9.85/4.55 YES 12.40/5.21 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 12.40/5.21 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 12.40/5.21 12.40/5.21 12.40/5.21 H-Termination with start terms of the given HASKELL could be proven: 12.40/5.21 12.40/5.21 (0) HASKELL 12.40/5.21 (1) CR [EQUIVALENT, 0 ms] 12.40/5.21 (2) HASKELL 12.40/5.21 (3) BR [EQUIVALENT, 0 ms] 12.40/5.21 (4) HASKELL 12.40/5.21 (5) COR [EQUIVALENT, 19 ms] 12.40/5.21 (6) HASKELL 12.40/5.21 (7) LetRed [EQUIVALENT, 0 ms] 12.40/5.21 (8) HASKELL 12.40/5.21 (9) NumRed [SOUND, 0 ms] 12.40/5.21 (10) HASKELL 12.40/5.21 (11) Narrow [EQUIVALENT, 25 ms] 12.40/5.21 (12) YES 12.40/5.21 12.40/5.21 12.40/5.21 ---------------------------------------- 12.40/5.21 12.40/5.21 (0) 12.40/5.21 Obligation: 12.40/5.21 mainModule Main 12.40/5.21 module FiniteMap where { 12.40/5.21 import qualified Main; 12.40/5.21 import qualified Maybe; 12.40/5.21 import qualified Prelude; 12.40/5.21 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 12.40/5.21 12.40/5.21 instance (Eq a, Eq b) => Eq FiniteMap b a where { 12.40/5.21 } 12.40/5.21 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 12.40/5.21 addToFM_C combiner EmptyFM key elt = unitFM key elt; 12.40/5.21 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 12.40/5.21 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 12.40/5.21 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.40/5.21 12.40/5.21 emptyFM :: FiniteMap b a; 12.40/5.21 emptyFM = EmptyFM; 12.40/5.21 12.40/5.21 findMax :: FiniteMap b a -> (b,a); 12.40/5.21 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 12.40/5.21 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 12.40/5.21 12.40/5.21 findMin :: FiniteMap a b -> (a,b); 12.40/5.21 findMin (Branch key elt _ EmptyFM _) = (key,elt); 12.40/5.21 findMin (Branch key elt _ fm_l _) = findMin fm_l; 12.40/5.21 12.40/5.21 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.40/5.21 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 12.40/5.21 | size_r > sIZE_RATIO * size_l = case fm_R of { 12.40/5.21 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 12.40/5.21 | otherwise -> double_L fm_L fm_R; 12.40/5.21 } 12.40/5.21 | size_l > sIZE_RATIO * size_r = case fm_L of { 12.40/5.21 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 12.40/5.21 | otherwise -> double_R fm_L fm_R; 12.40/5.21 } 12.40/5.21 | otherwise = mkBranch 2 key elt fm_L fm_R where { 12.40/5.21 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.40/5.21 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.40/5.21 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.40/5.21 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.40/5.21 size_l = sizeFM fm_L; 12.40/5.21 size_r = sizeFM fm_R; 12.40/5.21 }; 12.40/5.21 12.40/5.21 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.40/5.21 mkBranch which key elt fm_l fm_r = let { 12.40/5.21 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.40/5.21 } in result where { 12.40/5.21 balance_ok = True; 12.40/5.21 left_ok = case fm_l of { 12.40/5.21 EmptyFM-> True; 12.40/5.21 Branch left_key _ _ _ _-> let { 12.40/5.21 biggest_left_key = fst (findMax fm_l); 12.40/5.21 } in biggest_left_key < key; 12.40/5.21 } ; 12.40/5.21 left_size = sizeFM fm_l; 12.40/5.21 right_ok = case fm_r of { 12.40/5.21 EmptyFM-> True; 12.40/5.21 Branch right_key _ _ _ _-> let { 12.40/5.21 smallest_right_key = fst (findMin fm_r); 12.40/5.21 } in key < smallest_right_key; 12.40/5.21 } ; 12.40/5.21 right_size = sizeFM fm_r; 12.40/5.21 unbox :: Int -> Int; 12.40/5.21 unbox x = x; 12.40/5.21 }; 12.40/5.21 12.40/5.21 sIZE_RATIO :: Int; 12.40/5.21 sIZE_RATIO = 5; 12.40/5.21 12.40/5.21 sizeFM :: FiniteMap b a -> Int; 12.40/5.21 sizeFM EmptyFM = 0; 12.40/5.21 sizeFM (Branch _ _ size _ _) = size; 12.40/5.21 12.40/5.21 unitFM :: b -> a -> FiniteMap b a; 12.40/5.21 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 12.40/5.21 12.40/5.21 } 12.40/5.21 module Maybe where { 12.40/5.21 import qualified FiniteMap; 12.40/5.21 import qualified Main; 12.40/5.21 import qualified Prelude; 12.40/5.21 } 12.40/5.21 module Main where { 12.40/5.21 import qualified FiniteMap; 12.40/5.21 import qualified Maybe; 12.40/5.21 import qualified Prelude; 12.40/5.21 } 12.40/5.21 12.40/5.21 ---------------------------------------- 12.40/5.21 12.40/5.21 (1) CR (EQUIVALENT) 12.40/5.21 Case Reductions: 12.40/5.21 The following Case expression 12.40/5.21 "case fm_r of { 12.40/5.21 EmptyFM -> True; 12.40/5.21 Branch right_key _ _ _ _ -> let { 12.40/5.21 smallest_right_key = fst (findMin fm_r); 12.40/5.21 } in key < smallest_right_key} 12.40/5.21 " 12.40/5.21 is transformed to 12.40/5.21 "right_ok0 fm_r key EmptyFM = True; 12.40/5.21 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 12.40/5.21 smallest_right_key = fst (findMin fm_r); 12.40/5.21 } in key < smallest_right_key; 12.40/5.21 " 12.40/5.21 The following Case expression 12.40/5.21 "case fm_l of { 12.40/5.21 EmptyFM -> True; 12.40/5.21 Branch left_key _ _ _ _ -> let { 12.40/5.21 biggest_left_key = fst (findMax fm_l); 12.40/5.21 } in biggest_left_key < key} 12.40/5.21 " 12.40/5.21 is transformed to 12.40/5.21 "left_ok0 fm_l key EmptyFM = True; 12.40/5.21 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 12.40/5.21 biggest_left_key = fst (findMax fm_l); 12.40/5.21 } in biggest_left_key < key; 12.40/5.21 " 12.40/5.21 The following Case expression 12.40/5.21 "case fm_R of { 12.40/5.21 Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} 12.40/5.21 " 12.40/5.21 is transformed to 12.40/5.21 "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 12.40/5.21 " 12.40/5.21 