10.36/4.51 YES 12.77/5.17 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 12.77/5.17 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 12.77/5.17 12.77/5.17 12.77/5.17 H-Termination with start terms of the given HASKELL could be proven: 12.77/5.17 12.77/5.17 (0) HASKELL 12.77/5.17 (1) LR [EQUIVALENT, 0 ms] 12.77/5.17 (2) HASKELL 12.77/5.17 (3) CR [EQUIVALENT, 0 ms] 12.77/5.17 (4) HASKELL 12.77/5.17 (5) BR [EQUIVALENT, 0 ms] 12.77/5.17 (6) HASKELL 12.77/5.17 (7) COR [EQUIVALENT, 19 ms] 12.77/5.17 (8) HASKELL 12.77/5.17 (9) LetRed [EQUIVALENT, 0 ms] 12.77/5.17 (10) HASKELL 12.77/5.17 (11) NumRed [SOUND, 0 ms] 12.77/5.17 (12) HASKELL 12.77/5.17 (13) Narrow [SOUND, 0 ms] 12.77/5.17 (14) QDP 12.77/5.17 (15) QDPSizeChangeProof [EQUIVALENT, 0 ms] 12.77/5.17 (16) YES 12.77/5.17 12.77/5.17 12.77/5.17 ---------------------------------------- 12.77/5.17 12.77/5.17 (0) 12.77/5.17 Obligation: 12.77/5.17 mainModule Main 12.77/5.17 module FiniteMap where { 12.77/5.17 import qualified Main; 12.77/5.17 import qualified Maybe; 12.77/5.17 import qualified Prelude; 12.77/5.17 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 12.77/5.17 12.77/5.17 instance (Eq a, Eq b) => Eq FiniteMap a b where { 12.77/5.17 } 12.77/5.17 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 12.77/5.17 addListToFM fm key_elt_pairs = addListToFM_C (\old new ->new) fm key_elt_pairs; 12.77/5.17 12.77/5.17 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 12.77/5.17 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 12.77/5.17 add fmap (key,elt) = addToFM_C combiner fmap key elt; 12.77/5.17 }; 12.77/5.17 12.77/5.17 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 12.77/5.17 addToFM_C combiner EmptyFM key elt = unitFM key elt; 12.77/5.17 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 12.77/5.17 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 12.77/5.17 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.77/5.17 12.77/5.17 emptyFM :: FiniteMap a b; 12.77/5.17 emptyFM = EmptyFM; 12.77/5.17 12.77/5.17 findMax :: FiniteMap a b -> (a,b); 12.77/5.17 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 12.77/5.17 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 12.77/5.17 12.77/5.17 findMin :: FiniteMap b a -> (b,a); 12.77/5.17 findMin (Branch key elt _ EmptyFM _) = (key,elt); 12.77/5.17 findMin (Branch key elt _ fm_l _) = findMin fm_l; 12.77/5.17 12.77/5.17 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.77/5.17 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 12.77/5.17 | size_r > sIZE_RATIO * size_l = case fm_R of { 12.77/5.17 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 12.77/5.17 | otherwise -> double_L fm_L fm_R; 12.77/5.17 } 12.77/5.17 | size_l > sIZE_RATIO * size_r = case fm_L of { 12.77/5.17 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 12.77/5.17 | otherwise -> double_R fm_L fm_R; 12.77/5.17 } 12.77/5.17 | otherwise = mkBranch 2 key elt fm_L fm_R where { 12.77/5.17 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.77/5.17 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.77/5.17 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.77/5.18 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.77/5.18 size_l = sizeFM fm_L; 12.77/5.18 size_r = sizeFM fm_R; 12.77/5.18 }; 12.77/5.18 12.77/5.18 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.77/5.18 mkBranch which key elt fm_l fm_r = let { 12.77/5.18 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.77/5.18 } in result where { 12.77/5.18 balance_ok = True; 12.77/5.18 left_ok = case fm_l of { 12.77/5.18 EmptyFM-> True; 12.77/5.18 Branch left_key _ _ _ _-> let { 12.77/5.18 biggest_left_key = fst (findMax fm_l); 12.77/5.18 } in biggest_left_key < key; 12.77/5.18 } ; 12.77/5.18 left_size = sizeFM fm_l; 12.77/5.18 right_ok = case fm_r of { 12.77/5.18 EmptyFM-> True; 12.77/5.18 Branch right_key _ _ _ _-> let { 12.77/5.18 smallest_right_key = fst (findMin fm_r); 12.77/5.18 } in key < smallest_right_key; 12.77/5.18 } ; 12.77/5.18 right_size = sizeFM fm_r; 12.77/5.18 unbox :: Int -> Int; 12.77/5.18 unbox x = x; 12.77/5.18 }; 12.77/5.18 12.77/5.18 sIZE_RATIO :: Int; 12.77/5.18 sIZE_RATIO = 5; 12.77/5.18 12.77/5.18 sizeFM :: FiniteMap a b -> Int; 12.77/5.18 sizeFM EmptyFM = 0; 12.77/5.18 sizeFM (Branch _ _ size _ _) = size; 12.77/5.18 12.77/5.18 unitFM :: b -> a -> FiniteMap b a; 12.77/5.18 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 12.77/5.18 12.77/5.18 } 12.77/5.18 module Maybe where { 12.77/5.18 import qualified FiniteMap; 12.77/5.18 import qualified Main; 12.77/5.18 import qualified Prelude; 12.77/5.18 } 12.77/5.18 module Main where { 12.77/5.18 import qualified FiniteMap; 12.77/5.18 import qualified Maybe; 12.77/5.18 import qualified Prelude; 12.77/5.18 } 12.77/5.18 12.77/5.18 ---------------------------------------- 12.77/5.18 12.77/5.18 (1) LR (EQUIVALENT) 12.77/5.18 Lambda Reductions: 12.77/5.18 The following Lambda expression 12.77/5.18 "\oldnew->new" 12.77/5.18 is transformed to 12.77/5.18 "addListToFM0 old new = new; 12.77/5.18 " 12.77/5.18 12.77/5.18 ---------------------------------------- 12.77/5.18 12.77/5.18 (2) 12.77/5.18 Obligation: 12.77/5.18 mainModule Main 12.77/5.18 module FiniteMap where { 12.77/5.18 import qualified Main; 12.77/5.18 import qualified Maybe; 12.77/5.18 import qualified Prelude; 12.77/5.18 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 12.77/5.18 12.77/5.18 instance (Eq a, Eq b) => Eq FiniteMap a b where { 12.77/5.18 } 12.77/5.18 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 12.77/5.18 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 12.77/5.18 12.77/5.18 addListToFM0 old new = new; 12.77/5.18 12.77/5.18 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 12.77/5.18 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 12.77/5.18 add fmap (key,elt) = addToFM_C combiner fmap key elt; 12.77/5.18 }; 12.77/5.18 12.77/5.18 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 12.77/5.18 addToFM_C combiner EmptyFM key elt = unitFM key elt; 12.77/5.18 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 12.77/5.18 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 12.77/5.18 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.77/5.18 12.77/5.18 emptyFM :: FiniteMap a b; 12.77/5.18 emptyFM = EmptyFM; 12.77/5.18 12.77/5.18 findMax :: FiniteMap b a -> (b,a); 12.77/5.18 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 12.77/5.18 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 12.77/5.18 12.77/5.18 findMin :: FiniteMap a b -> (a,b); 12.77/5.18 findMin (Branch key elt _ EmptyFM _) = (key,elt); 12.77/5.18 findMin (Branch key elt _ fm_l _) = findMin fm_l; 12.77/5.18 12.77/5.18 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.77/5.18 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 