8.07/3.60 YES 10.32/4.20 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 10.32/4.20 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 10.32/4.20 10.32/4.20 10.32/4.20 H-Termination with start terms of the given HASKELL could be proven: 10.32/4.20 10.32/4.20 (0) HASKELL 10.32/4.20 (1) LR [EQUIVALENT, 0 ms] 10.32/4.20 (2) HASKELL 10.32/4.20 (3) BR [EQUIVALENT, 0 ms] 10.32/4.20 (4) HASKELL 10.32/4.20 (5) COR [EQUIVALENT, 0 ms] 10.32/4.20 (6) HASKELL 10.32/4.20 (7) LetRed [EQUIVALENT, 0 ms] 10.32/4.20 (8) HASKELL 10.32/4.20 (9) NumRed [SOUND, 4 ms] 10.32/4.20 (10) HASKELL 10.32/4.20 (11) Narrow [SOUND, 0 ms] 10.32/4.20 (12) QDP 10.32/4.20 (13) TransformationProof [EQUIVALENT, 0 ms] 10.32/4.20 (14) QDP 10.32/4.20 (15) DependencyGraphProof [EQUIVALENT, 0 ms] 10.32/4.20 (16) QDP 10.32/4.20 (17) TransformationProof [EQUIVALENT, 0 ms] 10.32/4.20 (18) QDP 10.32/4.20 (19) DependencyGraphProof [EQUIVALENT, 0 ms] 10.32/4.20 (20) QDP 10.32/4.20 (21) UsableRulesProof [EQUIVALENT, 0 ms] 10.32/4.20 (22) QDP 10.32/4.20 (23) QReductionProof [EQUIVALENT, 0 ms] 10.32/4.20 (24) QDP 10.32/4.20 (25) QDPSizeChangeProof [EQUIVALENT, 0 ms] 10.32/4.20 (26) YES 10.32/4.20 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (0) 10.32/4.20 Obligation: 10.32/4.20 mainModule Main 10.32/4.20 module Main where { 10.32/4.20 import qualified Prelude; 10.32/4.20 } 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (1) LR (EQUIVALENT) 10.32/4.20 Lambda Reductions: 10.32/4.20 The following Lambda expression 10.32/4.20 "\(_,xs'')->xs''" 10.32/4.20 is transformed to 10.32/4.20 "xs''0 (_,xs'') = xs''; 10.32/4.20 " 10.32/4.20 The following Lambda expression 10.32/4.20 "\(xs',_)->xs'" 10.32/4.20 is transformed to 10.32/4.20 "xs'0 (xs',_) = xs'; 10.32/4.20 " 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (2) 10.32/4.20 Obligation: 10.32/4.20 mainModule Main 10.32/4.20 module Main where { 10.32/4.20 import qualified Prelude; 10.32/4.20 } 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (3) BR (EQUIVALENT) 10.32/4.20 Replaced joker patterns by fresh variables and removed binding patterns. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (4) 10.32/4.20 Obligation: 10.32/4.20 mainModule Main 10.32/4.20 module Main where { 10.32/4.20 import qualified Prelude; 10.32/4.20 } 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (5) COR (EQUIVALENT) 10.32/4.20 Cond Reductions: 10.32/4.20 The following Function with conditions 10.32/4.20 "splitAt n xs|n <= 0([],xs); 10.32/4.20 splitAt vw [] = ([],[]); 10.32/4.20 splitAt n (x : xs) = (x : xs',xs'') where { 10.32/4.20 vu42 = splitAt (n - 1) xs; 10.32/4.20 ; 10.32/4.20 xs' = xs'0 vu42; 10.32/4.20 ; 10.32/4.20 xs'' = xs''0 vu42; 10.32/4.20 ; 10.32/4.20 xs''0 (vx,xs'') = xs''; 10.32/4.20 ; 10.32/4.20 xs'0 (xs',vy) = xs'; 10.32/4.20 } 10.32/4.20 ; 10.32/4.20 " 10.32/4.20 is transformed to 10.32/4.20 "splitAt n xs = splitAt3 n xs; 10.32/4.20 splitAt vw [] = splitAt1 vw []; 10.32/4.20 splitAt n (x : xs) = splitAt0 n (x : xs); 10.32/4.20 " 10.32/4.20 "splitAt0 n (x : xs) = (x : xs',xs'') where { 10.32/4.20 vu42 = splitAt (n - 1) xs; 10.32/4.20 ; 10.32/4.20 xs' = xs'0 vu42; 10.32/4.20 ; 10.32/4.20 xs'' = xs''0 vu42; 10.32/4.20 ; 10.32/4.20 xs''0 (vx,xs'') = xs''; 10.32/4.20 ; 10.32/4.20 xs'0 (xs',vy) = xs'; 10.32/4.20 } 10.32/4.20 ; 10.32/4.20 " 10.32/4.20 "splitAt1 vw [] = ([],[]); 10.32/4.20 