The following Case expression 12.40/5.21 "case fm_L of { 12.40/5.21 Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} 12.40/5.21 " 12.40/5.21 is transformed to 12.40/5.21 "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 12.40/5.21 " 12.40/5.21 12.40/5.21 ---------------------------------------- 12.40/5.21 12.40/5.21 (2) 12.40/5.21 Obligation: 12.40/5.21 mainModule Main 12.40/5.21 module FiniteMap where { 12.40/5.21 import qualified Main; 12.40/5.21 import qualified Maybe; 12.40/5.21 import qualified Prelude; 12.40/5.21 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 12.40/5.21 12.40/5.21 instance (Eq a, Eq b) => Eq FiniteMap b a where { 12.40/5.21 } 12.40/5.21 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 12.40/5.21 addToFM_C combiner EmptyFM key elt = unitFM key elt; 12.40/5.21 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 12.40/5.21 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 12.40/5.21 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.40/5.21 12.40/5.21 emptyFM :: FiniteMap a b; 12.40/5.21 emptyFM = EmptyFM; 12.40/5.21 12.40/5.21 findMax :: FiniteMap b a -> (b,a); 12.40/5.21 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 12.40/5.21 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 12.40/5.21 12.40/5.21 findMin :: FiniteMap a b -> (a,b); 12.40/5.21 findMin (Branch key elt _ EmptyFM _) = (key,elt); 12.40/5.21 findMin (Branch key elt _ fm_l _) = findMin fm_l; 12.40/5.21 12.40/5.21 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.40/5.21 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 12.40/5.21 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 12.40/5.21 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 12.40/5.21 | otherwise = mkBranch 2 key elt fm_L fm_R where { 12.40/5.21 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.40/5.21 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.40/5.21 mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 12.40/5.21 | otherwise = double_L fm_L fm_R; 12.40/5.21 mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 12.40/5.21 | otherwise = double_R fm_L fm_R; 12.40/5.21 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.40/5.21 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.40/5.21 size_l = sizeFM fm_L; 12.40/5.21 size_r = sizeFM fm_R; 12.40/5.21 }; 12.40/5.21 12.40/5.21 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.40/5.21 mkBranch which key elt fm_l fm_r = let { 12.40/5.21 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.40/5.21 } in result where { 12.40/5.21 balance_ok = True; 12.40/5.21 left_ok = left_ok0 fm_l key fm_l; 12.40/5.21 left_ok0 fm_l key EmptyFM = True; 12.40/5.21 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 12.40/5.21 biggest_left_key = fst (findMax fm_l); 12.40/5.21 } in biggest_left_key < key; 12.40/5.21 left_size = sizeFM fm_l; 12.40/5.21 right_ok = right_ok0 fm_r key fm_r; 12.40/5.21 right_ok0 fm_r key EmptyFM = True; 12.40/5.21 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 12.40/5.21 smallest_right_key = fst (findMin fm_r); 12.40/5.22 } in key < smallest_right_key; 12.40/5.22 right_size = sizeFM fm_r; 12.40/5.22 unbox :: Int -> Int; 12.40/5.22 unbox x = x; 12.40/5.22 }; 12.40/5.22 12.40/5.22 sIZE_RATIO :: Int; 12.40/5.22 sIZE_RATIO = 5; 12.40/5.22 12.40/5.22 sizeFM :: FiniteMap b a -> Int; 12.40/5.22 sizeFM EmptyFM = 0; 12.40/5.22 sizeFM (Branch _ _ size _ _) = size; 12.40/5.22 12.40/5.22 unitFM :: a -> b -> FiniteMap a b; 12.40/5.22 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 12.40/5.22 12.40/5.22 } 12.40/5.22 module Maybe where { 12.40/5.22 import qualified FiniteMap; 12.40/5.22 import qualified Main; 12.40/5.22 import qualified Prelude; 12.40/5.22 } 12.40/5.22 module Main where { 12.40/5.22 import qualified FiniteMap; 12.40/5.22 import qualified Maybe; 12.40/5.22 import qualified Prelude; 12.40/5.22 } 12.40/5.22 12.40/5.22 ---------------------------------------- 12.40/5.22 12.40/5.22 (3) BR (EQUIVALENT) 12.40/5.22 Replaced joker patterns by fresh variables and removed binding patterns. 12.40/5.22 ---------------------------------------- 12.40/5.22 12.40/5.22 (4) 12.40/5.22 Obligation: 12.40/5.22 mainModule Main 12.40/5.22 module FiniteMap where { 12.40/5.22 import qualified Main; 12.40/5.22 import qualified Maybe; 12.40/5.22 import qualified Prelude; 12.40/5.22 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 12.40/5.22 12.40/5.22 instance (Eq a, Eq b) => Eq FiniteMap a b where { 12.40/5.22 } 12.40/5.22 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 12.40/5.22 addToFM_C combiner EmptyFM key elt = unitFM key elt; 12.40/5.22 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 12.40/5.22 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 12.40/5.22 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.40/5.22 12.40/5.22 emptyFM :: FiniteMap b a; 12.40/5.22 emptyFM = EmptyFM; 12.40/5.22 12.40/5.22 findMax :: FiniteMap b a -> (b,a); 12.40/5.22 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 12.40/5.22 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 12.40/5.22 12.40/5.22 findMin :: FiniteMap a b -> (a,b); 12.40/5.22 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 12.40/5.22 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 12.40/5.22 12.40/5.22 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.40/5.22 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 12.40/5.22 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 12.40/5.22 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 12.40/5.22 | otherwise = mkBranch 2 key elt fm_L fm_R where { 12.40/5.22 