12.77/5.18 | size_r > sIZE_RATIO * size_l = case fm_R of { 12.77/5.18 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 12.77/5.18 | otherwise -> double_L fm_L fm_R; 12.77/5.18 } 12.77/5.18 | size_l > sIZE_RATIO * size_r = case fm_L of { 12.77/5.18 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 12.77/5.18 | otherwise -> double_R fm_L fm_R; 12.77/5.18 } 12.77/5.18 | otherwise = mkBranch 2 key elt fm_L fm_R where { 12.77/5.18 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.77/5.18 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.77/5.18 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.77/5.18 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.77/5.18 size_l = sizeFM fm_L; 12.77/5.18 size_r = sizeFM fm_R; 12.77/5.18 }; 12.77/5.18 12.77/5.18 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.77/5.18 mkBranch which key elt fm_l fm_r = let { 12.77/5.18 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.77/5.18 } in result where { 12.77/5.18 balance_ok = True; 12.77/5.18 left_ok = case fm_l of { 12.77/5.18 EmptyFM-> True; 12.77/5.18 Branch left_key _ _ _ _-> let { 12.77/5.18 biggest_left_key = fst (findMax fm_l); 12.77/5.18 } in biggest_left_key < key; 12.77/5.18 } ; 12.77/5.18 left_size = sizeFM fm_l; 12.77/5.18 right_ok = case fm_r of { 12.77/5.18 EmptyFM-> True; 12.77/5.18 Branch right_key _ _ _ _-> let { 12.77/5.18 smallest_right_key = fst (findMin fm_r); 12.77/5.18 } in key < smallest_right_key; 12.77/5.18 } ; 12.77/5.18 right_size = sizeFM fm_r; 12.77/5.18 unbox :: Int -> Int; 12.77/5.18 unbox x = x; 12.77/5.18 }; 12.77/5.18 12.77/5.18 sIZE_RATIO :: Int; 12.77/5.18 sIZE_RATIO = 5; 12.77/5.18 12.77/5.18 sizeFM :: FiniteMap b a -> Int; 12.77/5.18 sizeFM EmptyFM = 0; 12.77/5.18 sizeFM (Branch _ _ size _ _) = size; 12.77/5.18 12.77/5.18 unitFM :: a -> b -> FiniteMap a b; 12.77/5.18 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 12.77/5.18 12.77/5.18 } 12.77/5.18 module Maybe where { 12.77/5.18 import qualified FiniteMap; 12.77/5.18 import qualified Main; 12.77/5.18 import qualified Prelude; 12.77/5.18 } 12.77/5.18 module Main where { 12.77/5.18 import qualified FiniteMap; 12.77/5.18 import qualified Maybe; 12.77/5.18 import qualified Prelude; 12.77/5.18 } 12.77/5.18 12.77/5.18 ---------------------------------------- 12.77/5.18 12.77/5.18 (3) CR (EQUIVALENT) 12.77/5.18 Case Reductions: 12.77/5.18 The following Case expression 12.77/5.18 "case fm_r of { 12.77/5.18 EmptyFM -> True; 12.77/5.18 Branch right_key _ _ _ _ -> let { 12.77/5.18 smallest_right_key = fst (findMin fm_r); 12.77/5.18 } in key < smallest_right_key} 12.77/5.18 " 12.77/5.18 is transformed to 12.77/5.18 "right_ok0 fm_r key EmptyFM = True; 12.77/5.18 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 12.77/5.18 smallest_right_key = fst (findMin fm_r); 12.77/5.18 } in key < smallest_right_key; 12.77/5.18 " 12.77/5.18 The following Case expression 12.77/5.18 "case fm_l of { 12.77/5.18 EmptyFM -> True; 12.77/5.18 Branch left_key _ _ _ _ -> let { 12.77/5.18 biggest_left_key = fst (findMax fm_l); 12.77/5.18 } in biggest_left_key < key} 12.77/5.18 " 12.77/5.18 is transformed to 12.77/5.18 "left_ok0 fm_l key EmptyFM = True; 12.77/5.18 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 12.77/5.18 biggest_left_key = fst (findMax fm_l); 12.77/5.18 } in biggest_left_key < key; 12.77/5.18 " 12.77/5.18 The following Case expression 12.77/5.18 "case fm_R of { 12.77/5.18 Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} 12.77/5.18 " 12.77/5.18 is transformed to 12.77/5.18 "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 12.77/5.18 " 12.77/5.18 The following Case expression 12.77/5.18 "case fm_L of { 12.77/5.18 Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} 12.77/5.18 " 12.77/5.18 is transformed to 12.77/5.18 "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 12.77/5.18 " 12.77/5.18 12.77/5.18 ---------------------------------------- 12.77/5.18 12.77/5.18 (4) 12.77/5.18 Obligation: 12.77/5.18 mainModule Main 12.77/5.18 module FiniteMap where { 12.77/5.18 import qualified Main; 12.77/5.18 import qualified Maybe; 12.77/5.18 import qualified Prelude; 12.77/5.18 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 12.77/5.18 12.77/5.18 instance (Eq a, Eq b) => Eq FiniteMap b a where { 12.77/5.18 } 12.77/5.18 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 12.77/5.18 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 12.77/5.18 12.77/5.18 addListToFM0 old new = new; 12.77/5.18 12.77/5.18 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 12.77/5.18 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 12.77/5.18 add fmap (key,elt) = addToFM_C combiner fmap key elt; 12.77/5.18 }; 12.77/5.18 12.77/5.18 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 12.77/5.18 addToFM_C combiner EmptyFM key elt = unitFM key elt; 12.77/5.18 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 12.77/5.18 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 12.77/5.18 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.77/5.18 12.77/5.18 emptyFM :: FiniteMap a b; 12.77/5.18 emptyFM = EmptyFM; 12.77/5.18 12.77/5.18 findMax :: FiniteMap a b -> (a,b); 12.77/5.18 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 12.77/5.18 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 12.77/5.18 12.77/5.18 findMin :: FiniteMap a b -> (a,b); 12.77/5.18 findMin (Branch key elt _ EmptyFM _) = (key,elt); 12.77/5.18 findMin (Branch key elt _ fm_l _) = findMin fm_l; 12.77/5.18 12.77/5.18 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.77/5.18 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 12.77/5.18 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 12.77/5.18 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 12.77/5.18 | otherwise = mkBranch 2 key elt fm_L fm_R where { 12.77/5.18 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.77/5.18 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.77/5.18 mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 12.77/5.18 | otherwise = double_L fm_L fm_R; 12.77/5.18 mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 12.77/5.18 | otherwise = double_R fm_L fm_R; 12.77/5.18 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.77/5.18 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 12.77/5.18 size_l = sizeFM fm_L; 12.77/5.18 size_r = sizeFM fm_R; 12.77/5.18 }; 12.77/5.18 12.77/5.18 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 12.77/5.18 mkBranch which key elt fm_l fm_r = let { 12.77/5.18 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 12.77/5.18 } in result where { 12.77/5.18 balance_ok = True; 12.77/5.18 left_ok = left_ok0 fm_l key fm_l; 12.77/5.18 left_ok0 fm_l key EmptyFM = True; 12.77/5.18 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 