8.97/3.82 YES 11.41/4.47 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 11.41/4.47 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 11.41/4.47 11.41/4.47 11.41/4.47 H-Termination with start terms of the given HASKELL could be proven: 11.41/4.47 11.41/4.47 (0) HASKELL 11.41/4.47 (1) LR [EQUIVALENT, 0 ms] 11.41/4.47 (2) HASKELL 11.41/4.47 (3) IFR [EQUIVALENT, 0 ms] 11.41/4.47 (4) HASKELL 11.41/4.47 (5) BR [EQUIVALENT, 0 ms] 11.41/4.47 (6) HASKELL 11.41/4.47 (7) COR [EQUIVALENT, 0 ms] 11.41/4.47 (8) HASKELL 11.41/4.47 (9) LetRed [EQUIVALENT, 5 ms] 11.41/4.47 (10) HASKELL 11.41/4.47 (11) NumRed [SOUND, 0 ms] 11.41/4.47 (12) HASKELL 11.41/4.47 (13) Narrow [SOUND, 0 ms] 11.41/4.47 (14) AND 11.41/4.47 (15) QDP 11.41/4.47 (16) DependencyGraphProof [EQUIVALENT, 0 ms] 11.41/4.47 (17) AND 11.41/4.47 (18) QDP 11.41/4.47 (19) MRRProof [EQUIVALENT, 11 ms] 11.41/4.47 (20) QDP 11.41/4.47 (21) PisEmptyProof [EQUIVALENT, 0 ms] 11.41/4.47 (22) YES 11.41/4.47 (23) QDP 11.41/4.47 (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] 11.41/4.47 (25) YES 11.41/4.47 (26) QDP 11.41/4.47 (27) QDPSizeChangeProof [EQUIVALENT, 0 ms] 11.41/4.47 (28) YES 11.41/4.47 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (0) 11.41/4.47 Obligation: 11.41/4.47 mainModule Main 11.41/4.47 module Main where { 11.41/4.47 import qualified Prelude; 11.41/4.47 } 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (1) LR (EQUIVALENT) 11.41/4.47 Lambda Reductions: 11.41/4.47 The following Lambda expression 11.41/4.47 "\(m,_)->m" 11.41/4.47 is transformed to 11.41/4.47 "m0 (m,_) = m; 11.41/4.47 " 11.41/4.47 The following Lambda expression 11.41/4.47 "\(q,_)->q" 11.41/4.47 is transformed to 11.41/4.47 "q1 (q,_) = q; 11.41/4.47 " 11.41/4.47 The following Lambda expression 11.41/4.47 "\(_,r)->r" 11.41/4.47 is transformed to 11.41/4.47 "r0 (_,r) = r; 11.41/4.47 " 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (2) 11.41/4.47 Obligation: 11.41/4.47 mainModule Main 11.41/4.47 module Main where { 11.41/4.47 import qualified Prelude; 11.41/4.47 } 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (3) IFR (EQUIVALENT) 11.41/4.47 If Reductions: 11.41/4.47 The following If expression 11.41/4.47 "if primGEqNatS x y then Succ (primDivNatS (primMinusNatS x y) (Succ y)) else Zero" 11.41/4.47 is transformed to 11.41/4.47 "primDivNatS0 x y True = Succ (primDivNatS (primMinusNatS x y) (Succ y)); 11.41/4.47 primDivNatS0 x y False = Zero; 11.41/4.47 " 11.41/4.47 The following If expression 11.41/4.47 "if primGEqNatS x y then primModNatS (primMinusNatS x y) (Succ y) else Succ x" 11.41/4.47 is transformed to 11.41/4.47 "primModNatS0 x y True = primModNatS (primMinusNatS x y) (Succ y); 11.41/4.47 primModNatS0 x y False = Succ x; 11.41/4.47 " 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (4) 11.41/4.47 Obligation: 11.41/4.47 mainModule Main 11.41/4.47 module Main where { 11.41/4.47 import qualified Prelude; 11.41/4.47 } 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (5) BR (EQUIVALENT) 11.41/4.47 Replaced joker patterns by fresh variables and removed binding patterns. 11.41/4.47 11.41/4.47 Binding Reductions: 11.41/4.47 The bind variable of the following binding Pattern 11.41/4.47 "frac@(Float vz wu)" 11.41/4.47 is replaced by the following term 11.41/4.47 "Float vz wu" 11.41/4.47 The bind variable of the following binding Pattern 11.41/4.47 "frac@(Double xu xv)" 11.41/4.47 is replaced by the following term 11.41/4.47 "Double xu xv" 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (6) 11.41/4.47 Obligation: 11.41/4.47 mainModule Main 11.41/4.47 module Main where { 11.41/4.47 import qualified Prelude; 11.41/4.47 } 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (7) COR (EQUIVALENT) 11.41/4.47 Cond Reductions: 11.41/4.47 The following Function with conditions 11.41/4.47 "undefined |Falseundefined; 11.41/4.47 " 11.41/4.47 is transformed to 11.41/4.47 "undefined = undefined1; 11.41/4.47 " 11.41/4.47 "undefined0 True = undefined; 11.41/4.47 " 11.41/4.47 "undefined1 = undefined0 False; 11.41/4.47 " 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (8) 11.41/4.47 Obligation: 11.41/4.47 mainModule Main 11.41/4.47 module Main where { 11.41/4.47 import qualified Prelude; 11.41/4.47 } 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (9) LetRed (EQUIVALENT) 11.41/4.47 Let/Where Reductions: 11.41/4.47 The bindings of the following Let/Where expression 11.41/4.47 "m where { 11.41/4.47 m = m0 vu6; 11.41/4.47 ; 11.41/4.47 m0 (m,vv) = m; 11.41/4.47 ; 11.41/4.47 vu6 = properFraction x; 11.41/4.47 } 11.41/4.47 " 11.41/4.47 are unpacked to the following functions on top level 11.41/4.47 "truncateVu6 xw = properFraction xw; 11.41/4.47 " 11.41/4.47 "truncateM0 xw (m,vv) = m; 11.41/4.47 " 11.41/4.47 "truncateM xw = truncateM0 xw (truncateVu6 xw); 11.41/4.47 " 11.41/4.47 The bindings of the following Let/Where expression 11.41/4.47 "(fromIntegral q,r :% y) where { 11.41/4.47 q = q1 vu30; 11.41/4.47 ; 11.41/4.47 q1 (q,vw) = q; 11.41/4.47 ; 11.41/4.47 r = r0 vu30; 11.41/4.47 ; 11.41/4.47 r0 (vx,r) = r; 11.41/4.47 ; 11.41/4.47 vu30 = quotRem x y; 11.41/4.47 } 11.41/4.47 " 11.41/4.47 are unpacked to the following functions on top level 11.41/4.47 "properFractionQ xx xy = properFractionQ1 xx xy (properFractionVu30 xx xy); 11.41/4.47 " 11.41/4.47 "properFractionVu30 xx xy = quotRem xx xy; 11.41/4.47 " 11.41/4.47 "properFractionQ1 xx xy (q,vw) = q; 11.41/4.47 " 11.41/4.47 "properFractionR0 xx xy (vx,r) = r; 11.41/4.47 " 11.41/4.47 "properFractionR xx xy = properFractionR0 xx xy (properFractionVu30 xx xy); 11.41/4.47 " 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (10) 11.41/4.47 Obligation: 11.41/4.47 mainModule Main 11.41/4.47 module Main where { 11.41/4.47 import qualified Prelude; 11.41/4.47 } 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (11) NumRed (SOUND) 11.41/4.47 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (12) 11.41/4.47 Obligation: 11.41/4.47 mainModule Main 11.41/4.47 module Main where { 11.41/4.47 import qualified Prelude; 11.41/4.47 } 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (13) Narrow (SOUND) 11.41/4.47 Haskell To QDPs 11.41/4.47 11.41/4.47 digraph dp_graph { 11.41/4.47 node [outthreshold=100, inthreshold=100];1[label="truncate",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 11.41/4.47 3[label="truncate xz3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 11.41/4.47 4[label="truncateM xz3",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 11.41/4.47 5[label="truncateM0 xz3 (truncateVu6 xz3)",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 11.41/4.47 6[label="truncateM0 xz3 (properFraction xz3)",fontsize=16,color="burlywood",shape="box"];287[label="xz3/xz30 :% xz31",fontsize=10,color="white",style="solid",shape="box"];6 -> 287[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 287 -> 7[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 7[label="truncateM0 (xz30 :% xz31) (properFraction (xz30 :% xz31))",fontsize=16,color="black",shape="box"];7 -> 8[label="",style="solid", color="black", weight=3]; 11.41/4.47 8[label="truncateM0 (xz30 :% xz31) (fromIntegral (properFractionQ xz30 xz31),properFractionR xz30 xz31 :% xz31)",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 11.41/4.47 9[label="fromIntegral (properFractionQ xz30 xz31)",fontsize=16,color="black",shape="box"];9 -> 10[label="",style="solid", color="black", weight=3]; 11.41/4.47 10[label="fromInteger . toInteger",fontsize=16,color="black",shape="box"];10 -> 11[label="",style="solid", color="black", weight=3]; 11.41/4.47 11[label="fromInteger (toInteger (properFractionQ xz30 xz31))",fontsize=16,color="black",shape="box"];11 -> 12[label="",style="solid", color="black", weight=3]; 11.41/4.47 12[label="fromInteger (Integer (properFractionQ xz30 xz31))",fontsize=16,color="black",shape="box"];12 -> 13[label="",style="solid", color="black", weight=3]; 11.41/4.47 13[label="properFractionQ xz30 xz31",fontsize=16,color="black",shape="box"];13 -> 14[label="",style="solid", color="black", weight=3]; 11.41/4.47 14[label="properFractionQ1 xz30 xz31 (properFractionVu30 xz30 xz31)",fontsize=16,color="black",shape="box"];14 -> 15[label="",style="solid", color="black", weight=3]; 11.41/4.47 15[label="properFractionQ1 xz30 xz31 (quotRem xz30 xz31)",fontsize=16,color="black",shape="box"];15 -> 16[label="",style="solid", color="black", weight=3]; 11.41/4.47 16[label="properFractionQ1 xz30 xz31 (primQrmInt xz30 xz31)",fontsize=16,color="black",shape="box"];16 -> 17[label="",style="solid", color="black", weight=3]; 11.41/4.47 17[label="properFractionQ1 xz30 xz31 (primQuotInt xz30 xz31,primRemInt xz30 xz31)",fontsize=16,color="black",shape="box"];17 -> 18[label="",style="solid", color="black", weight=3]; 11.41/4.47 18[label="primQuotInt xz30 xz31",fontsize=16,color="burlywood",shape="box"];288[label="xz30/Pos xz300",fontsize=10,color="white",style="solid",shape="box"];18 -> 288[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 288 -> 19[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 289[label="xz30/Neg xz300",fontsize=10,color="white",style="solid",shape="box"];18 -> 289[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 289 -> 20[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 19[label="primQuotInt (Pos xz300) xz31",fontsize=16,color="burlywood",shape="box"];290[label="xz31/Pos xz310",fontsize=10,color="white",style="solid",shape="box"];19 -> 290[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 