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.40/5.22 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.40/5.22 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 12.40/5.22 | otherwise = double_L fm_L fm_R; 12.40/5.22 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 12.40/5.22 | otherwise = double_R fm_L fm_R; 12.40/5.22 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.40/5.22 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.40/5.22 size_l = sizeFM fm_L; 12.40/5.22 size_r = sizeFM fm_R; 12.40/5.22 }; 12.40/5.22 12.40/5.22 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.40/5.22 mkBranch which key elt fm_l fm_r = let { 12.40/5.22 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.40/5.22 } in result where { 12.40/5.22 balance_ok = True; 12.40/5.22 left_ok = left_ok0 fm_l key fm_l; 12.40/5.22 left_ok0 fm_l key EmptyFM = True; 12.40/5.22 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 12.40/5.22 biggest_left_key = fst (findMax fm_l); 12.40/5.22 } in biggest_left_key < key; 12.40/5.22 left_size = sizeFM fm_l; 12.40/5.22 right_ok = right_ok0 fm_r key fm_r; 12.40/5.22 right_ok0 fm_r key EmptyFM = True; 12.40/5.22 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 12.40/5.22 smallest_right_key = fst (findMin fm_r); 12.40/5.22 } in key < smallest_right_key; 12.40/5.22 right_size = sizeFM fm_r; 12.40/5.22 unbox :: Int -> Int; 12.40/5.22 unbox x = x; 12.40/5.22 }; 12.40/5.22 12.40/5.22 sIZE_RATIO :: Int; 12.40/5.22 sIZE_RATIO = 5; 12.40/5.22 12.40/5.22 sizeFM :: FiniteMap a b -> Int; 12.40/5.22 sizeFM EmptyFM = 0; 12.40/5.22 sizeFM (Branch vz wu size wv ww) = size; 12.40/5.22 12.40/5.22 unitFM :: a -> b -> FiniteMap a b; 12.40/5.22 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 12.40/5.22 12.40/5.22 } 12.40/5.22 module Maybe where { 12.40/5.22 import qualified FiniteMap; 12.40/5.22 import qualified Main; 12.40/5.22 import qualified Prelude; 12.40/5.22 } 12.40/5.22 module Main where { 12.40/5.22 import qualified FiniteMap; 12.40/5.22 import qualified Maybe; 12.40/5.22 import qualified Prelude; 12.40/5.22 } 12.40/5.22 12.40/5.22 ---------------------------------------- 12.40/5.22 12.40/5.22 (5) COR (EQUIVALENT) 12.40/5.22 Cond Reductions: 12.40/5.22 The following Function with conditions 12.40/5.22 "undefined |Falseundefined; 12.40/5.22 " 12.40/5.22 is transformed to 12.40/5.22 "undefined = undefined1; 12.40/5.22 " 12.40/5.22 "undefined0 True = undefined; 12.40/5.22 " 12.40/5.22 "undefined1 = undefined0 False; 12.40/5.22 " 12.40/5.22 The following Function with conditions 12.40/5.22 "addToFM_C combiner EmptyFM key elt = unitFM key elt; 12.40/5.22 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; 12.40/5.22 " 12.40/5.22 is transformed to 12.40/5.22 "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 12.40/5.22 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 12.40/5.22 " 12.40/5.22 "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 12.40/5.22 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 12.40/5.22 " 12.40/5.22 "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 12.40/5.22 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 12.40/5.22 " 12.40/5.22 "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.40/5.22 " 12.40/5.22 "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 12.40/5.22 " 12.40/5.22 "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 12.40/5.22 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 12.40/5.22 " 12.40/5.22 The following Function with conditions 12.40/5.22 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 12.40/5.22 " 12.40/5.22 is transformed to 12.40/5.22 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 12.40/5.22 " 12.40/5.22 "mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 12.40/5.22 " 12.40/5.22 "mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 12.40/5.22 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 12.40/5.22 " 12.40/5.22 "mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 12.40/5.22 " 12.40/5.22 The following Function with conditions 12.40/5.22 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 12.40/5.22 " 12.40/5.22 is transformed to 12.40/5.22 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 12.40/5.22 " 12.40/5.22 "mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 12.40/5.22 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 12.40/5.22 " 12.40/5.22 "mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 12.40/5.22 " 12.40/5.22 "mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 12.40/5.22 " 12.40/5.22 The following Function with conditions 12.40/5.22 "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { 12.40/5.22 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.40/5.22 ; 12.40/5.22 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.40/5.22 ; 12.40/5.22 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 12.40/5.22 ; 12.40/5.22 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 12.40/5.22 ; 12.40/5.22 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.40/5.22 ; 12.40/5.22 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.40/5.22 ; 12.40/5.22 size_l = sizeFM fm_L; 12.40/5.22 ; 12.40/5.22 size_r = sizeFM fm_R; 12.40/5.22 } 12.40/5.22 ; 12.40/5.22 " 12.40/5.22 is transformed to 12.40/5.22 "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 12.40/5.22 " 12.40/5.22 "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 12.40/5.22 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.40/5.22 ; 12.40/5.22 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.40/5.22 ; 12.40/5.22 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 