109.13/79.60 MAYBE 111.62/80.32 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 111.62/80.32 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 111.62/80.32 111.62/80.32 111.62/80.32 H-Termination with start terms of the given HASKELL could not be shown: 111.62/80.32 111.62/80.32 (0) HASKELL 111.62/80.32 (1) LR [EQUIVALENT, 0 ms] 111.62/80.32 (2) HASKELL 111.62/80.32 (3) CR [EQUIVALENT, 0 ms] 111.62/80.32 (4) HASKELL 111.62/80.32 (5) BR [EQUIVALENT, 0 ms] 111.62/80.32 (6) HASKELL 111.62/80.32 (7) COR [EQUIVALENT, 21 ms] 111.62/80.32 (8) HASKELL 111.62/80.32 (9) LetRed [EQUIVALENT, 0 ms] 111.62/80.32 (10) HASKELL 111.62/80.32 (11) NumRed [SOUND, 0 ms] 111.62/80.32 (12) HASKELL 111.62/80.32 111.62/80.32 111.62/80.32 ---------------------------------------- 111.62/80.32 111.62/80.32 (0) 111.62/80.32 Obligation: 111.62/80.32 mainModule Main 111.62/80.32 module FiniteMap where { 111.62/80.32 import qualified Main; 111.62/80.32 import qualified Maybe; 111.62/80.32 import qualified Prelude; 111.62/80.32 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 111.62/80.32 111.62/80.32 instance (Eq a, Eq b) => Eq FiniteMap a b where { 111.62/80.32 } 111.62/80.32 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 111.62/80.32 addListToFM fm key_elt_pairs = addListToFM_C (\old new ->new) fm key_elt_pairs; 111.62/80.32 111.62/80.32 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 111.62/80.32 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 111.62/80.32 add fmap (key,elt) = addToFM_C combiner fmap key elt; 111.62/80.32 }; 111.62/80.32 111.62/80.32 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 111.62/80.32 addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.62/80.32 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 111.62/80.32 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 111.62/80.32 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.62/80.32 111.62/80.32 emptyFM :: FiniteMap a b; 111.62/80.32 emptyFM = EmptyFM; 111.62/80.32 111.62/80.32 findMax :: FiniteMap b a -> (b,a); 111.62/80.32 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 111.62/80.32 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 111.62/80.32 111.62/80.32 findMin :: FiniteMap b a -> (b,a); 111.62/80.32 findMin (Branch key elt _ EmptyFM _) = (key,elt); 111.62/80.32 findMin (Branch key elt _ fm_l _) = findMin fm_l; 111.62/80.32 111.62/80.32 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.62/80.32 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 111.62/80.32 | size_r > sIZE_RATIO * size_l = case fm_R of { 111.62/80.32 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 111.62/80.32 | otherwise -> double_L fm_L fm_R; 111.62/80.32 } 111.62/80.32 | size_l > sIZE_RATIO * size_r = case fm_L of { 111.62/80.32 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 111.62/80.32 | otherwise -> double_R fm_L fm_R; 111.62/80.32 } 111.62/80.32 | otherwise = mkBranch 2 key elt fm_L fm_R where { 111.62/80.32 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.62/80.32 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.62/80.32 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.62/80.32 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.62/80.32 size_l = sizeFM fm_L; 111.62/80.32 size_r = sizeFM fm_R; 111.62/80.32 }; 111.62/80.32 111.62/80.32 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 111.62/80.32 mkBranch which key elt fm_l fm_r = let { 111.62/80.32 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.62/80.32 } in result where { 111.62/80.32 balance_ok = True; 111.62/80.32 left_ok = case fm_l of { 111.62/80.32 EmptyFM-> True; 111.62/80.32 Branch left_key _ _ _ _-> let { 111.62/80.32 biggest_left_key = fst (findMax fm_l); 111.62/80.32 } in biggest_left_key < key; 111.62/80.32 } ; 111.62/80.32 left_size = sizeFM fm_l; 111.62/80.32 right_ok = case fm_r of { 111.62/80.32 EmptyFM-> True; 111.62/80.32 Branch right_key _ _ _ _-> let { 111.62/80.32 smallest_right_key = fst (findMin fm_r); 111.62/80.32 } in key < smallest_right_key; 111.62/80.32 } ; 111.62/80.32 right_size = sizeFM fm_r; 111.62/80.32 unbox :: Int -> Int; 111.62/80.32 unbox x = x; 111.62/80.32 }; 111.62/80.32 111.62/80.32 sIZE_RATIO :: Int; 111.62/80.32 sIZE_RATIO = 5; 111.62/80.32 111.62/80.32 sizeFM :: FiniteMap b a -> Int; 111.62/80.32 sizeFM EmptyFM = 0; 111.62/80.32 sizeFM (Branch _ _ size _ _) = size; 111.62/80.32 111.62/80.32 unitFM :: a -> b -> FiniteMap a b; 111.62/80.32 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.62/80.32 111.62/80.32 } 111.62/80.32 module Maybe where { 111.62/80.32 import qualified FiniteMap; 111.62/80.32 import qualified Main; 111.62/80.32 import qualified Prelude; 111.62/80.32 } 111.62/80.32 module Main where { 111.62/80.32 import qualified FiniteMap; 111.62/80.32 import qualified Maybe; 111.62/80.32 import qualified Prelude; 111.62/80.32 } 111.62/80.32 111.62/80.32 ---------------------------------------- 111.62/80.32 111.62/80.32 (1) LR (EQUIVALENT) 111.62/80.32 Lambda Reductions: 111.62/80.32 The following Lambda expression 111.62/80.32 "\oldnew->new" 111.62/80.32 is transformed to 111.62/80.32 "addListToFM0 old new = new; 111.62/80.32 " 111.62/80.32 111.62/80.32 ---------------------------------------- 111.62/80.32 111.62/80.32 (2) 111.62/80.32 Obligation: 