splitAt1 ww wx = splitAt0 ww wx; 10.32/4.20 " 10.32/4.20 "splitAt2 n xs True = ([],xs); 10.32/4.20 splitAt2 n xs False = splitAt1 n xs; 10.32/4.20 " 10.32/4.20 "splitAt3 n xs = splitAt2 n xs (n <= 0); 10.32/4.20 splitAt3 wy wz = splitAt1 wy wz; 10.32/4.20 " 10.32/4.20 The following Function with conditions 10.32/4.20 "undefined |Falseundefined; 10.32/4.20 " 10.32/4.20 is transformed to 10.32/4.20 "undefined = undefined1; 10.32/4.20 " 10.32/4.20 "undefined0 True = undefined; 10.32/4.20 " 10.32/4.20 "undefined1 = undefined0 False; 10.32/4.20 " 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (6) 10.32/4.20 Obligation: 10.32/4.20 mainModule Main 10.32/4.20 module Main where { 10.32/4.20 import qualified Prelude; 10.32/4.20 } 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (7) LetRed (EQUIVALENT) 10.32/4.20 Let/Where Reductions: 10.32/4.20 The bindings of the following Let/Where expression 10.32/4.20 "(x : xs',xs'') where { 10.32/4.20 vu42 = splitAt (n - 1) xs; 10.32/4.20 ; 10.32/4.20 xs' = xs'0 vu42; 10.32/4.20 ; 10.32/4.20 xs'' = xs''0 vu42; 10.32/4.20 ; 10.32/4.20 xs''0 (vx,xs'') = xs''; 10.32/4.20 ; 10.32/4.20 xs'0 (xs',vy) = xs'; 10.32/4.20 } 10.32/4.20 " 10.32/4.20 are unpacked to the following functions on top level 10.32/4.20 "splitAt0Xs''0 xu xv (vx,xs'') = xs''; 10.32/4.20 " 10.32/4.20 "splitAt0Xs'0 xu xv (xs',vy) = xs'; 10.32/4.20 " 10.32/4.20 "splitAt0Vu42 xu xv = splitAt (xu - 1) xv; 10.32/4.20 " 10.32/4.20 "splitAt0Xs' xu xv = splitAt0Xs'0 xu xv (splitAt0Vu42 xu xv); 10.32/4.20 " 10.32/4.20 "splitAt0Xs'' xu xv = splitAt0Xs''0 xu xv (splitAt0Vu42 xu xv); 10.32/4.20 " 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (8) 10.32/4.20 Obligation: 10.32/4.20 mainModule Main 10.32/4.20 module Main where { 10.32/4.20 import qualified Prelude; 10.32/4.20 } 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (9) NumRed (SOUND) 10.32/4.20 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (10) 10.32/4.20 Obligation: 10.32/4.20 mainModule Main 10.32/4.20 module Main where { 10.32/4.20 import qualified Prelude; 10.32/4.20 } 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (11) Narrow (SOUND) 10.32/4.20 Haskell To QDPs 10.32/4.20 10.32/4.20 digraph dp_graph { 10.32/4.20 node [outthreshold=100, inthreshold=100];1[label="splitAt",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 10.32/4.20 3[label="splitAt xw3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 10.32/4.20 4[label="splitAt xw3 xw4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 10.32/4.20 5[label="splitAt3 xw3 xw4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 10.32/4.20 6[label="splitAt2 xw3 xw4 (xw3 <= Pos Zero)",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 10.32/4.20 7[label="splitAt2 xw3 xw4 (compare xw3 (Pos Zero) /= GT)",fontsize=16,color="black",shape="box"];7 -> 8[label="",style="solid", color="black", weight=3]; 10.32/4.20 8[label="splitAt2 xw3 xw4 (not (compare xw3 (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 10.32/4.20 9[label="splitAt2 xw3 xw4 (not (primCmpInt xw3 (Pos Zero) == GT))",fontsize=16,color="burlywood",shape="box"];64[label="xw3/Pos xw30",fontsize=10,color="white",style="solid",shape="box"];9 -> 64[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 64 -> 10[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 65[label="xw3/Neg xw30",fontsize=10,color="white",style="solid",shape="box"];9 -> 65[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 65 -> 11[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 10[label="splitAt2 (Pos xw30) xw4 (not (primCmpInt (Pos xw30) (Pos Zero) == GT))",fontsize=16,color="burlywood",shape="box"];66[label="xw30/Succ xw300",fontsize=10,color="white",style="solid",shape="box"];10 -> 66[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 66 -> 12[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 67[label="xw30/Zero",fontsize=10,color="white",style="solid",shape="box"];10 -> 67[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 67 -> 13[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 11[label="splitAt2 (Neg xw30) xw4 (not (primCmpInt (Neg xw30) (Pos Zero) == GT))",fontsize=16,color="burlywood",shape="box"];68[label="xw30/Succ xw300",fontsize=10,color="white",style="solid",shape="box"];11 -> 68[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 68 -> 14[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 69[label="xw30/Zero",fontsize=10,color="white",style="solid",shape="box"];11 -> 69[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 69 -> 15[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 12[label="splitAt2 (Pos (Succ xw300)) xw4 (not (primCmpInt (Pos (Succ xw300)) (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];12 -> 16[label="",style="solid", color="black", weight=3]; 10.32/4.20 13[label="splitAt2 (Pos Zero) xw4 (not (primCmpInt (Pos Zero) (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];13 -> 17[label="",style="solid", color="black", weight=3]; 10.32/4.20 14[label="splitAt2 (Neg (Succ xw300)) xw4 (not (primCmpInt (Neg (Succ xw300)) (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];14 -> 18[label="",style="solid", color="black", weight=3]; 10.32/4.20 15[label="splitAt2 (Neg Zero) xw4 (not (primCmpInt (Neg Zero) (Pos Zero) == GT))",fontsize=16,color="black",shape="box"];15 -> 19[label="",style="solid", color="black", weight=3]; 10.32/4.20 16[label="splitAt2 (Pos (Succ xw300)) xw4 (not (primCmpNat (Succ xw300) Zero == GT))",fontsize=16,color="black",shape="box"];16 -> 20[label="",style="solid", color="black", weight=3]; 10.32/4.20 17[label="splitAt2 (Pos Zero) xw4 (not (EQ == GT))",fontsize=16,color="black",shape="box"];17 -> 21[label="",style="solid", color="black", weight=3]; 10.32/4.20 18[label="splitAt2 (Neg (Succ xw300)) xw4 (not (LT == GT))",fontsize=16,color="black",shape="box"];18 -> 22[label="",style="solid", color="black", weight=3]; 10.32/4.20 19[label="splitAt2 (Neg Zero) xw4 (not (EQ == GT))",fontsize=16,color="black",shape="box"];19 -> 23[label="",style="solid", color="black", weight=3]; 10.32/4.20 20[label="splitAt2 (Pos (Succ xw300)) xw4 (not (GT == GT))",fontsize=16,color="black",shape="box"];20 -> 24[label="",style="solid", color="black", weight=3]; 10.32/4.20 21[label="splitAt2 (Pos Zero) xw4 (not False)",fontsize=16,color="black",shape="box"];21 -> 25[label="",style="solid", color="black", weight=3]; 10.32/4.20 22[label="splitAt2 (Neg (Succ xw300)) xw4 (not False)",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 10.32/4.20 23[label="splitAt2 (Neg Zero) xw4 (not False)",fontsize=16,color="black",shape="box"];23 -> 27[label="",style="solid", color="black", weight=3]; 10.32/4.20 24[label="splitAt2 (Pos (Succ xw300)) xw4 (not True)",fontsize=16,color="black",shape="box"];24 -> 28[label="",style="solid", color="black", weight=3]; 10.32/4.20 25[label="splitAt2 (Pos Zero) xw4 True",fontsize=16,color="black",shape="box"];25 -> 29[label="",style="solid", color="black", weight=3]; 10.32/4.20 26[label="splitAt2 (Neg (Succ xw300)) xw4 True",fontsize=16,color="black",shape="box"];26 -> 30[label="",style="solid", color="black", weight=3]; 10.32/4.20 27[label="splitAt2 (Neg Zero) xw4 True",fontsize=16,color="black",shape="box"];27 -> 31[label="",style="solid", color="black", weight=3]; 10.32/4.20 28[label="splitAt2 (Pos (Succ xw300)) xw4 False",fontsize=16,color="black",shape="box"];28 -> 32[label="",style="solid", color="black", weight=3]; 10.32/4.20 29[label="([],xw4)",fontsize=16,color="green",shape="box"];30[label="([],xw4)",fontsize=16,color="green",shape="box"];31[label="([],xw4)",fontsize=16,color="green",shape="box"];32[label="splitAt1 (Pos (Succ xw300)) xw4",fontsize=16,color="burlywood",shape="box"];70[label="xw4/xw40 : xw41",fontsize=10,color="white",style="solid",shape="box"];32 -> 70[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 70 -> 33[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 71[label="xw4/[]",fontsize=10,color="white",style="solid",shape="box"];32 -> 71[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 71 -> 34[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 33[label="splitAt1 (Pos (Succ xw300)) (xw40 : xw41)",fontsize=16,color="black",shape="box"];33 -> 35[label="",style="solid", color="black", weight=3]; 10.32/4.20 34[label="splitAt1 (Pos (Succ xw300)) []",fontsize=16,color="black",shape="box"];34 -> 36[label="",style="solid", color="black", weight=3]; 10.32/4.20 35[label="splitAt0 (Pos (Succ xw300)) (xw40 : xw41)",fontsize=16,color="black",shape="box"];35 -> 37[label="",style="solid", color="black", weight=3]; 10.32/4.20 36[label="([],[])",fontsize=16,color="green",shape="box"];37[label="(xw40 : splitAt0Xs' (Pos (Succ xw300)) xw41,splitAt0Xs'' (Pos (Succ xw300)) xw41)",fontsize=16,color="green",shape="box"];37 -> 38[label="",style="dashed", color="green", weight=3]; 10.32/4.20 37 -> 39[label="",style="dashed", color="green", weight=3]; 10.32/4.20 38[label="splitAt0Xs' (Pos (Succ xw300)) xw41",fontsize=16,color="black",shape="box"];38 -> 40[label="",style="solid", color="black", weight=3]; 10.32/4.20 39[label="splitAt0Xs'' (Pos (Succ xw300)) xw41",fontsize=16,color="black",shape="box"];39 -> 41[label="",style="solid", color="black", weight=3]; 10.32/4.20 40 -> 44[label="",style="dashed", color="red", weight=0]; 10.32/4.20 40[label="splitAt0Xs'0 (Pos (Succ xw300)) xw41 (splitAt0Vu42 (Pos (Succ xw300)) xw41)",fontsize=16,color="magenta"];40 -> 45[label="",style="dashed", color="magenta", weight=3]; 10.32/4.20 41 -> 49[label="",style="dashed", color="red", weight=0]; 10.32/4.20 41[label="splitAt0Xs''0 (Pos (Succ xw300)) xw41 (splitAt0Vu42 (Pos (Succ xw300)) xw41)",fontsize=16,color="magenta"];41 -> 50[label="",style="dashed", color="magenta", weight=3]; 10.32/4.20 45[label="splitAt0Vu42 (Pos (Succ xw300)) xw41",fontsize=16,color="black",shape="triangle"];45 -> 47[label="",style="solid", color="black", weight=3]; 10.32/4.20 44[label="splitAt0Xs'0 (Pos (Succ xw300)) xw41 xw5",fontsize=16,color="burlywood",shape="triangle"];72[label="xw5/(xw50,xw51)",fontsize=10,color="white",style="solid",shape="box"];44 -> 72[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 