290 -> 21[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 291[label="xz31/Neg xz310",fontsize=10,color="white",style="solid",shape="box"];19 -> 291[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 291 -> 22[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 20[label="primQuotInt (Neg xz300) xz31",fontsize=16,color="burlywood",shape="box"];292[label="xz31/Pos xz310",fontsize=10,color="white",style="solid",shape="box"];20 -> 292[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 292 -> 23[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 293[label="xz31/Neg xz310",fontsize=10,color="white",style="solid",shape="box"];20 -> 293[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 293 -> 24[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 21[label="primQuotInt (Pos xz300) (Pos xz310)",fontsize=16,color="burlywood",shape="box"];294[label="xz310/Succ xz3100",fontsize=10,color="white",style="solid",shape="box"];21 -> 294[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 294 -> 25[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 295[label="xz310/Zero",fontsize=10,color="white",style="solid",shape="box"];21 -> 295[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 295 -> 26[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 22[label="primQuotInt (Pos xz300) (Neg xz310)",fontsize=16,color="burlywood",shape="box"];296[label="xz310/Succ xz3100",fontsize=10,color="white",style="solid",shape="box"];22 -> 296[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 296 -> 27[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 297[label="xz310/Zero",fontsize=10,color="white",style="solid",shape="box"];22 -> 297[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 297 -> 28[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 23[label="primQuotInt (Neg xz300) (Pos xz310)",fontsize=16,color="burlywood",shape="box"];298[label="xz310/Succ xz3100",fontsize=10,color="white",style="solid",shape="box"];23 -> 298[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 298 -> 29[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 299[label="xz310/Zero",fontsize=10,color="white",style="solid",shape="box"];23 -> 299[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 299 -> 30[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 24[label="primQuotInt (Neg xz300) (Neg xz310)",fontsize=16,color="burlywood",shape="box"];300[label="xz310/Succ xz3100",fontsize=10,color="white",style="solid",shape="box"];24 -> 300[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 300 -> 31[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 301[label="xz310/Zero",fontsize=10,color="white",style="solid",shape="box"];24 -> 301[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 301 -> 32[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 25[label="primQuotInt (Pos xz300) (Pos (Succ xz3100))",fontsize=16,color="black",shape="box"];25 -> 33[label="",style="solid", color="black", weight=3]; 11.41/4.47 26[label="primQuotInt (Pos xz300) (Pos Zero)",fontsize=16,color="black",shape="box"];26 -> 34[label="",style="solid", color="black", weight=3]; 11.41/4.47 27[label="primQuotInt (Pos xz300) (Neg (Succ xz3100))",fontsize=16,color="black",shape="box"];27 -> 35[label="",style="solid", color="black", weight=3]; 11.41/4.47 28[label="primQuotInt (Pos xz300) (Neg Zero)",fontsize=16,color="black",shape="box"];28 -> 36[label="",style="solid", color="black", weight=3]; 11.41/4.47 29[label="primQuotInt (Neg xz300) (Pos (Succ xz3100))",fontsize=16,color="black",shape="box"];29 -> 37[label="",style="solid", color="black", weight=3]; 11.41/4.47 30[label="primQuotInt (Neg xz300) (Pos Zero)",fontsize=16,color="black",shape="box"];30 -> 38[label="",style="solid", color="black", weight=3]; 11.41/4.47 31[label="primQuotInt (Neg xz300) (Neg (Succ xz3100))",fontsize=16,color="black",shape="box"];31 -> 39[label="",style="solid", color="black", weight=3]; 11.41/4.47 32[label="primQuotInt (Neg xz300) (Neg Zero)",fontsize=16,color="black",shape="box"];32 -> 40[label="",style="solid", color="black", weight=3]; 11.41/4.47 33[label="Pos (primDivNatS xz300 (Succ xz3100))",fontsize=16,color="green",shape="box"];33 -> 41[label="",style="dashed", color="green", weight=3]; 11.41/4.47 34[label="error []",fontsize=16,color="black",shape="triangle"];34 -> 42[label="",style="solid", color="black", weight=3]; 11.41/4.47 35[label="Neg (primDivNatS xz300 (Succ xz3100))",fontsize=16,color="green",shape="box"];35 -> 43[label="",style="dashed", color="green", weight=3]; 11.41/4.47 36 -> 34[label="",style="dashed", color="red", weight=0]; 11.41/4.47 36[label="error []",fontsize=16,color="magenta"];37[label="Neg (primDivNatS xz300 (Succ xz3100))",fontsize=16,color="green",shape="box"];37 -> 44[label="",style="dashed", color="green", weight=3]; 11.41/4.47 38 -> 34[label="",style="dashed", color="red", weight=0]; 11.41/4.47 38[label="error []",fontsize=16,color="magenta"];39[label="Pos (primDivNatS xz300 (Succ xz3100))",fontsize=16,color="green",shape="box"];39 -> 45[label="",style="dashed", color="green", weight=3]; 11.41/4.47 40 -> 34[label="",style="dashed", color="red", weight=0]; 11.41/4.47 40[label="error []",fontsize=16,color="magenta"];41[label="primDivNatS xz300 (Succ xz3100)",fontsize=16,color="burlywood",shape="triangle"];302[label="xz300/Succ xz3000",fontsize=10,color="white",style="solid",shape="box"];41 -> 302[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 302 -> 46[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 303[label="xz300/Zero",fontsize=10,color="white",style="solid",shape="box"];41 -> 303[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 303 -> 47[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 42[label="error []",fontsize=16,color="red",shape="box"];43 -> 41[label="",style="dashed", color="red", weight=0]; 11.41/4.47 43[label="primDivNatS xz300 (Succ xz3100)",fontsize=16,color="magenta"];43 -> 48[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 44 -> 41[label="",style="dashed", color="red", weight=0]; 11.41/4.47 44[label="primDivNatS xz300 (Succ xz3100)",fontsize=16,color="magenta"];44 -> 49[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 45 -> 41[label="",style="dashed", color="red", weight=0]; 11.41/4.47 45[label="primDivNatS xz300 (Succ xz3100)",fontsize=16,color="magenta"];45 -> 50[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 45 -> 51[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 46[label="primDivNatS (Succ xz3000) (Succ xz3100)",fontsize=16,color="black",shape="box"];46 -> 52[label="",style="solid", color="black", weight=3]; 11.41/4.47 47[label="primDivNatS Zero (Succ xz3100)",fontsize=16,color="black",shape="box"];47 -> 53[label="",style="solid", color="black", weight=3]; 11.41/4.47 48[label="xz3100",fontsize=16,color="green",shape="box"];49[label="xz300",fontsize=16,color="green",shape="box"];50[label="xz3100",fontsize=16,color="green",shape="box"];51[label="xz300",fontsize=16,color="green",shape="box"];52[label="primDivNatS0 xz3000 xz3100 (primGEqNatS xz3000 xz3100)",fontsize=16,color="burlywood",shape="box"];304[label="xz3000/Succ xz30000",fontsize=10,color="white",style="solid",shape="box"];52 -> 304[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 304 -> 54[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 305[label="xz3000/Zero",fontsize=10,color="white",style="solid",shape="box"];52 -> 305[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 305 -> 55[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 53[label="Zero",fontsize=16,color="green",shape="box"];54[label="primDivNatS0 (Succ xz30000) xz3100 (primGEqNatS (Succ xz30000) xz3100)",fontsize=16,color="burlywood",shape="box"];306[label="xz3100/Succ xz31000",fontsize=10,color="white",style="solid",shape="box"];54 -> 306[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 306 -> 56[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 307[label="xz3100/Zero",fontsize=10,color="white",style="solid",shape="box"];54 -> 307[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 307 -> 57[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 55[label="primDivNatS0 Zero xz3100 (primGEqNatS Zero xz3100)",fontsize=16,color="burlywood",shape="box"];308[label="xz3100/Succ xz31000",fontsize=10,color="white",style="solid",shape="box"];55 -> 308[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 308 -> 58[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 309[label="xz3100/Zero",fontsize=10,color="white",style="solid",shape="box"];55 -> 309[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 309 -> 59[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 56[label="primDivNatS0 (Succ xz30000) (Succ xz31000) (primGEqNatS (Succ xz30000) (Succ xz31000))",fontsize=16,color="black",shape="box"];56 -> 60[label="",style="solid", color="black", weight=3]; 11.41/4.47 57[label="primDivNatS0 (Succ xz30000) Zero (primGEqNatS (Succ xz30000) Zero)",fontsize=16,color="black",shape="box"];57 -> 61[label="",style="solid", color="black", weight=3]; 11.41/4.47 58[label="primDivNatS0 Zero (Succ xz31000) (primGEqNatS Zero (Succ xz31000))",fontsize=16,color="black",shape="box"];58 -> 62[label="",style="solid", color="black", weight=3]; 11.41/4.47 59[label="primDivNatS0 Zero Zero (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];59 -> 63[label="",style="solid", color="black", weight=3]; 11.41/4.47 60 -> 224[label="",style="dashed", color="red", weight=0]; 11.41/4.47 60[label="primDivNatS0 (Succ xz30000) (Succ xz31000) (primGEqNatS xz30000 xz31000)",fontsize=16,color="magenta"];60 -> 225[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 60 -> 226[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 60 -> 227[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 60 -> 228[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 61[label="primDivNatS0 (Succ xz30000) Zero True",fontsize=16,color="black",shape="box"];61 -> 66[label="",style="solid", color="black", weight=3]; 11.41/4.47 62[label="primDivNatS0 Zero (Succ xz31000) False",fontsize=16,color="black",shape="box"];62 -> 67[label="",style="solid", color="black", weight=3]; 11.41/4.47 63[label="primDivNatS0 Zero Zero True",fontsize=16,color="black",shape="box"];63 -> 68[label="",style="solid", color="black", weight=3]; 11.41/4.47 225[label="xz30000",fontsize=16,color="green",shape="box"];226[label="xz31000",fontsize=16,color="green",shape="box"];227[label="xz31000",fontsize=16,color="green",shape="box"];228[label="xz30000",fontsize=16,color="green",shape="box"];224[label="primDivNatS0 (Succ xz20) (Succ xz21) (primGEqNatS xz22 xz23)",fontsize=16,color="burlywood",shape="triangle"];310[label="xz22/Succ xz220",fontsize=10,color="white",style="solid",shape="box"];224 -> 310[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 310 -> 257[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 311[label="xz22/Zero",fontsize=10,color="white",style="solid",shape="box"];224 -> 311[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 311 -> 258[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 66[label="Succ (primDivNatS (primMinusNatS (Succ xz30000) Zero) (Succ Zero))",fontsize=16,color="green",shape="box"];66 -> 73[label="",style="dashed", color="green", weight=3]; 11.41/4.47 67[label="Zero",fontsize=16,color="green",shape="box"];68[label="Succ (primDivNatS (primMinusNatS Zero Zero) (Succ Zero))",fontsize=16,color="green",shape="box"];68 -> 74[label="",style="dashed", color="green", weight=3]; 11.41/4.47 257[label="primDivNatS0 (Succ xz20) (Succ xz21) (primGEqNatS (Succ xz220) xz23)",fontsize=16,color="burlywood",shape="box"];312[label="xz23/Succ xz230",fontsize=10,color="white",style="solid",shape="box"];257 -> 312[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 312 -> 259[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 313[label="xz23/Zero",fontsize=10,color="white",style="solid",shape="box"];257 -> 313[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 313 -> 260[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 258[label="primDivNatS0 (Succ xz20) (Succ xz21) (primGEqNatS Zero xz23)",fontsize=16,color="burlywood",shape="box"];314[label="xz23/Succ xz230",fontsize=10,color="white",style="solid",shape="box"];258 -> 314[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 314 -> 261[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 315[label="xz23/Zero",fontsize=10,color="white",style="solid",shape="box"];258 -> 315[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 315 -> 262[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 73 -> 41[label="",style="dashed", color="red", weight=0]; 11.41/4.47 73[label="primDivNatS (primMinusNatS (Succ xz30000) Zero) (Succ Zero)",fontsize=16,color="magenta"];73 -> 79[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 73 -> 80[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 74 -> 41[label="",style="dashed", color="red", weight=0]; 11.41/4.47 74[label="primDivNatS (primMinusNatS Zero Zero) (Succ Zero)",fontsize=16,color="magenta"];74 -> 81[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 74 -> 82[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 259[label="primDivNatS0 (Succ xz20) (Succ xz21) (primGEqNatS (Succ xz220) (Succ xz230))",fontsize=16,color="black",shape="box"];259 -> 263[label="",style="solid", color="black", weight=3]; 11.41/4.47 260[label="primDivNatS0 (Succ xz20) (Succ xz21) (primGEqNatS (Succ xz220) Zero)",fontsize=16,color="black",shape="box"];260 -> 264[label="",style="solid", color="black", weight=3]; 11.41/4.47 261[label="primDivNatS0 (Succ xz20) (Succ xz21) (primGEqNatS Zero (Succ xz230))",fontsize=16,color="black",shape="box"];261 -> 265[label="",style="solid", color="black", weight=3]; 11.41/4.47 262[label="primDivNatS0 (Succ xz20) (Succ xz21) (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];262 -> 266[label="",style="solid", color="black", weight=3]; 11.41/4.47 79[label="Zero",fontsize=16,color="green",shape="box"];80[label="primMinusNatS (Succ xz30000) Zero",fontsize=16,color="black",shape="triangle"];80 -> 88[label="",style="solid", color="black", weight=3]; 11.41/4.47 81[label="Zero",fontsize=16,color="green",shape="box"];82[label="primMinusNatS Zero