12.40/5.22 ; 12.40/5.22 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 12.40/5.22 ; 12.40/5.22 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 12.40/5.22 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 12.40/5.22 ; 12.40/5.22 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 12.40/5.22 ; 12.40/5.22 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 12.40/5.22 ; 12.40/5.22 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 12.40/5.22 ; 12.40/5.22 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 12.40/5.22 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 12.40/5.22 ; 12.40/5.22 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 12.40/5.22 ; 12.40/5.22 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 12.40/5.22 ; 12.40/5.22 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 12.40/5.22 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 12.40/5.22 ; 12.40/5.22 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 12.40/5.22 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 12.40/5.22 ; 12.40/5.22 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 12.40/5.22 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 12.40/5.22 ; 12.40/5.22 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.40/5.22 ; 12.40/5.22 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.40/5.22 ; 12.40/5.22 size_l = sizeFM fm_L; 12.40/5.22 ; 12.40/5.22 size_r = sizeFM fm_R; 12.40/5.22 } 12.40/5.22 ; 12.40/5.22 " 12.40/5.22 12.40/5.22 ---------------------------------------- 12.40/5.22 12.40/5.22 (6) 12.40/5.22 Obligation: 12.40/5.22 mainModule Main 12.40/5.22 module FiniteMap where { 12.40/5.23 import qualified Main; 12.40/5.23 import qualified Maybe; 12.40/5.23 import qualified Prelude; 12.40/5.23 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 12.40/5.23 12.40/5.23 instance (Eq a, Eq b) => Eq FiniteMap a b where { 12.40/5.23 } 12.40/5.23 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 12.40/5.23 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 12.40/5.23 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 12.40/5.23 12.40/5.23 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.40/5.23 12.40/5.23 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 12.40/5.23 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 12.40/5.23 12.40/5.23 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 12.40/5.23 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 12.40/5.23 12.40/5.23 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 12.40/5.23 12.40/5.23 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 12.40/5.23 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 12.40/5.23 12.40/5.23 emptyFM :: FiniteMap a b; 12.40/5.23 emptyFM = EmptyFM; 12.40/5.23 12.40/5.23 findMax :: FiniteMap b a -> (b,a); 12.40/5.23 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 12.40/5.23 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 12.40/5.23 12.40/5.23 findMin :: FiniteMap a b -> (a,b); 12.40/5.23 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 12.40/5.23 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 12.40/5.23 12.40/5.23 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.40/5.23 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 12.40/5.23 12.40/5.23 mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 12.40/5.23 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.40/5.23 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.40/5.23 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 12.40/5.23 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 12.40/5.23 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 12.40/5.23 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 12.40/5.23 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 12.40/5.23 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 12.40/5.23 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 12.40/5.23 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 12.40/5.23 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 12.40/5.23 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 12.40/5.23 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 12.40/5.23 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 12.40/5.23 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 12.40/5.23 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 12.40/5.23 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 12.40/5.23 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 12.40/5.23 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 12.40/5.23 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.40/5.23 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.40/5.23 size_l = sizeFM fm_L; 12.40/5.23 size_r = sizeFM fm_R; 12.40/5.23 }; 12.40/5.23 12.40/5.23 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.40/5.23 mkBranch which key elt fm_l fm_r = let { 12.40/5.23 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.40/5.23 } in result where { 12.40/5.23 balance_ok = True; 12.40/5.23 left_ok = left_ok0 fm_l key fm_l; 12.40/5.23 left_ok0 fm_l key EmptyFM = True; 12.40/5.23 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 12.40/5.23 biggest_left_key = fst (findMax fm_l); 12.40/5.23 } in biggest_left_key < key; 12.40/5.23 left_size = sizeFM fm_l; 12.40/5.23 right_ok = right_ok0 fm_r key fm_r; 12.40/5.23 right_ok0 fm_r key EmptyFM = True; 12.40/5.23 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 12.40/5.23 smallest_right_key = fst (findMin fm_r); 12.40/5.23 } in key < smallest_right_key; 12.40/5.23 right_size = sizeFM fm_r; 12.40/5.23 unbox :: Int -> Int; 12.40/5.23 unbox x = x; 12.40/5.23 }; 12.40/5.23 12.40/5.23 sIZE_RATIO :: Int; 12.40/5.23 sIZE_RATIO = 5; 12.40/5.23 12.40/5.23 sizeFM :: FiniteMap a b -> Int; 12.40/5.23 sizeFM EmptyFM = 0; 12.40/5.23 sizeFM (Branch vz wu size wv ww) = size; 12.94/5.38 12.94/5.38 unitFM :: a -> b -> FiniteMap a b; 12.94/5.38 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 12.94/5.38 12.94/5.38 } 12.94/5.38 module Maybe where { 12.94/5.38 import qualified FiniteMap; 12.94/5.38 import qualified Main; 12.94/5.38 import qualified Prelude; 12.94/5.38 } 12.94/5.38 module Main where { 12.94/5.38 import qualified FiniteMap; 12.94/5.38 import qualified Maybe; 12.94/5.38 import qualified Prelude; 12.94/5.38 } 12.94/5.38 12.94/5.38 ---------------------------------------- 12.94/5.38 12.94/5.38 (7) LetRed (EQUIVALENT) 12.94/5.38 Let/Where Reductions: 12.94/5.38 The bindings of the following Let/Where expression 12.94/5.38 "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 12.94/5.38 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.94/5.38 ; 12.94/5.38 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.94/5.38 ; 12.94/5.38 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 12.94/5.38 ; 12.94/5.38 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 12.94/5.38 ; 12.94/5.38 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 12.94/5.38 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 12.94/5.38 ; 12.94/5.38 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 12.94/5.38 ; 12.94/5.38 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 12.94/5.38 ; 12.94/5.38 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 12.94/5.38 ; 12.94/5.38 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 12.94/5.38 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 12.94/5.38 ; 12.94/5.38 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 12.94/5.38 ; 12.94/5.38 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 12.94/5.38 ; 12.94/5.38 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 12.94/5.38 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 12.94/5.38 ; 12.94/5.38 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 12.94/5.38 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 12.94/5.38 ; 12.94/5.38 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 12.94/5.38 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 12.94/5.38 ; 12.94/5.38 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.94/5.38 ; 12.94/5.38 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.94/5.38 ; 12.94/5.38 size_l = sizeFM fm_L; 12.94/5.38 ; 12.94/5.38 size_r = sizeFM fm_R; 12.94/5.38 } 12.94/5.38 " 12.94/5.38 are unpacked to the following functions on top level 12.94/5.38 "mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 12.94/5.38 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 12.94/5.38 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 12.94/5.38 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 12.94/5.38 " 12.94/5.38 "mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 12.94/5.38 " 12.94/5.38 "mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwz; 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 12.94/5.38 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 12.94/5.38 " 12.94/5.38 "mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 12.94/5.38 " 12.94/5.38 "mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 12.94/5.38 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 12.94/5.38 " 12.94/5.38 "mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 12.94/5.38 " 12.94/5.38 "mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 12.94/5.38 " 12.94/5.38 "mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 12.94/5.38 " 12.94/5.38 The bindings of the following Let/Where expression 12.94/5.38 "let { 12.94/5.38 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.94/5.38 } in result where { 12.94/5.38 balance_ok = True; 12.94/5.38 ; 12.94/5.38 left_ok = left_ok0 fm_l key fm_l; 12.94/5.38 ; 12.94/5.38 left_ok0 fm_l key EmptyFM = True; 12.94/5.38 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 12.94/5.38 biggest_left_key = fst (findMax fm_l); 12.94/5.38 } in biggest_left_key < key; 12.94/5.38 ; 12.94/5.38 left_size = sizeFM fm_l; 12.94/5.38 ; 12.94/5.38 right_ok = right_ok0 fm_r key fm_r; 12.94/5.38 ; 12.94/5.38 right_ok0 fm_r key EmptyFM = True; 12.94/5.38 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 12.94/5.38 smallest_right_key = fst (findMin fm_r); 12.94/5.38 } in key < smallest_right_key; 12.94/5.38 ; 12.94/5.38 right_size = sizeFM fm_r; 12.94/5.38 ; 12.94/5.38 unbox x = x; 12.94/5.38 } 12.94/5.38 " 12.94/5.38 are unpacked to the following functions on top level 12.94/5.38 "mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 12.94/5.38 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 12.94/5.38 " 12.94/5.38 "mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 12.94/5.38 " 12.94/5.38 "mkBranchBalance_ok vxv vxw vxx = True; 12.94/5.38 " 12.94/5.38 "mkBranchUnbox vxv vxw vxx x = x; 12.94/5.38 " 12.94/5.38 "mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxw vxx vxw; 12.94/5.38 " 12.94/5.38 "mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxx vxv; 12.94/5.38 " 12.94/5.38 "mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 12.94/5.38 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 12.94/5.38 " 12.94/5.38 "mkBranchRight_size vxv vxw vxx = sizeFM vxw; 12.94/5.38 " 12.94/5.38 The bindings of the following Let/Where expression 12.94/5.38 "let { 12.94/5.38 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.94/5.38 } in