12.77/5.18 biggest_left_key = fst (findMax fm_l); 12.77/5.18 } in biggest_left_key < key; 12.77/5.18 left_size = sizeFM fm_l; 12.77/5.18 right_ok = right_ok0 fm_r key fm_r; 12.77/5.18 right_ok0 fm_r key EmptyFM = True; 12.77/5.18 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 12.77/5.18 smallest_right_key = fst (findMin fm_r); 12.77/5.18 } in key < smallest_right_key; 12.77/5.18 right_size = sizeFM fm_r; 12.77/5.18 unbox :: Int -> Int; 12.77/5.18 unbox x = x; 12.77/5.18 }; 12.77/5.18 12.77/5.18 sIZE_RATIO :: Int; 12.77/5.18 sIZE_RATIO = 5; 12.77/5.18 12.77/5.18 sizeFM :: FiniteMap b a -> Int; 12.77/5.18 sizeFM EmptyFM = 0; 12.77/5.18 sizeFM (Branch _ _ size _ _) = size; 12.77/5.18 12.77/5.18 unitFM :: a -> b -> FiniteMap a b; 12.77/5.18 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 12.77/5.18 12.77/5.18 } 12.77/5.18 module Maybe where { 12.77/5.18 import qualified FiniteMap; 12.77/5.18 import qualified Main; 12.77/5.18 import qualified Prelude; 12.77/5.18 } 12.77/5.18 module Main where { 12.77/5.18 import qualified FiniteMap; 12.77/5.18 import qualified Maybe; 12.77/5.18 import qualified Prelude; 12.77/5.18 } 12.77/5.18 12.77/5.18 ---------------------------------------- 12.77/5.18 12.77/5.18 (5) BR (EQUIVALENT) 12.77/5.18 Replaced joker patterns by fresh variables and removed binding patterns. 12.77/5.18 ---------------------------------------- 12.77/5.18 12.77/5.18 (6) 12.77/5.18 Obligation: 12.77/5.18 mainModule Main 12.77/5.18 module FiniteMap where { 12.77/5.18 import qualified Main; 12.77/5.18 import qualified Maybe; 12.77/5.18 import qualified Prelude; 12.77/5.18 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 12.77/5.18 12.77/5.18 instance (Eq a, Eq b) => Eq FiniteMap b a where { 12.77/5.18 } 12.77/5.18 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 12.77/5.18 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 12.77/5.18 12.77/5.18 addListToFM0 old new = new; 12.77/5.18 12.77/5.18 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 12.77/5.18 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 12.77/5.18 add fmap (key,elt) = addToFM_C combiner fmap key elt; 12.77/5.18 }; 12.77/5.18 12.77/5.18 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 12.77/5.18 addToFM_C combiner EmptyFM key elt = unitFM key elt; 12.77/5.18 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 12.77/5.18 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 12.77/5.18 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 12.77/5.18 12.77/5.18 emptyFM :: FiniteMap a b; 12.77/5.18 emptyFM = EmptyFM; 12.77/5.18 12.77/5.18 findMax :: FiniteMap a b -> (a,b); 12.77/5.18 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 12.77/5.18 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 12.77/5.18 12.77/5.18 findMin :: FiniteMap b a -> (b,a); 12.77/5.18 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 12.77/5.18 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 12.77/5.18 12.77/5.18 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 12.77/5.18 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 12.77/5.18 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 12.77/5.18 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 12.77/5.18 | otherwise = mkBranch 2 key elt fm_L fm_R where { 12.77/5.18 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 12.77/5.18 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 12.77/5.18 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 12.77/5.18 | otherwise = double_L fm_L fm_R; 12.77/5.18 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 12.77/5.18 | otherwise = double_R fm_L fm_R; 12.77/5.18 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 12.77/5.18 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.17/5.32 size_l = sizeFM fm_L; 13.17/5.32 size_r = sizeFM fm_R; 13.17/5.32 }; 13.17/5.32 13.17/5.32 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.17/5.32 mkBranch which key elt fm_l fm_r = let { 13.17/5.32 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.17/5.32 } in result where { 13.17/5.32 balance_ok = True; 13.17/5.32 left_ok = left_ok0 fm_l key fm_l; 13.17/5.32 left_ok0 fm_l key EmptyFM = True; 13.17/5.32 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 13.17/5.32 biggest_left_key = fst (findMax fm_l); 13.17/5.32 } in biggest_left_key < key; 13.17/5.32 left_size = sizeFM fm_l; 13.17/5.32 right_ok = right_ok0 fm_r key fm_r; 13.17/5.32 right_ok0 fm_r key EmptyFM = True; 13.17/5.32 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 13.17/5.32 smallest_right_key = fst (findMin fm_r); 13.17/5.32 } in key < smallest_right_key; 13.17/5.32 right_size = sizeFM fm_r; 13.17/5.32 unbox :: Int -> Int; 13.17/5.32 unbox x = x; 13.17/5.32 }; 13.17/5.32 13.17/5.32 sIZE_RATIO :: Int; 13.17/5.32 sIZE_RATIO = 5; 13.17/5.32 13.17/5.32 sizeFM :: FiniteMap b a -> Int; 13.17/5.32 sizeFM EmptyFM = 0; 13.17/5.32 sizeFM (Branch vz wu size wv ww) = size; 13.17/5.32 13.17/5.32 unitFM :: a -> b -> FiniteMap a b; 13.17/5.32 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.17/5.32 13.17/5.32 } 13.17/5.32 module Maybe where { 13.17/5.32 import qualified FiniteMap; 13.17/5.32 import qualified Main; 13.17/5.32 import qualified Prelude; 13.17/5.32 } 13.17/5.32 module Main where { 13.17/5.32 import qualified FiniteMap; 13.17/5.32 import qualified Maybe; 13.17/5.32 import qualified Prelude; 13.17/5.32 } 13.17/5.32 13.17/5.32 ---------------------------------------- 13.17/5.32 13.17/5.32 (7) COR (EQUIVALENT) 13.17/5.32 Cond Reductions: 13.17/5.32 The following Function with conditions 13.17/5.32 "undefined |Falseundefined; 13.17/5.32 " 13.17/5.32 is transformed to 13.17/5.32 "undefined = undefined1; 13.17/5.32 " 13.17/5.32 "undefined0 True = undefined; 13.17/5.32 " 13.17/5.32 "undefined1 = undefined0 False; 13.17/5.32 " 13.17/5.32 The following Function with conditions 13.17/5.32 "addToFM_C combiner EmptyFM key elt = unitFM key elt; 13.17/5.32 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; 13.17/5.32 " 13.17/5.32 is transformed to 13.17/5.32 "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 13.17/5.32 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 13.17/5.32 " 13.17/5.32 "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 13.17/5.32 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 13.17/5.32 " 13.17/5.32 "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.17/5.32 " 13.17/5.32 "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 13.17/5.32 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 13.17/5.32 " 13.17/5.32 "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 13.17/5.32 " 13.17/5.32 "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 13.17/5.32 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 