Zero",fontsize=16,color="black",shape="triangle"];82 -> 89[label="",style="solid", color="black", weight=3]; 11.41/4.47 263 -> 224[label="",style="dashed", color="red", weight=0]; 11.41/4.47 263[label="primDivNatS0 (Succ xz20) (Succ xz21) (primGEqNatS xz220 xz230)",fontsize=16,color="magenta"];263 -> 267[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 263 -> 268[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 264[label="primDivNatS0 (Succ xz20) (Succ xz21) True",fontsize=16,color="black",shape="triangle"];264 -> 269[label="",style="solid", color="black", weight=3]; 11.41/4.47 265[label="primDivNatS0 (Succ xz20) (Succ xz21) False",fontsize=16,color="black",shape="box"];265 -> 270[label="",style="solid", color="black", weight=3]; 11.41/4.47 266 -> 264[label="",style="dashed", color="red", weight=0]; 11.41/4.47 266[label="primDivNatS0 (Succ xz20) (Succ xz21) True",fontsize=16,color="magenta"];88[label="Succ xz30000",fontsize=16,color="green",shape="box"];89[label="Zero",fontsize=16,color="green",shape="box"];267[label="xz230",fontsize=16,color="green",shape="box"];268[label="xz220",fontsize=16,color="green",shape="box"];269[label="Succ (primDivNatS (primMinusNatS (Succ xz20) (Succ xz21)) (Succ (Succ xz21)))",fontsize=16,color="green",shape="box"];269 -> 271[label="",style="dashed", color="green", weight=3]; 11.41/4.47 270[label="Zero",fontsize=16,color="green",shape="box"];271 -> 41[label="",style="dashed", color="red", weight=0]; 11.41/4.47 271[label="primDivNatS (primMinusNatS (Succ xz20) (Succ xz21)) (Succ (Succ xz21))",fontsize=16,color="magenta"];271 -> 272[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 271 -> 273[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 272[label="Succ xz21",fontsize=16,color="green",shape="box"];273[label="primMinusNatS (Succ xz20) (Succ xz21)",fontsize=16,color="black",shape="box"];273 -> 274[label="",style="solid", color="black", weight=3]; 11.41/4.47 274[label="primMinusNatS xz20 xz21",fontsize=16,color="burlywood",shape="triangle"];316[label="xz20/Succ xz200",fontsize=10,color="white",style="solid",shape="box"];274 -> 316[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 316 -> 275[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 317[label="xz20/Zero",fontsize=10,color="white",style="solid",shape="box"];274 -> 317[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 317 -> 276[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 275[label="primMinusNatS (Succ xz200) xz21",fontsize=16,color="burlywood",shape="box"];318[label="xz21/Succ xz210",fontsize=10,color="white",style="solid",shape="box"];275 -> 318[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 318 -> 277[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 319[label="xz21/Zero",fontsize=10,color="white",style="solid",shape="box"];275 -> 319[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 319 -> 278[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 276[label="primMinusNatS Zero xz21",fontsize=16,color="burlywood",shape="box"];320[label="xz21/Succ xz210",fontsize=10,color="white",style="solid",shape="box"];276 -> 320[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 320 -> 279[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 321[label="xz21/Zero",fontsize=10,color="white",style="solid",shape="box"];276 -> 321[label="",style="solid", color="burlywood", weight=9]; 11.41/4.47 321 -> 280[label="",style="solid", color="burlywood", weight=3]; 11.41/4.47 277[label="primMinusNatS (Succ xz200) (Succ xz210)",fontsize=16,color="black",shape="box"];277 -> 281[label="",style="solid", color="black", weight=3]; 11.41/4.47 278[label="primMinusNatS (Succ xz200) Zero",fontsize=16,color="black",shape="box"];278 -> 282[label="",style="solid", color="black", weight=3]; 11.41/4.47 279[label="primMinusNatS Zero (Succ xz210)",fontsize=16,color="black",shape="box"];279 -> 283[label="",style="solid", color="black", weight=3]; 11.41/4.47 280[label="primMinusNatS Zero Zero",fontsize=16,color="black",shape="box"];280 -> 284[label="",style="solid", color="black", weight=3]; 11.41/4.47 281 -> 274[label="",style="dashed", color="red", weight=0]; 11.41/4.47 281[label="primMinusNatS xz200 xz210",fontsize=16,color="magenta"];281 -> 285[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 281 -> 286[label="",style="dashed", color="magenta", weight=3]; 11.41/4.47 282[label="Succ xz200",fontsize=16,color="green",shape="box"];283[label="Zero",fontsize=16,color="green",shape="box"];284[label="Zero",fontsize=16,color="green",shape="box"];285[label="xz200",fontsize=16,color="green",shape="box"];286[label="xz210",fontsize=16,color="green",shape="box"];} 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (14) 11.41/4.47 Complex Obligation (AND) 