result" 12.94/5.38 are unpacked to the following functions on top level 12.94/5.38 "mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (1 + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyu vyv; 12.94/5.38 " 12.94/5.38 The bindings of the following Let/Where expression 12.94/5.38 "let { 12.94/5.38 biggest_left_key = fst (findMax fm_l); 12.94/5.38 } in biggest_left_key < key" 12.94/5.38 are unpacked to the following functions on top level 12.94/5.38 "mkBranchLeft_ok0Biggest_left_key vyw = fst (findMax vyw); 12.94/5.38 " 12.94/5.38 The bindings of the following Let/Where expression 12.94/5.38 "let { 12.94/5.38 smallest_right_key = fst (findMin fm_r); 12.94/5.38 } in key < smallest_right_key" 12.94/5.38 are unpacked to the following functions on top level 12.94/5.38 "mkBranchRight_ok0Smallest_right_key vyx = fst (findMin vyx); 12.94/5.38 " 12.94/5.38 12.94/5.38 ---------------------------------------- 12.94/5.38 12.94/5.38 (8) 12.94/5.38 Obligation: 12.94/5.38 mainModule Main 12.94/5.38 module FiniteMap where { 12.94/5.38 import qualified Main; 12.94/5.38 import qualified Maybe; 12.94/5.38 import qualified Prelude; 12.94/5.38 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 12.94/5.38 12.94/5.38 instance (Eq a, Eq b) => Eq FiniteMap b a where { 12.94/5.38 } 12.94/5.38 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 12.94/5.38 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 12.94/5.38 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 12.94/5.38 12.94/5.38 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.94/5.38 12.94/5.38 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 12.94/5.38 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 12.94/5.38 12.94/5.38 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 12.94/5.38 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 12.94/5.38 12.94/5.38 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 12.94/5.38 12.94/5.38 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 12.94/5.38 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 12.94/5.38 12.94/5.38 emptyFM :: FiniteMap a b; 12.94/5.38 emptyFM = EmptyFM; 12.94/5.38 12.94/5.38 findMax :: FiniteMap a b -> (a,b); 12.94/5.38 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 12.94/5.38 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 12.94/5.38 12.94/5.38 findMin :: FiniteMap a b -> (a,b); 12.94/5.38 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 12.94/5.38 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 12.94/5.38 12.94/5.38 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.94/5.38 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 12.94/5.38 12.94/5.38 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_R fm_L key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_R fm_L + mkBalBranch6Size_r key elt fm_R fm_L < 2); 12.94/5.38 12.94/5.38 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.94/5.38 12.94/5.38 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 12.94/5.38 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 12.94/5.38 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 12.94/5.38 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 12.94/5.38 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 12.94/5.38 12.94/5.38 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 12.94/5.38 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 12.94/5.38 12.94/5.38 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 12.94/5.38 12.94/5.38 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 12.94/5.38 12.94/5.38 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 12.94/5.38 12.94/5.38 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwz; 12.94/5.38 12.94/5.38 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.94/5.38 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 12.94/5.38 12.94/5.38 mkBranchBalance_ok vxv vxw vxx = True; 12.94/5.38 12.94/5.38 mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxx vxv; 12.94/5.38 12.94/5.38 mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 12.94/5.38 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 12.94/5.38 12.94/5.38 mkBranchLeft_ok0Biggest_left_key vyw = fst (findMax vyw); 12.94/5.38 12.94/5.38 mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 12.94/5.38 12.94/5.38 mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (1 + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyu vyv; 12.94/5.38 12.94/5.38 mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxw vxx vxw; 12.94/5.38 12.94/5.38 mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 12.94/5.38 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 12.94/5.38 12.94/5.38 mkBranchRight_ok0Smallest_right_key vyx = fst (findMin vyx); 12.94/5.38 12.94/5.38 mkBranchRight_size vxv vxw vxx = sizeFM vxw; 12.94/5.38 12.94/5.38 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 12.94/5.38 mkBranchUnbox vxv vxw vxx x = x; 12.94/5.38 12.94/5.38 sIZE_RATIO :: Int; 12.94/5.38 sIZE_RATIO = 5; 12.94/5.38 12.94/5.38 sizeFM :: FiniteMap b a -> Int; 12.94/5.38 sizeFM EmptyFM = 0; 12.94/5.38 sizeFM (Branch vz wu size wv ww) = size; 12.94/5.38 12.94/5.38 unitFM :: a -> b -> FiniteMap a b; 12.94/5.38 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 12.94/5.38 12.94/5.38 } 12.94/5.38 module Maybe where { 12.94/5.38 import qualified FiniteMap; 12.94/5.38 import qualified Main; 12.94/5.38 import qualified Prelude; 12.94/5.38 } 12.94/5.38 module Main where { 12.94/5.38 import qualified FiniteMap; 12.94/5.38 import qualified Maybe; 12.94/5.38 import qualified Prelude; 12.94/5.38 } 12.94/5.38 12.94/5.38 ---------------------------------------- 12.94/5.38 12.94/5.38 (9) NumRed (SOUND) 12.94/5.38 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 12.94/5.38 ---------------------------------------- 12.94/5.38 12.94/5.38 (10) 12.94/5.38 Obligation: 12.94/5.38 mainModule Main 12.94/5.38 module FiniteMap where { 12.94/5.38 import qualified Main; 12.94/5.38 import qualified Maybe; 12.94/5.38 import qualified Prelude; 12.94/5.38 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 12.94/5.38 12.94/5.38 instance (Eq a, Eq b) => Eq FiniteMap b a where { 12.94/5.38 } 12.94/5.38 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 12.94/5.38 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 12.94/5.38 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 12.94/5.38 12.94/5.38 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.94/5.38 12.94/5.38 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 12.94/5.38 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 12.94/5.38 12.94/5.38 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 12.94/5.38 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 12.94/5.38 12.94/5.38 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 12.94/5.38 12.94/5.38 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 12.94/5.38 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 12.94/5.38 12.94/5.38 emptyFM :: FiniteMap b a; 12.94/5.38 emptyFM = EmptyFM; 12.94/5.38 12.94/5.38 findMax :: FiniteMap b a -> (b,a); 12.94/5.38 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 12.94/5.38 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 12.94/5.38 12.94/5.38 findMin :: FiniteMap b a -> (b,a); 12.94/5.38 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 12.94/5.38 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 12.94/5.38 12.94/5.38 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.94/5.38 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 12.94/5.38 12.94/5.38 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_R fm_L key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_R fm_L + mkBalBranch6Size_r key elt fm_R fm_L < Pos (Succ (Succ Zero))); 12.94/5.38 12.94/5.38 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) vwx vwy fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); 12.94/5.39 12.94/5.39 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) vwx vwy fm_lrr fm_r); 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 12.94/5.39 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 12.94/5.39 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 12.94/5.39 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 12.94/5.39 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 12.94/5.39 12.94/5.39 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; 12.94/5.39 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 12.94/5.39 12.94/5.39 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) vwx vwy fm_l fm_rl) fm_rr; 12.94/5.39 12.94/5.39 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) vwx vwy fm_lr fm_r); 12.94/5.39 12.94/5.39 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vxu; 12.94/5.39 12.94/5.39 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vwz; 12.94/5.39 12.94/5.39 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.94/5.39 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 12.94/5.39 12.94/5.39 mkBranchBalance_ok vxv vxw vxx = True; 12.94/5.39 12.94/5.39 mkBranchLeft_ok vxv vxw vxx = mkBranchLeft_ok0 vxv vxw vxx vxv vxx vxv; 12.94/5.39 12.94/5.39 mkBranchLeft_ok0 vxv vxw vxx fm_l key EmptyFM = True; 12.94/5.39 mkBranchLeft_ok0 vxv vxw vxx fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 12.94/5.39 12.94/5.39 mkBranchLeft_ok0Biggest_left_key vyw = fst (findMax vyw); 12.94/5.39 12.94/5.39 mkBranchLeft_size vxv vxw vxx = sizeFM vxv; 12.94/5.39 12.94/5.39 mkBranchResult vxy vxz vyu vyv = Branch vxy vxz (mkBranchUnbox vyu vyv vxy (Pos (Succ Zero) + mkBranchLeft_size vyu vyv vxy + mkBranchRight_size vyu vyv vxy)) vyu vyv; 12.94/5.39 12.94/5.39 mkBranchRight_ok vxv vxw vxx = mkBranchRight_ok0 vxv vxw vxx vxw vxx vxw; 12.94/5.39 12.94/5.39 mkBranchRight_ok0 vxv vxw vxx fm_r key EmptyFM = True; 12.94/5.39 mkBranchRight_ok0 vxv vxw vxx fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 12.94/5.39 12.94/5.39 mkBranchRight_ok0Smallest_right_key vyx = fst (findMin vyx); 12.94/5.39 12.94/5.39 mkBranchRight_size vxv vxw vxx = sizeFM vxw; 12.94/5.39 12.94/5.39 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 12.94/5.39 mkBranchUnbox vxv vxw vxx x = x; 12.94/5.39 12.94/5.39 sIZE_RATIO :: Int; 12.94/5.39 sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); 12.94/5.39 12.94/5.39 sizeFM :: FiniteMap b a -> Int; 12.94/5.39 sizeFM EmptyFM = Pos Zero; 12.94/5.39 sizeFM (Branch vz wu size wv ww) = size; 12.94/5.39 12.94/5.39 unitFM :: b -> a -> FiniteMap b a; 12.94/5.39 unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; 12.94/5.39 12.94/5.39 } 12.94/5.39 module Maybe where { 12.94/5.39 import qualified FiniteMap; 12.94/5.39 import qualified Main; 12.94/5.39 import qualified Prelude; 12.94/5.39 } 12.94/5.39 module Main where { 12.94/5.39 import qualified FiniteMap; 12.94/5.39 import qualified Maybe; 12.94/5.39 import qualified Prelude; 12.94/5.39 } 12.94/5.39 12.94/5.39 ---------------------------------------- 12.94/5.39 12.94/5.39 (11) Narrow (EQUIVALENT) 12.94/5.39 Haskell To QDPs 12.94/5.39 12.94/5.39 digraph dp_graph { 12.94/5.39 node [outthreshold=100, inthreshold=100];1[label="FiniteMap.addToFM_C",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 12.94/5.39 3[label="FiniteMap.addToFM_C