13.17/5.32 " 13.17/5.32 The following Function with conditions 13.17/5.32 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 13.17/5.32 " 13.17/5.32 is transformed to 13.17/5.32 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.17/5.32 " 13.17/5.32 "mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 13.17/5.32 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.17/5.32 " 13.17/5.32 "mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 13.17/5.32 " 13.17/5.32 "mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.17/5.32 " 13.17/5.32 The following Function with conditions 13.17/5.32 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 13.17/5.32 " 13.17/5.32 is transformed to 13.17/5.32 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.17/5.32 " 13.17/5.32 "mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 13.17/5.32 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.17/5.32 " 13.17/5.32 "mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 13.17/5.32 " 13.17/5.32 "mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.17/5.32 " 13.17/5.32 The following Function with conditions 13.17/5.32 "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { 13.17/5.32 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.17/5.32 ; 13.17/5.32 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.17/5.32 ; 13.17/5.32 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 13.17/5.32 ; 13.17/5.32 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 13.17/5.32 ; 13.17/5.32 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.17/5.32 ; 13.17/5.32 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.17/5.32 ; 13.17/5.32 size_l = sizeFM fm_L; 13.17/5.32 ; 13.17/5.32 size_r = sizeFM fm_R; 13.17/5.32 } 13.17/5.32 ; 13.17/5.32 " 13.17/5.32 is transformed to 13.17/5.32 "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 13.17/5.32 " 13.17/5.32 "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 13.17/5.32 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.17/5.32 ; 13.17/5.32 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.17/5.32 ; 13.17/5.32 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.17/5.32 ; 13.17/5.32 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 13.17/5.32 ; 13.17/5.32 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 13.17/5.32 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.17/5.32 ; 13.17/5.32 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.17/5.32 ; 13.17/5.32 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.17/5.32 ; 13.17/5.32 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 13.17/5.32 ; 13.17/5.32 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 13.17/5.32 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.17/5.32 ; 13.17/5.32 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.17/5.32 ; 13.17/5.32 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.17/5.32 ; 13.17/5.32 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 13.17/5.32 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 13.17/5.32 ; 13.17/5.32 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 13.17/5.32 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 13.17/5.32 ; 13.17/5.32 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.17/5.32 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 13.17/5.32 ; 13.17/5.32 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.17/5.32 ; 13.17/5.32 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.17/5.32 ; 13.17/5.32 size_l = sizeFM fm_L; 13.17/5.32 ; 13.17/5.32 size_r = sizeFM fm_R; 13.71/5.43 } 13.71/5.43 ; 13.71/5.43 " 13.71/5.43 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (8) 13.71/5.43 Obligation: 13.71/5.43 mainModule Main 13.71/5.43 module FiniteMap where { 13.71/5.43 import qualified Main; 13.71/5.43 import qualified Maybe; 13.71/5.43 import qualified Prelude; 13.71/5.43 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 13.71/5.43 13.71/5.43 instance (Eq a, Eq b) => Eq FiniteMap b a where { 13.71/5.43 } 13.71/5.43 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 13.71/5.43 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 13.71/5.43 13.71/5.43 addListToFM0 old new = new; 13.71/5.43 13.71/5.43 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 13.71/5.43 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 13.71/5.43 add fmap (key,elt) = addToFM_C combiner fmap key elt; 13.71/5.43 }; 13.71/5.43 13.71/5.43 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 13.71/5.43 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 13.71/5.43 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 13.71/5.43 13.71/5.43 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.71/5.43 13.71/5.43 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 13.71/5.43 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 13.71/5.43 13.71/5.43 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 13.71/5.43 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 13.71/5.43 13.71/5.43 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 13.71/5.43 13.71/5.43 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 13.71/5.43 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 13.71/5.43 13.71/5.43 emptyFM :: FiniteMap a b; 13.71/5.43 emptyFM = EmptyFM; 13.71/5.43 13.71/5.43 findMax :: FiniteMap b a -> (b,a); 13.71/5.43 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 13.71/5.43 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 13.71/5.43 13.71/5.43 findMin :: FiniteMap b a -> (b,a); 13.71/5.43 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 13.71/5.43 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 13.71/5.43 13.71/5.43 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 13.71/5.43 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 13.71/5.43 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.71/5.43 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.71/5.43 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.71/5.43 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 13.71/5.43 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 13.71/5.43 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.71/5.43 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.71/5.43 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.71/5.43 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 13.71/5.43 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 13.71/5.43 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.71/5.43 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.71/5.43 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.71/5.43 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 13.71/5.43 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 13.71/5.43 