72 -> 48[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 50 -> 45[label="",style="dashed", color="red", weight=0]; 10.32/4.20 50[label="splitAt0Vu42 (Pos (Succ xw300)) xw41",fontsize=16,color="magenta"];49[label="splitAt0Xs''0 (Pos (Succ xw300)) xw41 xw6",fontsize=16,color="burlywood",shape="triangle"];73[label="xw6/(xw60,xw61)",fontsize=10,color="white",style="solid",shape="box"];49 -> 73[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 73 -> 52[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 47 -> 4[label="",style="dashed", color="red", weight=0]; 10.32/4.20 47[label="splitAt (Pos (Succ xw300) - Pos (Succ Zero)) xw41",fontsize=16,color="magenta"];47 -> 53[label="",style="dashed", color="magenta", weight=3]; 10.32/4.20 47 -> 54[label="",style="dashed", color="magenta", weight=3]; 10.32/4.20 48[label="splitAt0Xs'0 (Pos (Succ xw300)) xw41 (xw50,xw51)",fontsize=16,color="black",shape="box"];48 -> 55[label="",style="solid", color="black", weight=3]; 10.32/4.20 52[label="splitAt0Xs''0 (Pos (Succ xw300)) xw41 (xw60,xw61)",fontsize=16,color="black",shape="box"];52 -> 56[label="",style="solid", color="black", weight=3]; 10.32/4.20 53[label="Pos (Succ xw300) - Pos (Succ Zero)",fontsize=16,color="black",shape="box"];53 -> 57[label="",style="solid", color="black", weight=3]; 10.32/4.20 54[label="xw41",fontsize=16,color="green",shape="box"];55[label="xw50",fontsize=16,color="green",shape="box"];56[label="xw61",fontsize=16,color="green",shape="box"];57[label="primMinusInt (Pos (Succ xw300)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];57 -> 58[label="",style="solid", color="black", weight=3]; 10.32/4.20 58[label="primMinusNat (Succ xw300) (Succ Zero)",fontsize=16,color="black",shape="box"];58 -> 59[label="",style="solid", color="black", weight=3]; 10.32/4.20 59[label="primMinusNat xw300 Zero",fontsize=16,color="burlywood",shape="box"];74[label="xw300/Succ xw3000",fontsize=10,color="white",style="solid",shape="box"];59 -> 74[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 74 -> 60[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 75[label="xw300/Zero",fontsize=10,color="white",style="solid",shape="box"];59 -> 75[label="",style="solid", color="burlywood", weight=9]; 10.32/4.20 75 -> 61[label="",style="solid", color="burlywood", weight=3]; 10.32/4.20 60[label="primMinusNat (Succ xw3000) Zero",fontsize=16,color="black",shape="box"];60 -> 62[label="",style="solid", color="black", weight=3]; 10.32/4.20 61[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];61 -> 63[label="",style="solid", color="black", weight=3]; 10.32/4.20 62[label="Pos (Succ xw3000)",fontsize=16,color="green",shape="box"];63[label="Pos Zero",fontsize=16,color="green",shape="box"];} 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (12) 10.32/4.20 Obligation: 10.32/4.20 Q DP problem: 10.32/4.20 The TRS P consists of the following rules: 10.32/4.20 10.32/4.20 new_splitAt0Vu42(xw300, xw41, h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) 10.32/4.20 10.32/4.20 The TRS R consists of the following rules: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) 10.32/4.20 new_primMinusNat(Zero) -> Pos(Zero) 10.32/4.20 10.32/4.20 The set Q consists of the following terms: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(x0)) 10.32/4.20 new_primMinusNat(Zero) 10.32/4.20 10.32/4.20 We have to consider all minimal (P,Q,R)-chains. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (13) TransformationProof (EQUIVALENT) 10.32/4.20 By narrowing [LPAR04] the rule new_splitAt0Vu42(xw300, xw41, h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) at position [0] we obtained the following new rules [LPAR04]: 10.32/4.20 10.32/4.20 (new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2),new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2)) 10.32/4.20 (new_splitAt0Vu42(Zero, y1, y2) -> new_splitAt(Pos(Zero), y1, y2),new_splitAt0Vu42(Zero, y1, y2) -> new_splitAt(Pos(Zero), y1, y2)) 10.32/4.20 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (14) 10.32/4.20 Obligation: 10.32/4.20 Q DP problem: 10.32/4.20 The TRS P consists of the following rules: 10.32/4.20 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) 10.32/4.20 new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) 10.32/4.20 new_splitAt0Vu42(Zero, y1, y2) -> new_splitAt(Pos(Zero), y1, y2) 10.32/4.20 10.32/4.20 The TRS R consists of the following rules: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) 10.32/4.20 new_primMinusNat(Zero) -> Pos(Zero) 10.32/4.20 10.32/4.20 The set Q consists of the following terms: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(x0)) 10.32/4.20 new_primMinusNat(Zero) 10.32/4.20 10.32/4.20 We have to consider all minimal (P,Q,R)-chains. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (15) DependencyGraphProof (EQUIVALENT) 10.32/4.20 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (16) 10.32/4.20 Obligation: 10.32/4.20 Q DP problem: 10.32/4.20 The TRS P consists of the following rules: 10.32/4.20 10.32/4.20 new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) 10.32/4.20 10.32/4.20 The TRS R consists of the following rules: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) 10.32/4.20 new_primMinusNat(Zero) -> Pos(Zero) 10.32/4.20 10.32/4.20 The set Q consists of the following terms: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(x0)) 10.32/4.20 new_primMinusNat(Zero) 10.32/4.20 10.32/4.20 We have to consider all minimal (P,Q,R)-chains. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (17) TransformationProof (EQUIVALENT) 10.32/4.20 By narrowing [LPAR04] the rule new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt(new_primMinusNat(xw300), xw41, h) at position [0] we obtained the following new rules [LPAR04]: 10.32/4.20 10.32/4.20 (new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3),new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3)) 10.32/4.20 (new_splitAt(Pos(Succ(Zero)), :(y1, y2), y3) -> new_splitAt(Pos(Zero), y2, y3),new_splitAt(Pos(Succ(Zero)), :(y1, y2), y3) -> new_splitAt(Pos(Zero), y2, y3)) 10.32/4.20 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (18) 10.32/4.20 Obligation: 10.32/4.20 Q DP problem: 10.32/4.20 The TRS P consists of the following rules: 10.32/4.20 10.32/4.20 new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) 10.32/4.20 new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) 10.32/4.20 new_splitAt(Pos(Succ(Zero)), :(y1, y2), y3) -> new_splitAt(Pos(Zero), y2, y3) 10.32/4.20 10.32/4.20 The TRS R consists of the following rules: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) 10.32/4.20 new_primMinusNat(Zero) -> Pos(Zero) 10.32/4.20 10.32/4.20 The set Q consists of the following terms: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(x0)) 10.32/4.20 new_primMinusNat(Zero) 10.32/4.20 10.32/4.20 We have to consider all minimal (P,Q,R)-chains. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (19) DependencyGraphProof (EQUIVALENT) 10.32/4.20 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (20) 10.32/4.20 Obligation: 10.32/4.20 Q DP problem: 10.32/4.20 The TRS P consists of the following rules: 10.32/4.20 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) 10.32/4.20 new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) 10.32/4.20 new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) 10.32/4.20 10.32/4.20 The TRS R consists of the following rules: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(xw3000)) -> Pos(Succ(xw3000)) 10.32/4.20 new_primMinusNat(Zero) -> Pos(Zero) 10.32/4.20 10.32/4.20 The set Q consists of the following terms: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(x0)) 10.32/4.20 new_primMinusNat(Zero) 10.32/4.20 10.32/4.20 We have to consider all minimal (P,Q,R)-chains. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (21) UsableRulesProof (EQUIVALENT) 10.32/4.20 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (22) 10.32/4.20 Obligation: 10.32/4.20 Q DP problem: 10.32/4.20 The TRS P consists of the following rules: 10.32/4.20 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) 10.32/4.20 new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) 10.32/4.20 new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) 10.32/4.20 10.32/4.20 R is empty. 10.32/4.20 The set Q consists of the following terms: 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(x0)) 10.32/4.20 new_primMinusNat(Zero) 10.32/4.20 10.32/4.20 We have to consider all minimal (P,Q,R)-chains. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (23) QReductionProof (EQUIVALENT) 10.32/4.20 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 10.32/4.20 10.32/4.20 new_primMinusNat(Succ(x0)) 10.32/4.20 new_primMinusNat(Zero) 10.32/4.20 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (24) 10.32/4.20 Obligation: 10.32/4.20 Q DP problem: 10.32/4.20 The TRS P consists of the following rules: 10.32/4.20 10.32/4.20 new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) 10.32/4.20 new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) 10.32/4.20 new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) 10.32/4.20 10.32/4.20 R is empty. 10.32/4.20 Q is empty. 10.32/4.20 We have to consider all minimal (P,Q,R)-chains. 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (25) QDPSizeChangeProof (EQUIVALENT) 10.32/4.20 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 10.32/4.20 10.32/4.20 From the DPs we obtained the following set of size-change graphs: 10.32/4.20 *new_splitAt0Vu42(Succ(x0), y1, y2) -> new_splitAt(Pos(Succ(x0)), y1, y2) 10.32/4.20 The graph contains the following edges 2 >= 2, 3 >= 3 10.32/4.20 10.32/4.20 10.32/4.20 *new_splitAt(Pos(Succ(Succ(x0))), :(y1, y2), y3) -> new_splitAt(Pos(Succ(x0)), y2, y3) 10.32/4.20 The graph contains the following edges 2 > 2, 3 >= 3 10.32/4.20 10.32/4.20 10.32/4.20 *new_splitAt(Pos(Succ(xw300)), :(xw40, xw41), h) -> new_splitAt0Vu42(xw300, xw41, h) 10.32/4.20 The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 10.32/4.20 10.32/4.20 10.32/4.20 ---------------------------------------- 10.32/4.20 10.32/4.20 (26) 10.32/4.20 YES 10.59/4.24 EOF