vyy3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 12.94/5.39 4[label="FiniteMap.addToFM_C vyy3 vyy4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 12.94/5.39 5[label="FiniteMap.addToFM_C vyy3 vyy4 vyy5",fontsize=16,color="grey",shape="box"];5 -> 6[label="",style="dashed", color="grey", weight=3]; 12.94/5.39 6[label="FiniteMap.addToFM_C vyy3 vyy4 vyy5 vyy6",fontsize=16,color="burlywood",shape="triangle"];32[label="vyy4/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];6 -> 32[label="",style="solid", color="burlywood", weight=9]; 12.94/5.39 32 -> 7[label="",style="solid", color="burlywood", weight=3]; 12.94/5.39 33[label="vyy4/FiniteMap.Branch vyy40 vyy41 vyy42 vyy43 vyy44",fontsize=10,color="white",style="solid",shape="box"];6 -> 33[label="",style="solid", color="burlywood", weight=9]; 12.94/5.39 33 -> 8[label="",style="solid", color="burlywood", weight=3]; 12.94/5.39 7[label="FiniteMap.addToFM_C vyy3 FiniteMap.EmptyFM vyy5 vyy6",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 12.94/5.39 8[label="FiniteMap.addToFM_C vyy3 (FiniteMap.Branch vyy40 vyy41 vyy42 vyy43 vyy44) vyy5 vyy6",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 12.94/5.39 9[label="FiniteMap.addToFM_C4 vyy3 FiniteMap.EmptyFM vyy5 vyy6",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 12.94/5.39 10[label="FiniteMap.addToFM_C3 vyy3 (FiniteMap.Branch vyy40 vyy41 vyy42 vyy43 vyy44) vyy5 vyy6",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 12.94/5.39 11[label="FiniteMap.unitFM vyy5 vyy6",fontsize=16,color="black",shape="box"];11 -> 13[label="",style="solid", color="black", weight=3]; 12.94/5.39 12[label="FiniteMap.addToFM_C2 vyy3 vyy40 vyy41 vyy42 vyy43 vyy44 vyy5 vyy6 (vyy5 < vyy40)",fontsize=16,color="black",shape="box"];12 -> 14[label="",style="solid", color="black", weight=3]; 12.94/5.39 13[label="FiniteMap.Branch vyy5 vyy6 (Pos (Succ Zero)) FiniteMap.emptyFM FiniteMap.emptyFM",fontsize=16,color="green",shape="box"];13 -> 15[label="",style="dashed", color="green", weight=3]; 12.94/5.39 13 -> 16[label="",style="dashed", color="green", weight=3]; 12.94/5.39 14[label="FiniteMap.addToFM_C2 vyy3 vyy40 vyy41 vyy42 vyy43 vyy44 vyy5 vyy6 (compare vyy5 vyy40 == LT)",fontsize=16,color="burlywood",shape="box"];34[label="vyy5/()",fontsize=10,color="white",style="solid",shape="box"];14 -> 34[label="",style="solid", color="burlywood", weight=9]; 12.94/5.39 34 -> 17[label="",style="solid", color="burlywood", weight=3]; 12.94/5.39 15[label="FiniteMap.emptyFM",fontsize=16,color="black",shape="triangle"];15 -> 18[label="",style="solid", color="black", weight=3]; 12.94/5.39 16 -> 15[label="",style="dashed", color="red", weight=0]; 12.94/5.39 16[label="FiniteMap.emptyFM",fontsize=16,color="magenta"];17[label="FiniteMap.addToFM_C2 vyy3 vyy40 vyy41 vyy42 vyy43 vyy44 () vyy6 (compare () vyy40 == LT)",fontsize=16,color="burlywood",shape="box"];35[label="vyy40/()",fontsize=10,color="white",style="solid",shape="box"];17 -> 35[label="",style="solid", color="burlywood", weight=9]; 12.94/5.39 35 -> 19[label="",style="solid", color="burlywood", weight=3]; 12.94/5.39 18[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];19[label="FiniteMap.addToFM_C2 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 (compare () () == LT)",fontsize=16,color="black",shape="box"];19 -> 20[label="",style="solid", color="black", weight=3]; 12.94/5.39 20[label="FiniteMap.addToFM_C2 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 (EQ == LT)",fontsize=16,color="black",shape="box"];20 -> 21[label="",style="solid", color="black", weight=3]; 12.94/5.39 21[label="FiniteMap.addToFM_C2 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 False",fontsize=16,color="black",shape="box"];21 -> 22[label="",style="solid", color="black", weight=3]; 12.94/5.39 22[label="FiniteMap.addToFM_C1 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 (() > ())",fontsize=16,color="black",shape="box"];22 -> 23[label="",style="solid", color="black", weight=3]; 12.94/5.39 23[label="FiniteMap.addToFM_C1 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 (compare () () == GT)",fontsize=16,color="black",shape="box"];23 -> 24[label="",style="solid", color="black", weight=3]; 12.94/5.39 24[label="FiniteMap.addToFM_C1 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 (EQ == GT)",fontsize=16,color="black",shape="box"];24 -> 25[label="",style="solid", color="black", weight=3]; 12.94/5.39 25[label="FiniteMap.addToFM_C1 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 False",fontsize=16,color="black",shape="box"];25 -> 26[label="",style="solid", color="black", weight=3]; 12.94/5.39 26[label="FiniteMap.addToFM_C0 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 otherwise",fontsize=16,color="black",shape="box"];26 -> 27[label="",style="solid", color="black", weight=3]; 12.94/5.39 27[label="FiniteMap.addToFM_C0 vyy3 () vyy41 vyy42 vyy43 vyy44 () vyy6 True",fontsize=16,color="black",shape="box"];27 -> 28[label="",style="solid", color="black", weight=3]; 12.94/5.39 28[label="FiniteMap.Branch () (vyy3 vyy41 vyy6) vyy42 vyy43 vyy44",fontsize=16,color="green",shape="box"];28 -> 29[label="",style="dashed", color="green", weight=3]; 12.94/5.39 29[label="vyy3 vyy41 vyy6",fontsize=16,color="green",shape="box"];29 -> 30[label="",style="dashed", color="green", weight=3]; 12.94/5.39 29 -> 31[label="",style="dashed", color="green", weight=3]; 12.94/5.39 30[label="vyy41",fontsize=16,color="green",shape="box"];31[label="vyy6",fontsize=16,color="green",shape="box"];} 12.94/5.39 12.94/5.39 ---------------------------------------- 12.94/5.39 12.94/5.39 (12) 12.94/5.39 YES 13.20/6.46 EOF