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (15) 11.41/4.47 Obligation: 11.41/4.47 Q DP problem: 11.41/4.47 The TRS P consists of the following rules: 11.41/4.47 11.41/4.47 new_primDivNatS(Succ(Succ(xz30000)), Succ(xz31000)) -> new_primDivNatS0(xz30000, xz31000, xz30000, xz31000) 11.41/4.47 new_primDivNatS0(xz20, xz21, Succ(xz220), Zero) -> new_primDivNatS(new_primMinusNatS0(xz20, xz21), Succ(xz21)) 11.41/4.47 new_primDivNatS0(xz20, xz21, Zero, Zero) -> new_primDivNatS00(xz20, xz21) 11.41/4.47 new_primDivNatS0(xz20, xz21, Succ(xz220), Succ(xz230)) -> new_primDivNatS0(xz20, xz21, xz220, xz230) 11.41/4.47 new_primDivNatS(Succ(Zero), Zero) -> new_primDivNatS(new_primMinusNatS2, Zero) 11.41/4.47 new_primDivNatS(Succ(Succ(xz30000)), Zero) -> new_primDivNatS(new_primMinusNatS1(xz30000), Zero) 11.41/4.47 new_primDivNatS00(xz20, xz21) -> new_primDivNatS(new_primMinusNatS0(xz20, xz21), Succ(xz21)) 11.41/4.47 11.41/4.47 The TRS R consists of the following rules: 11.41/4.47 11.41/4.47 new_primMinusNatS0(Zero, Succ(xz210)) -> Zero 11.41/4.47 new_primMinusNatS0(Zero, Zero) -> Zero 11.41/4.47 new_primMinusNatS1(xz30000) -> Succ(xz30000) 11.41/4.47 new_primMinusNatS0(Succ(xz200), Succ(xz210)) -> new_primMinusNatS0(xz200, xz210) 11.41/4.47 new_primMinusNatS2 -> Zero 11.41/4.47 new_primMinusNatS0(Succ(xz200), Zero) -> Succ(xz200) 11.41/4.47 11.41/4.47 The set Q consists of the following terms: 11.41/4.47 11.41/4.47 new_primMinusNatS0(Succ(x0), Succ(x1)) 11.41/4.47 new_primMinusNatS0(Zero, Zero) 11.41/4.47 new_primMinusNatS2 11.41/4.47 new_primMinusNatS0(Succ(x0), Zero) 11.41/4.47 new_primMinusNatS1(x0) 11.41/4.47 new_primMinusNatS0(Zero, Succ(x0)) 11.41/4.47 11.41/4.47 We have to consider all minimal (P,Q,R)-chains. 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (16) DependencyGraphProof (EQUIVALENT) 11.41/4.47 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (17) 11.41/4.47 Complex Obligation (AND) 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (18) 11.41/4.47 Obligation: 11.41/4.47 Q DP problem: 11.41/4.47 The TRS P consists of the following rules: 11.41/4.47 11.41/4.47 new_primDivNatS(Succ(Succ(xz30000)), Zero) -> new_primDivNatS(new_primMinusNatS1(xz30000), Zero) 11.41/4.47 11.41/4.47 The TRS R consists of the following rules: 11.41/4.47 11.41/4.47 new_primMinusNatS0(Zero, Succ(xz210)) -> Zero 11.41/4.47 new_primMinusNatS0(Zero, Zero) -> Zero 11.41/4.47 new_primMinusNatS1(xz30000) -> Succ(xz30000) 11.41/4.47 new_primMinusNatS0(Succ(xz200), Succ(xz210)) -> new_primMinusNatS0(xz200, xz210) 11.41/4.47 new_primMinusNatS2 -> Zero 11.41/4.47 new_primMinusNatS0(Succ(xz200), Zero) -> Succ(xz200) 11.41/4.47 11.41/4.47 The set Q consists of the following terms: 11.41/4.47 11.41/4.47 new_primMinusNatS0(Succ(x0), Succ(x1)) 11.41/4.47 new_primMinusNatS0(Zero, Zero) 11.41/4.47 new_primMinusNatS2 11.41/4.47 new_primMinusNatS0(Succ(x0), Zero) 11.41/4.47 new_primMinusNatS1(x0) 11.41/4.47 new_primMinusNatS0(Zero, Succ(x0)) 11.41/4.47 11.41/4.47 We have to consider all minimal (P,Q,R)-chains. 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (19) MRRProof (EQUIVALENT) 11.41/4.47 By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. 11.41/4.47 11.41/4.47 Strictly oriented dependency pairs: 11.41/4.47 11.41/4.47 new_primDivNatS(Succ(Succ(xz30000)), Zero) -> new_primDivNatS(new_primMinusNatS1(xz30000), Zero) 11.41/4.47 11.41/4.47 Strictly oriented rules of the TRS R: 11.41/4.47 11.41/4.47 new_primMinusNatS0(Zero, Succ(xz210)) -> Zero 11.41/4.47 new_primMinusNatS0(Zero, Zero) -> Zero 11.41/4.47 new_primMinusNatS1(xz30000) -> Succ(xz30000) 11.41/4.47 new_primMinusNatS0(Succ(xz200), Succ(xz210)) -> new_primMinusNatS0(xz200, xz210) 11.41/4.47 new_primMinusNatS2 -> Zero 11.41/4.47 new_primMinusNatS0(Succ(xz200), Zero) -> Succ(xz200) 11.41/4.47 11.41/4.47 Used ordering: Polynomial interpretation [POLO]: 11.41/4.47 11.41/4.47 POL(Succ(x_1)) = 1 + 2*x_1 11.41/4.47 POL(Zero) = 1 11.41/4.47 POL(new_primDivNatS(x_1, x_2)) = x_1 + x_2 11.41/4.47 POL(new_primMinusNatS0(x_1, x_2)) = x_1 + x_2 11.41/4.47 POL(new_primMinusNatS1(x_1)) = 2 + 2*x_1 11.41/4.47 POL(new_primMinusNatS2) = 2 11.41/4.47 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (20) 11.41/4.47 Obligation: 11.41/4.47 Q DP problem: 11.41/4.47 P is empty. 11.41/4.47 R is empty. 11.41/4.47 The set Q consists of the following terms: 11.41/4.47 11.41/4.47 new_primMinusNatS0(Succ(x0), Succ(x1)) 11.41/4.47 new_primMinusNatS0(Zero, Zero) 11.41/4.47 new_primMinusNatS2 11.41/4.47 new_primMinusNatS0(Succ(x0), Zero) 11.41/4.47 new_primMinusNatS1(x0) 11.41/4.47 new_primMinusNatS0(Zero, Succ(x0)) 11.41/4.47 11.41/4.47 We have to consider all minimal (P,Q,R)-chains. 