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 13.71/5.43 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 13.71/5.43 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.71/5.43 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 13.71/5.43 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.71/5.43 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.71/5.43 size_l = sizeFM fm_L; 13.71/5.43 size_r = sizeFM fm_R; 13.71/5.43 }; 13.71/5.43 13.71/5.43 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.71/5.43 mkBranch which key elt fm_l fm_r = let { 13.71/5.43 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.71/5.43 } in result where { 13.71/5.43 balance_ok = True; 13.71/5.43 left_ok = left_ok0 fm_l key fm_l; 13.71/5.43 left_ok0 fm_l key EmptyFM = True; 13.71/5.43 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 13.71/5.43 biggest_left_key = fst (findMax fm_l); 13.71/5.43 } in biggest_left_key < key; 13.71/5.43 left_size = sizeFM fm_l; 13.71/5.43 right_ok = right_ok0 fm_r key fm_r; 13.71/5.43 right_ok0 fm_r key EmptyFM = True; 13.71/5.43 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 13.71/5.43 smallest_right_key = fst (findMin fm_r); 13.71/5.43 } in key < smallest_right_key; 13.71/5.43 right_size = sizeFM fm_r; 13.71/5.43 unbox :: Int -> Int; 13.71/5.43 unbox x = x; 13.71/5.43 }; 13.71/5.43 13.71/5.43 sIZE_RATIO :: Int; 13.71/5.43 sIZE_RATIO = 5; 13.71/5.43 13.71/5.43 sizeFM :: FiniteMap a b -> Int; 13.71/5.43 sizeFM EmptyFM = 0; 13.71/5.43 sizeFM (Branch vz wu size wv ww) = size; 13.71/5.43 13.71/5.43 unitFM :: a -> b -> FiniteMap a b; 13.71/5.43 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.71/5.43 13.71/5.43 } 13.71/5.43 module Maybe where { 13.71/5.43 import qualified FiniteMap; 13.71/5.43 import qualified Main; 13.71/5.43 import qualified Prelude; 13.71/5.43 } 13.71/5.43 module Main where { 13.71/5.43 import qualified FiniteMap; 13.71/5.43 import qualified Maybe; 13.71/5.43 import qualified Prelude; 13.71/5.43 } 13.71/5.43 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (9) LetRed (EQUIVALENT) 13.71/5.43 Let/Where Reductions: 13.71/5.43 The bindings of the following Let/Where expression 13.71/5.43 "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 13.71/5.43 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.71/5.43 ; 13.71/5.43 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 13.71/5.43 ; 13.71/5.43 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.71/5.43 ; 13.71/5.43 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 13.71/5.43 ; 13.71/5.43 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 13.71/5.43 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.71/5.43 ; 13.71/5.43 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.71/5.43 ; 13.71/5.43 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.71/5.43 ; 13.71/5.43 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 13.71/5.43 ; 13.71/5.43 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 13.71/5.43 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.71/5.43 ; 13.71/5.43 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.71/5.43 ; 13.71/5.43 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.71/5.43 ; 13.71/5.43 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 13.71/5.43 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 13.71/5.43 ; 13.71/5.43 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 13.71/5.43 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 13.71/5.43 ; 13.71/5.43 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.71/5.43 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 13.71/5.43 ; 13.71/5.43 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 13.71/5.43 ; 13.71/5.43 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 13.71/5.43 ; 13.71/5.43 size_l = sizeFM fm_L; 13.71/5.43 ; 13.71/5.43 size_r = sizeFM fm_R; 13.71/5.43 } 13.71/5.43 " 13.71/5.43 are unpacked to the following functions on top level 13.71/5.43 "mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.71/5.43 " 13.71/5.43 "mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 13.71/5.43 " 13.71/5.43 "mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.71/5.43 " 13.71/5.43 "mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 " 13.71/5.43 "mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 13.71/5.43 " 13.71/5.43 "mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 13.71/5.43 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 13.71/5.43 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.71/5.43 " 13.71/5.43 "mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.71/5.43 " 13.71/5.43 The bindings of the following Let/Where expression 13.71/5.43 "foldl add fm key_elt_pairs where { 13.71/5.43 add fmap (key,elt) = addToFM_C combiner fmap key elt; 13.71/5.43 } 13.71/5.43 " 13.71/5.43 are unpacked to the following functions on top level 13.71/5.43 "addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 13.71/5.43 " 13.71/5.43 The bindings of the following Let/Where expression 13.71/5.43 "let { 13.71/5.43 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.71/5.43 } in result where { 13.71/5.43 balance_ok = True; 13.71/5.43 ; 13.71/5.43 left_ok = left_ok0 fm_l key fm_l; 13.71/5.43 ; 13.71/5.43 left_ok0 fm_l key EmptyFM = True; 13.71/5.43 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 13.71/5.43 biggest_left_key = fst (findMax fm_l); 13.71/5.43 } in biggest_left_key < key; 13.71/5.43 ; 13.71/5.43 left_size = sizeFM fm_l; 13.71/5.43 ; 13.71/5.43 right_ok = right_ok0 fm_r key fm_r; 13.71/5.43 ; 13.71/5.43 right_ok0 fm_r key EmptyFM = True; 13.71/5.43 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 13.71/5.43 smallest_right_key = fst (findMin fm_r); 13.71/5.43 } in key < smallest_right_key; 13.71/5.43 ; 13.71/5.43 right_size = sizeFM fm_r; 13.71/5.43 ; 13.71/5.43 unbox x = x; 13.71/5.43 } 13.71/5.43 " 13.71/5.43 are unpacked to the following functions on top level 13.71/5.43 "mkBranchLeft_size vxw vxx vxy = sizeFM vxw; 13.71/5.43 " 13.71/5.43 "mkBranchRight_size vxw vxx vxy = sizeFM vxx; 13.71/5.43 " 13.71/5.43 "mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 13.71/5.43 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 13.71/5.43 " 13.71/5.43 "mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 13.71/5.43 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 13.71/5.43 " 13.71/5.43 "mkBranchUnbox vxw vxx vxy x = x; 13.71/5.43 " 13.71/5.43 "mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxy vxw; 13.71/5.43 " 13.71/5.43 "mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxx vxy vxx; 13.71/5.43 " 13.71/5.43 "mkBranchBalance_ok vxw vxx vxy = True; 13.71/5.43 " 13.71/5.43 The bindings of the following Let/Where expression 13.71/5.43 "let { 