 138.88/105.16 ; 138.88/105.16 right_size = sizeFM fm_r; 138.88/105.16 ; 138.88/105.16 unbox x = x; 138.88/105.16 } 138.88/105.16 " 138.88/105.16 are unpacked to the following functions on top level 138.88/105.16 "mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 138.88/105.16 " 138.88/105.16 "mkBranchBalance_ok vxv vxw vxx = True; 138.88/105.16 " 138.88/105.16 "mkBranchRight_size vxv vxw vxx = sizeFM vxw; 138.88/105.16 " 138.88/105.16 "mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 138.88/105.16 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 138.88/105.16 " 138.88/105.16 "mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 138.88/105.16 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 138.88/105.16 " 138.88/105.16 "mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxx vxv; 138.88/105.16 " 138.88/105.16 "mkBranchUnbox vxv vxw vxx x = x; 138.88/105.16 " 138.88/105.16 "mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxw vxx vxw; 138.88/105.16 " 138.88/105.16 The bindings of the following Let/Where expression 138.88/105.16 "let { 138.88/105.16 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 138.88/105.16 } in result" 138.88/105.16 are unpacked to the following functions on top level 138.88/105.16 "mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (1 + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyu vyv; 138.88/105.16 " 138.88/105.16 The bindings of the following Let/Where expression 138.88/105.16 "let { 138.88/105.16 smallest_right_key = fst (findMin fm_r); 138.88/105.16 } in key < smallest_right_key" 138.88/105.16 are unpacked to the following functions on top level 138.88/105.16 "mkBranchRight_ok0Smallest_right_key vyw = fst (findMin vyw); 138.88/105.16 " 138.88/105.16 The bindings of the following Let/Where expression 138.88/105.16 "let { 138.88/105.16 biggest_left_key = fst (findMax fm_l); 138.88/105.16 } in biggest_left_key < key" 138.88/105.16 are unpacked to the following functions on top level 138.88/105.16 "mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 138.88/105.16 " 138.88/105.16 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (10) 138.88/105.16 Obligation: 138.88/105.16 mainModule Main 138.88/105.16 module FiniteMap where { 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 138.88/105.16 138.88/105.16 instance (Eq a, Eq b) => Eq FiniteMap a b where { 138.88/105.16 } 138.88/105.16 addToFM :: Ord a => FiniteMap a b -> a -> b -> FiniteMap a b; 138.88/105.16 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 138.88/105.16 138.88/105.16 addToFM0 old new = new; 138.88/105.16 138.88/105.16 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 138.88/105.16 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 138.88/105.16 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 138.88/105.16 138.88/105.16 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 138.88/105.16 138.88/105.16 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 138.88/105.16 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 138.88/105.16 138.88/105.16 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 138.88/105.16 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 138.88/105.16 138.88/105.16 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 138.88/105.16 138.88/105.16 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 138.88/105.16 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 138.88/105.16 138.88/105.16 emptyFM :: FiniteMap a b; 138.88/105.16 emptyFM = EmptyFM; 138.88/105.16 138.88/105.16 findMax :: FiniteMap b a -> (b,a); 138.88/105.16 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 138.88/105.16 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 138.88/105.16 138.88/105.16 findMin :: FiniteMap b a -> (b,a); 138.88/105.16 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 138.88/105.16 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 138.88/105.16 138.88/105.16 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 138.88/105.16 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < 2); 138.88/105.16 138.88/105.16 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 138.88/105.16 138.88/105.16 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 138.88/105.16 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 138.88/105.16 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 138.88/105.16 138.88/105.16 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 138.88/105.16 138.88/105.16 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 138.88/105.16 138.88/105.16 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 138.88/105.16 138.88/105.16 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 138.88/105.16 138.88/105.16 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 138.88/105.16 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 138.88/105.16 138.88/105.16 mkBranchBalance_ok vxv vxw vxx = True; 138.88/105.16 138.88/105.16 mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxx vxv; 138.88/105.16 138.88/105.16 mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 138.88/105.16 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 138.88/105.16 138.88/105.16 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 138.88/105.16 138.88/105.16 mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 138.88/105.16 138.88/105.16 mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (1 + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyu vyv; 138.88/105.16 138.88/105.16 mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxw vxx vxw; 138.88/105.16 138.88/105.16 mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 138.88/105.16 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 138.88/105.16 138.88/105.16 mkBranchRight_ok0Smallest_right_key vyw = fst (findMin vyw); 138.88/105.16 138.88/105.16 mkBranchRight_size vxv vxw vxx = sizeFM vxw; 138.88/105.16 138.88/105.16 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 138.88/105.16 mkBranchUnbox vxv vxw vxx x = x; 138.88/105.16 138.88/105.16 sIZE_RATIO :: Int; 138.88/105.16 sIZE_RATIO = 5; 138.88/105.16 138.88/105.16 sizeFM :: FiniteMap b a -> Int; 138.88/105.16 sizeFM EmptyFM = 0; 138.88/105.16 sizeFM (Branch vz wu size wv ww) = size; 138.88/105.16 138.88/105.16 unitFM :: a -> b -> FiniteMap a b; 138.88/105.16 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 138.88/105.16 138.88/105.16 } 138.88/105.16 module Maybe where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 module Main where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (11) NumRed (SOUND) 138.88/105.16 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 138.88/105.16 ---------------------------------------- 138.88/105.16 138.88/105.16 (12) 138.88/105.16 Obligation: 138.88/105.16 mainModule Main 138.88/105.16 module FiniteMap where { 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 138.88/105.16 138.88/105.16 instance (Eq a, Eq b) => Eq FiniteMap b a where { 138.88/105.16 } 138.88/105.16 addToFM :: Ord b => FiniteMap b a -> b -> a -> FiniteMap b a; 138.88/105.16 addToFM fm key elt = addToFM_C addToFM0 fm key elt; 138.88/105.16 138.88/105.16 addToFM0 old new = new; 138.88/105.16 138.88/105.16 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 138.88/105.16 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 138.88/105.16 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 138.88/105.16 138.88/105.16 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 138.88/105.16 138.88/105.16 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 138.88/105.16 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 138.88/105.16 138.88/105.16 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 138.88/105.16 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 138.88/105.16 138.88/105.16 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 138.88/105.16 138.88/105.16 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 138.88/105.16 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 138.88/105.16 138.88/105.16 emptyFM :: FiniteMap b a; 138.88/105.16 emptyFM = EmptyFM; 138.88/105.16 138.88/105.16 findMax :: FiniteMap b a -> (b,a); 138.88/105.16 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 138.88/105.16 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 138.88/105.16 138.88/105.16 findMin :: FiniteMap b a -> (b,a); 138.88/105.16 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 138.88/105.16 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 138.88/105.16 138.88/105.16 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 138.88/105.16 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < Pos (Succ (Succ Zero))); 138.88/105.16 138.88/105.16 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) vwx vwy fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); 138.88/105.16 138.88/105.16 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) vwx vwy fm_lrr fm_r); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 138.88/105.16 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 138.88/105.16 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 138.88/105.16 138.88/105.16 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; 138.88/105.16 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 138.88/105.16 138.88/105.16 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) vwx vwy fm_l fm_rl) fm_rr; 138.88/105.16 138.88/105.16 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) vwx vwy fm_lr fm_r); 138.88/105.16 138.88/105.16 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 138.88/105.16 138.88/105.16 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 138.88/105.16 138.88/105.16 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 138.88/105.16 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 138.88/105.16 138.88/105.16 mkBranchBalance_ok vxv vxw vxx = True; 138.88/105.16 138.88/105.16 mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxx vxv; 138.88/105.16 138.88/105.16 mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 138.88/105.16 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 138.88/105.16 138.88/105.16 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 138.88/105.16 138.88/105.16 mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 138.88/105.16 138.88/105.16 mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (Pos (Succ Zero) + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyu vyv; 138.88/105.16 138.88/105.16 mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxw vxx vxw; 138.88/105.16 138.88/105.16 mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 138.88/105.16 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 138.88/105.16 138.88/105.16 mkBranchRight_ok0Smallest_right_key vyw = fst (findMin vyw); 138.88/105.16 138.88/105.16 mkBranchRight_size vxv vxw vxx = sizeFM vxw; 138.88/105.16 138.88/105.16 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 138.88/105.16 mkBranchUnbox vxv vxw vxx x = x; 138.88/105.16 138.88/105.16 sIZE_RATIO :: Int; 138.88/105.16 sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); 138.88/105.16 138.88/105.16 sizeFM :: FiniteMap b a -> Int; 138.88/105.16 sizeFM EmptyFM = Pos Zero; 138.88/105.16 sizeFM (Branch vz wu size wv ww) = size; 138.88/105.16 138.88/105.16 unitFM :: b -> a -> FiniteMap b a; 138.88/105.16 unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; 138.88/105.16 138.88/105.16 } 138.88/105.16 module Maybe where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Main; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 138.88/105.16 module Main where { 138.88/105.16 import qualified FiniteMap; 138.88/105.16 import qualified Maybe; 138.88/105.16 import qualified Prelude; 138.88/105.16 } 139.07/105.24 EOF