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (21) PisEmptyProof (EQUIVALENT) 11.41/4.47 The TRS P is empty. Hence, there is no (P,Q,R) chain. 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (22) 11.41/4.47 YES 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (23) 11.41/4.47 Obligation: 11.41/4.47 Q DP problem: 11.41/4.47 The TRS P consists of the following rules: 11.41/4.47 11.41/4.47 new_primDivNatS0(xz20, xz21, Succ(xz220), Zero) -> new_primDivNatS(new_primMinusNatS0(xz20, xz21), Succ(xz21)) 11.41/4.47 new_primDivNatS(Succ(Succ(xz30000)), Succ(xz31000)) -> new_primDivNatS0(xz30000, xz31000, xz30000, xz31000) 11.41/4.47 new_primDivNatS0(xz20, xz21, Zero, Zero) -> new_primDivNatS00(xz20, xz21) 11.41/4.47 new_primDivNatS00(xz20, xz21) -> new_primDivNatS(new_primMinusNatS0(xz20, xz21), Succ(xz21)) 11.41/4.47 new_primDivNatS0(xz20, xz21, Succ(xz220), Succ(xz230)) -> new_primDivNatS0(xz20, xz21, xz220, xz230) 11.41/4.47 11.41/4.47 The TRS R consists of the following rules: 11.41/4.47 11.41/4.47 new_primMinusNatS0(Zero, Succ(xz210)) -> Zero 11.41/4.47 new_primMinusNatS0(Zero, Zero) -> Zero 11.41/4.47 new_primMinusNatS1(xz30000) -> Succ(xz30000) 11.41/4.47 new_primMinusNatS0(Succ(xz200), Succ(xz210)) -> new_primMinusNatS0(xz200, xz210) 11.41/4.47 new_primMinusNatS2 -> Zero 11.41/4.47 new_primMinusNatS0(Succ(xz200), Zero) -> Succ(xz200) 11.41/4.47 11.41/4.47 The set Q consists of the following terms: 11.41/4.47 11.41/4.47 new_primMinusNatS0(Succ(x0), Succ(x1)) 11.41/4.47 new_primMinusNatS0(Zero, Zero) 11.41/4.47 new_primMinusNatS2 11.41/4.47 new_primMinusNatS0(Succ(x0), Zero) 11.41/4.47 new_primMinusNatS1(x0) 11.41/4.47 new_primMinusNatS0(Zero, Succ(x0)) 11.41/4.47 11.41/4.47 We have to consider all minimal (P,Q,R)-chains. 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (24) QDPSizeChangeProof (EQUIVALENT) 11.41/4.47 We used the following order together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem. 11.41/4.47 11.41/4.47 Order:Polynomial interpretation [POLO]: 11.41/4.47 11.41/4.47 POL(Succ(x_1)) = 1 + x_1 11.41/4.47 POL(Zero) = 1 11.41/4.47 POL(new_primMinusNatS0(x_1, x_2)) = x_1 11.41/4.47 11.41/4.47 11.41/4.47 11.41/4.47 11.41/4.47 From the DPs we obtained the following set of size-change graphs: 11.41/4.47 *new_primDivNatS(Succ(Succ(xz30000)), Succ(xz31000)) -> new_primDivNatS0(xz30000, xz31000, xz30000, xz31000) (allowed arguments on rhs = {1, 2, 3, 4}) 11.41/4.47 The graph contains the following edges 1 > 1, 2 > 2, 1 > 3, 2 > 4 11.41/4.47 11.41/4.47 11.41/4.47 *new_primDivNatS0(xz20, xz21, Succ(xz220), Succ(xz230)) -> new_primDivNatS0(xz20, xz21, xz220, xz230) (allowed arguments on rhs = {1, 2, 3, 4}) 11.41/4.47 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 > 4 11.41/4.47 11.41/4.47 11.41/4.47 *new_primDivNatS0(xz20, xz21, Succ(xz220), Zero) -> new_primDivNatS(new_primMinusNatS0(xz20, xz21), Succ(xz21)) (allowed arguments on rhs = {1, 2}) 11.41/4.47 The graph contains the following edges 1 >= 1 11.41/4.47 11.41/4.47 11.41/4.47 *new_primDivNatS0(xz20, xz21, Zero, Zero) -> new_primDivNatS00(xz20, xz21) (allowed arguments on rhs = {1, 2}) 11.41/4.47 The graph contains the following edges 1 >= 1, 2 >= 2 11.41/4.47 11.41/4.47 11.41/4.47 *new_primDivNatS00(xz20, xz21) -> new_primDivNatS(new_primMinusNatS0(xz20, xz21), Succ(xz21)) (allowed arguments on rhs = {1, 2}) 11.41/4.47 The graph contains the following edges 1 >= 1 11.41/4.47 11.41/4.47 11.41/4.47 11.41/4.47 We oriented the following set of usable rules [AAECC05,FROCOS05]. 11.41/4.47 11.41/4.47 new_primMinusNatS0(Zero, Zero) -> Zero 11.41/4.47 new_primMinusNatS0(Zero, Succ(xz210)) -> Zero 11.41/4.47 new_primMinusNatS0(Succ(xz200), Zero) -> Succ(xz200) 11.41/4.47 new_primMinusNatS0(Succ(xz200), Succ(xz210)) -> new_primMinusNatS0(xz200, xz210) 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (25) 11.41/4.47 YES 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (26) 11.41/4.47 Obligation: 11.41/4.47 Q DP problem: 11.41/4.47 The TRS P consists of the following rules: 11.41/4.47 11.41/4.47 new_primMinusNatS(Succ(xz200), Succ(xz210)) -> new_primMinusNatS(xz200, xz210) 11.41/4.47 11.41/4.47 R is empty. 11.41/4.47 Q is empty. 11.41/4.47 We have to consider all minimal (P,Q,R)-chains. 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (27) QDPSizeChangeProof (EQUIVALENT) 11.41/4.47 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 11.41/4.47 11.41/4.47 From the DPs we obtained the following set of size-change graphs: 11.41/4.47 *new_primMinusNatS(Succ(xz200), Succ(xz210)) -> new_primMinusNatS(xz200, xz210) 11.41/4.47 The graph contains the following edges 1 > 1, 2 > 2 11.41/4.47 11.41/4.47 11.41/4.47 ---------------------------------------- 11.41/4.47 11.41/4.47 (28) 11.41/4.47 YES 11.50/4.52 EOF