13.71/5.43 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 13.71/5.43 } in result" 13.71/5.43 are unpacked to the following functions on top level 13.71/5.43 "mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vyw vxz (1 + mkBranchLeft_size vyv vyw vxz + mkBranchRight_size vyv vyw vxz)) vyv vyw; 13.71/5.43 " 13.71/5.43 The bindings of the following Let/Where expression 13.71/5.43 "let { 13.71/5.43 biggest_left_key = fst (findMax fm_l); 13.71/5.43 } in biggest_left_key < key" 13.71/5.43 are unpacked to the following functions on top level 13.71/5.43 "mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 13.71/5.43 " 13.71/5.43 The bindings of the following Let/Where expression 13.71/5.43 "let { 13.71/5.43 smallest_right_key = fst (findMin fm_r); 13.71/5.43 } in key < smallest_right_key" 13.71/5.43 are unpacked to the following functions on top level 13.71/5.43 "mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 13.71/5.43 " 13.71/5.43 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (10) 13.71/5.43 Obligation: 13.71/5.43 mainModule Main 13.71/5.43 module FiniteMap where { 13.71/5.43 import qualified Main; 13.71/5.43 import qualified Maybe; 13.71/5.43 import qualified Prelude; 13.71/5.43 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 13.71/5.43 13.71/5.43 instance (Eq a, Eq b) => Eq FiniteMap b a where { 13.71/5.43 } 13.71/5.43 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 13.71/5.43 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 13.71/5.43 13.71/5.43 addListToFM0 old new = new; 13.71/5.43 13.71/5.43 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 13.71/5.43 addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; 13.71/5.43 13.71/5.43 addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 13.71/5.43 13.71/5.43 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 13.71/5.43 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 13.71/5.43 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 13.71/5.43 13.71/5.43 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.71/5.43 13.71/5.43 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 13.71/5.43 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 13.71/5.43 13.71/5.43 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 13.71/5.43 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 13.71/5.43 13.71/5.43 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 13.71/5.43 13.71/5.43 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 13.71/5.43 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 13.71/5.43 13.71/5.43 emptyFM :: FiniteMap a b; 13.71/5.43 emptyFM = EmptyFM; 13.71/5.43 13.71/5.43 findMax :: FiniteMap a b -> (a,b); 13.71/5.43 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 13.71/5.43 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 13.71/5.43 13.71/5.43 findMin :: FiniteMap b a -> (b,a); 13.71/5.43 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 13.71/5.43 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 13.71/5.43 13.71/5.43 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 13.71/5.43 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < 2); 13.71/5.43 13.71/5.43 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 13.71/5.43 13.71/5.43 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 13.71/5.43 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 13.71/5.43 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 13.71/5.43 13.71/5.43 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 13.71/5.43 13.71/5.43 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 13.71/5.43 13.71/5.43 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 13.71/5.43 13.71/5.43 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 13.71/5.43 13.71/5.43 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.71/5.43 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 13.71/5.43 13.71/5.43 mkBranchBalance_ok vxw vxx vxy = True; 13.71/5.43 13.71/5.43 mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxy vxw; 13.71/5.43 13.71/5.43 mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 13.71/5.43 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 13.71/5.43 13.71/5.43 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 13.71/5.43 13.71/5.43 mkBranchLeft_size vxw vxx vxy = sizeFM vxw; 13.71/5.43 13.71/5.43 mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vyw vxz (1 + mkBranchLeft_size vyv vyw vxz + mkBranchRight_size vyv vyw vxz)) vyv vyw; 13.71/5.43 13.71/5.43 mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxx vxy vxx; 13.71/5.43 13.71/5.43 mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 13.71/5.43 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 13.71/5.43 13.71/5.43 mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 13.71/5.43 13.71/5.43 mkBranchRight_size vxw vxx vxy = sizeFM vxx; 13.71/5.43 13.71/5.43 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 13.71/5.43 mkBranchUnbox vxw vxx vxy x = x; 13.71/5.43 13.71/5.43 sIZE_RATIO :: Int; 13.71/5.43 sIZE_RATIO = 5; 13.71/5.43 13.71/5.43 sizeFM :: FiniteMap a b -> Int; 13.71/5.43 sizeFM EmptyFM = 0; 13.71/5.43 sizeFM (Branch vz wu size wv ww) = size; 13.71/5.43 13.71/5.43 unitFM :: b -> a -> FiniteMap b a; 13.71/5.43 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 13.71/5.43 13.71/5.43 } 13.71/5.43 module Maybe where { 13.71/5.43 import qualified FiniteMap; 13.71/5.43 import qualified Main; 13.71/5.43 import qualified Prelude; 13.71/5.43 } 13.71/5.43 module Main where { 13.71/5.43 import qualified FiniteMap; 13.71/5.43 import qualified Maybe; 13.71/5.43 import qualified Prelude; 13.71/5.43 } 13.71/5.43 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (11) NumRed (SOUND) 13.71/5.43 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (12) 13.71/5.43 Obligation: 13.71/5.43 mainModule Main 13.71/5.43 module FiniteMap where { 13.71/5.43 import qualified Main; 13.71/5.43 import qualified Maybe; 13.71/5.43 import qualified Prelude; 13.71/5.43 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 13.71/5.43 13.71/5.43 instance (Eq a, Eq b) => Eq FiniteMap a b where { 13.71/5.43 } 13.71/5.43 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 13.71/5.43 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 13.71/5.43 13.71/5.43 addListToFM0 old new = new; 13.71/5.43 13.71/5.43 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 13.71/5.43 addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; 13.71/5.43 13.71/5.43 addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 13.71/5.43 13.71/5.43 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 13.71/5.43 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 13.71/5.43 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 13.71/5.43 13.71/5.43 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 13.71/5.43 13.71/5.43 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 13.71/5.43 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 13.71/5.43 13.71/5.43 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 13.71/5.43 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 13.71/5.43 13.71/5.43 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 13.71/5.43 13.71/5.43 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 13.71/5.43 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 13.71/5.43 13.71/5.43 emptyFM :: FiniteMap a b; 13.71/5.43 emptyFM = EmptyFM; 13.71/5.43 13.71/5.43 findMax :: FiniteMap b a -> (b,a); 13.71/5.43 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 13.71/5.43 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 13.71/5.43 13.71/5.43 findMin :: FiniteMap a b -> (a,b); 13.71/5.43 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 13.71/5.43 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 13.71/5.43 13.71/5.43 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.71/5.43 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < Pos (Succ (Succ Zero))); 13.71/5.43 13.71/5.43 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) vwx vwy fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); 13.71/5.43 13.71/5.43 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) vwx vwy fm_lrr fm_r); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 13.71/5.43 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 13.71/5.43 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 13.71/5.43 13.71/5.43 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; 13.71/5.43 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 13.71/5.43 13.71/5.43 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) vwx vwy fm_l fm_rl) fm_rr; 13.71/5.43 13.71/5.43 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) vwx vwy fm_lr fm_r); 13.71/5.43 13.71/5.43 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 13.71/5.43 13.71/5.43 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 13.71/5.43 13.71/5.43 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 13.71/5.43 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_l fm_r; 13.71/5.43 13.71/5.43 mkBranchBalance_ok vxw vxx vxy = True; 13.71/5.43 13.71/5.43 mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxw vxy vxw; 13.71/5.43 13.71/5.43 mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 13.71/5.43 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 13.71/5.43 13.71/5.43 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 13.71/5.43 13.71/5.43 mkBranchLeft_size vxw vxx vxy = sizeFM vxw; 13.71/5.43 13.71/5.43 mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vyw vxz (Pos (Succ Zero) + mkBranchLeft_size vyv vyw vxz + mkBranchRight_size vyv vyw vxz)) vyv vyw; 13.71/5.43 13.71/5.43 mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxx vxy vxx; 13.71/5.43 13.71/5.43 mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 13.71/5.43 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 13.71/5.43 13.71/5.43 mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 13.71/5.43 13.71/5.43 mkBranchRight_size vxw vxx vxy = sizeFM vxx; 13.71/5.43 13.71/5.43 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> (FiniteMap a b) ( -> a (Int -> Int))); 13.71/5.43 mkBranchUnbox vxw vxx vxy x = x; 13.71/5.43 13.71/5.43 sIZE_RATIO :: Int; 13.71/5.43 sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); 13.71/5.43 13.71/5.43 sizeFM :: FiniteMap a b -> Int; 13.71/5.43 sizeFM EmptyFM = Pos Zero; 13.71/5.43 sizeFM (Branch vz wu size wv ww) = size; 13.71/5.43 13.71/5.43 unitFM :: a -> b -> FiniteMap a b; 13.71/5.43 unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; 13.71/5.43 13.71/5.43 } 13.71/5.43 module Maybe where { 13.71/5.43 import qualified FiniteMap; 13.71/5.43 import qualified Main; 13.71/5.43 import qualified Prelude; 13.71/5.43 } 13.71/5.43 module Main where { 13.71/5.43 import qualified FiniteMap; 13.71/5.43 import qualified Maybe; 13.71/5.43 import qualified Prelude; 13.71/5.43 } 13.71/5.43 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (13) Narrow (SOUND) 13.71/5.43 Haskell To QDPs 13.71/5.43 13.71/5.43 digraph dp_graph { 13.71/5.43 node [outthreshold=100, inthreshold=100];1[label="FiniteMap.addListToFM",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 13.71/5.43 3[label="FiniteMap.addListToFM vyz3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 13.71/5.43 4[label="FiniteMap.addListToFM vyz3 vyz4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 13.71/5.43 5[label="FiniteMap.addListToFM_C FiniteMap.addListToFM0 vyz3 vyz4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 13.71/5.43 6[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) vyz3 vyz4",fontsize=16,color="burlywood",shape="triangle"];39[label="vyz4/vyz40 : vyz41",fontsize=10,color="white",style="solid",shape="box"];6 -> 39[label="",style="solid", color="burlywood", weight=9]; 13.71/5.43 39 -> 7[label="",style="solid", color="burlywood", weight=3]; 13.71/5.43 40[label="vyz4/[]",fontsize=10,color="white",style="solid",shape="box"];6 -> 40[label="",style="solid", color="burlywood", weight=9]; 13.71/5.43 40 -> 8[label="",style="solid", color="burlywood", weight=3]; 13.71/5.43 7[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) vyz3 (vyz40 : vyz41)",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 13.71/5.43 8[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) vyz3 []",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 13.71/5.43 9 -> 6[label="",style="dashed", color="red", weight=0]; 13.71/5.43 9[label="foldl (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0) (FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 vyz3 vyz40) vyz41",fontsize=16,color="magenta"];9 -> 11[label="",style="dashed", color="magenta", weight=3]; 13.71/5.43 9 -> 12[label="",style="dashed", color="magenta", weight=3]; 13.71/5.43 10[label="vyz3",fontsize=16,color="green",shape="box"];11[label="FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 vyz3 vyz40",fontsize=16,color="burlywood",shape="box"];41[label="vyz40/(vyz400,vyz401)",fontsize=10,color="white",style="solid",shape="box"];11 -> 41[label="",style="solid", color="burlywood", weight=9]; 13.71/5.43 41 -> 13[label="",style="solid", color="burlywood", weight=3]; 13.71/5.43 12[label="vyz41",fontsize=16,color="green",shape="box"];13[label="FiniteMap.addListToFM_CAdd FiniteMap.addListToFM0 vyz3 (vyz400,vyz401)",fontsize=16,color="black",shape="box"];13 -> 14[label="",style="solid", color="black", weight=3]; 13.71/5.43 14[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 vyz3 vyz400 vyz401",fontsize=16,color="burlywood",shape="box"];42[label="vyz3/FiniteMap.EmptyFM",fontsize=10,color="white",style="solid",shape="box"];14 -> 42[label="",style="solid", color="burlywood", weight=9]; 13.71/5.43 42 -> 15[label="",style="solid", color="burlywood", weight=3]; 13.71/5.43 43[label="vyz3/FiniteMap.Branch vyz30 vyz31 vyz32 vyz33 vyz34",fontsize=10,color="white",style="solid",shape="box"];14 -> 43[label="",style="solid", color="burlywood", weight=9]; 13.71/5.43 43 -> 16[label="",style="solid", color="burlywood", weight=3]; 13.71/5.43 15[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 FiniteMap.EmptyFM vyz400 vyz401",fontsize=16,color="black",shape="box"];15 -> 17[label="",style="solid", color="black", weight=3]; 13.71/5.43 16[label="FiniteMap.addToFM_C FiniteMap.addListToFM0 (FiniteMap.Branch vyz30 vyz31 vyz32 vyz33 vyz34) vyz400 vyz401",fontsize=16,color="black",shape="box"];16 -> 18[label="",style="solid", color="black", weight=3]; 13.71/5.43 17[label="FiniteMap.addToFM_C4 FiniteMap.addListToFM0 FiniteMap.EmptyFM vyz400 vyz401",fontsize=16,color="black",shape="box"];17 -> 19[label="",style="solid", color="black", weight=3]; 13.71/5.43 18[label="FiniteMap.addToFM_C3 FiniteMap.addListToFM0 (FiniteMap.Branch vyz30 vyz31 vyz32 vyz33 vyz34) vyz400 vyz401",fontsize=16,color="black",shape="box"];18 -> 20[label="",style="solid", color="black", weight=3]; 13.71/5.43 19[label="FiniteMap.unitFM vyz400 vyz401",fontsize=16,color="black",shape="box"];19 -> 21[label="",style="solid", color="black", weight=3]; 13.71/5.43 20[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 vyz30 vyz31 vyz32 vyz33 vyz34 vyz400 vyz401 (vyz400 < vyz30)",fontsize=16,color="black",shape="box"];20 -> 22[label="",style="solid", color="black", weight=3]; 13.71/5.43 21[label="FiniteMap.Branch vyz400 vyz401 (Pos (Succ Zero)) FiniteMap.emptyFM FiniteMap.emptyFM",fontsize=16,color="green",shape="box"];21 -> 23[label="",style="dashed", color="green", weight=3]; 13.71/5.43 21 -> 24[label="",style="dashed", color="green", weight=3]; 13.71/5.43 22[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 vyz30 vyz31 vyz32 vyz33 vyz34 vyz400 vyz401 (compare vyz400 vyz30 == LT)",fontsize=16,color="burlywood",shape="box"];44[label="vyz400/()",fontsize=10,color="white",style="solid",shape="box"];22 -> 44[label="",style="solid", color="burlywood", weight=9]; 13.71/5.43 44 -> 25[label="",style="solid", color="burlywood", weight=3]; 13.71/5.43 23[label="FiniteMap.emptyFM",fontsize=16,color="black",shape="triangle"];23 -> 26[label="",style="solid", color="black", weight=3]; 13.71/5.43 24 -> 23[label="",style="dashed", color="red", weight=0]; 13.71/5.43 24[label="FiniteMap.emptyFM",fontsize=16,color="magenta"];25[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 vyz30 vyz31 vyz32 vyz33 vyz34 () vyz401 (compare () vyz30 == LT)",fontsize=16,color="burlywood",shape="box"];45[label="vyz30/()",fontsize=10,color="white",style="solid",shape="box"];25 -> 45[label="",style="solid", color="burlywood", weight=9]; 13.71/5.43 45 -> 27[label="",style="solid", color="burlywood", weight=3]; 13.71/5.43 26[label="FiniteMap.EmptyFM",fontsize=16,color="green",shape="box"];27[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 (compare () () == LT)",fontsize=16,color="black",shape="box"];27 -> 28[label="",style="solid", color="black", weight=3]; 13.71/5.43 28[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 (EQ == LT)",fontsize=16,color="black",shape="box"];28 -> 29[label="",style="solid", color="black", weight=3]; 13.71/5.43 29[label="FiniteMap.addToFM_C2 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 False",fontsize=16,color="black",shape="box"];29 -> 30[label="",style="solid", color="black", weight=3]; 13.71/5.43 30[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 (() > ())",fontsize=16,color="black",shape="box"];30 -> 31[label="",style="solid", color="black", weight=3]; 13.71/5.43 31[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 (compare () () == GT)",fontsize=16,color="black",shape="box"];31 -> 32[label="",style="solid", color="black", weight=3]; 13.71/5.43 32[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 (EQ == GT)",fontsize=16,color="black",shape="box"];32 -> 33[label="",style="solid", color="black", weight=3]; 13.71/5.43 33[label="FiniteMap.addToFM_C1 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 False",fontsize=16,color="black",shape="box"];33 -> 34[label="",style="solid", color="black", weight=3]; 13.71/5.43 34[label="FiniteMap.addToFM_C0 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 otherwise",fontsize=16,color="black",shape="box"];34 -> 35[label="",style="solid", color="black", weight=3]; 13.71/5.43 35[label="FiniteMap.addToFM_C0 FiniteMap.addListToFM0 () vyz31 vyz32 vyz33 vyz34 () vyz401 True",fontsize=16,color="black",shape="box"];35 -> 36[label="",style="solid", color="black", weight=3]; 13.71/5.43 36[label="FiniteMap.Branch () (FiniteMap.addListToFM0 vyz31 vyz401) vyz32 vyz33 vyz34",fontsize=16,color="green",shape="box"];36 -> 37[label="",style="dashed", color="green", weight=3]; 13.71/5.43 37[label="FiniteMap.addListToFM0 vyz31 vyz401",fontsize=16,color="black",shape="box"];37 -> 38[label="",style="solid", color="black", weight=3]; 13.71/5.43 38[label="vyz401",fontsize=16,color="green",shape="box"];} 13.71/5.43 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (14) 13.71/5.43 Obligation: 13.71/5.43 Q DP problem: 13.71/5.43 The TRS P consists of the following rules: 13.71/5.43 13.71/5.43 new_foldl(vyz3, :(vyz40, vyz41), h) -> new_foldl(new_addListToFM_CAdd(vyz3, vyz40, h), vyz41, h) 13.71/5.43 13.71/5.43 The TRS R consists of the following rules: 13.71/5.43 13.71/5.43 new_addListToFM_CAdd(Branch(@0, vyz31, vyz32, vyz33, vyz34), @2(@0, vyz401), h) -> Branch(@0, vyz401, vyz32, vyz33, vyz34) 13.71/5.43 new_addListToFM_CAdd(EmptyFM, @2(vyz400, vyz401), h) -> Branch(vyz400, vyz401, Pos(Succ(Zero)), new_emptyFM(h), new_emptyFM(h)) 13.71/5.43 new_emptyFM(h) -> EmptyFM 13.71/5.43 13.71/5.43 The set Q consists of the following terms: 13.71/5.43 13.71/5.43 new_addListToFM_CAdd(Branch(@0, x0, x1, x2, x3), @2(@0, x4), x5) 13.71/5.43 new_addListToFM_CAdd(EmptyFM, @2(x0, x1), x2) 13.71/5.43 new_emptyFM(x0) 13.71/5.43 13.71/5.43 We have to consider all minimal (P,Q,R)-chains. 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (15) QDPSizeChangeProof (EQUIVALENT) 13.71/5.43 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 13.71/5.43 13.71/5.43 From the DPs we obtained the following set of size-change graphs: 13.71/5.43 *new_foldl(vyz3, :(vyz40, vyz41), h) -> new_foldl(new_addListToFM_CAdd(vyz3, vyz40, h), vyz41, h) 13.71/5.43 The graph contains the following edges 2 > 2, 3 >= 3 13.71/5.43 13.71/5.43 13.71/5.43 ---------------------------------------- 13.71/5.43 13.71/5.43 (16) 13.71/5.43 YES 13.86/5.47 EOF