111.62/80.32 mainModule Main 111.62/80.32 module FiniteMap where { 111.62/80.32 import qualified Main; 111.62/80.32 import qualified Maybe; 111.62/80.32 import qualified Prelude; 111.62/80.32 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 111.62/80.32 111.62/80.32 instance (Eq a, Eq b) => Eq FiniteMap a b where { 111.62/80.32 } 111.62/80.32 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 111.62/80.32 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 111.62/80.32 111.62/80.32 addListToFM0 old new = new; 111.62/80.32 111.62/80.32 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 111.62/80.32 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 111.62/80.32 add fmap (key,elt) = addToFM_C combiner fmap key elt; 111.62/80.32 }; 111.62/80.32 111.62/80.32 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 111.62/80.32 addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.62/80.32 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 111.62/80.32 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 111.62/80.32 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.62/80.32 111.62/80.32 emptyFM :: FiniteMap b a; 111.62/80.32 emptyFM = EmptyFM; 111.62/80.32 111.62/80.32 findMax :: FiniteMap b a -> (b,a); 111.62/80.32 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 111.62/80.32 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 111.62/80.32 111.62/80.32 findMin :: FiniteMap a b -> (a,b); 111.62/80.32 findMin (Branch key elt _ EmptyFM _) = (key,elt); 111.62/80.32 findMin (Branch key elt _ fm_l _) = findMin fm_l; 111.62/80.32 111.62/80.32 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.62/80.32 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 111.62/80.32 | size_r > sIZE_RATIO * size_l = case fm_R of { 111.62/80.32 Branch _ _ _ fm_rl fm_rr | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R 111.62/80.32 | otherwise -> double_L fm_L fm_R; 111.62/80.32 } 111.62/80.32 | size_l > sIZE_RATIO * size_r = case fm_L of { 111.62/80.32 Branch _ _ _ fm_ll fm_lr | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R 111.62/80.32 | otherwise -> double_R fm_L fm_R; 111.62/80.32 } 111.62/80.32 | otherwise = mkBranch 2 key elt fm_L fm_R where { 111.62/80.32 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.62/80.32 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.62/80.32 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.62/80.32 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.62/80.32 size_l = sizeFM fm_L; 111.62/80.32 size_r = sizeFM fm_R; 111.62/80.32 }; 111.62/80.32 111.62/80.32 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 111.62/80.32 mkBranch which key elt fm_l fm_r = let { 111.62/80.32 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.62/80.32 } in result where { 111.62/80.32 balance_ok = True; 111.62/80.32 left_ok = case fm_l of { 111.62/80.32 EmptyFM-> True; 111.62/80.32 Branch left_key _ _ _ _-> let { 111.62/80.32 biggest_left_key = fst (findMax fm_l); 111.62/80.32 } in biggest_left_key < key; 111.62/80.32 } ; 111.62/80.32 left_size = sizeFM fm_l; 111.62/80.32 right_ok = case fm_r of { 111.62/80.32 EmptyFM-> True; 111.62/80.32 Branch right_key _ _ _ _-> let { 111.62/80.32 smallest_right_key = fst (findMin fm_r); 111.62/80.32 } in key < smallest_right_key; 111.62/80.32 } ; 111.62/80.32 right_size = sizeFM fm_r; 111.62/80.32 unbox :: Int -> Int; 111.62/80.32 unbox x = x; 111.62/80.32 }; 111.62/80.32 111.62/80.32 sIZE_RATIO :: Int; 111.62/80.32 sIZE_RATIO = 5; 111.62/80.32 111.62/80.32 sizeFM :: FiniteMap a b -> Int; 111.62/80.32 sizeFM EmptyFM = 0; 111.62/80.32 sizeFM (Branch _ _ size _ _) = size; 111.62/80.32 111.62/80.32 unitFM :: a -> b -> FiniteMap a b; 111.62/80.32 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.62/80.32 111.62/80.32 } 111.62/80.32 module Maybe where { 111.62/80.32 import qualified FiniteMap; 111.62/80.32 import qualified Main; 111.62/80.32 import qualified Prelude; 111.62/80.32 } 111.62/80.32 module Main where { 111.62/80.32 import qualified FiniteMap; 111.62/80.32 import qualified Maybe; 111.62/80.32 import qualified Prelude; 111.62/80.32 } 111.62/80.32 111.62/80.32 ---------------------------------------- 111.98/80.44 111.98/80.44 (3) CR (EQUIVALENT) 111.98/80.44 Case Reductions: 111.98/80.44 The following Case expression 111.98/80.44 "case fm_r of { 111.98/80.44 EmptyFM -> True; 111.98/80.44 Branch right_key _ _ _ _ -> let { 111.98/80.44 smallest_right_key = fst (findMin fm_r); 111.98/80.44 } in key < smallest_right_key} 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "right_ok0 fm_r key EmptyFM = True; 111.98/80.44 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 111.98/80.44 smallest_right_key = fst (findMin fm_r); 111.98/80.44 } in key < smallest_right_key; 111.98/80.44 " 111.98/80.44 The following Case expression 111.98/80.44 "case fm_l of { 111.98/80.44 EmptyFM -> True; 111.98/80.44 Branch left_key _ _ _ _ -> let { 111.98/80.44 biggest_left_key = fst (findMax fm_l); 111.98/80.44 } in biggest_left_key < key} 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "left_ok0 fm_l key EmptyFM = True; 111.98/80.44 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 111.98/80.44 biggest_left_key = fst (findMax fm_l); 111.98/80.44 } in biggest_left_key < key; 111.98/80.44 " 111.98/80.44 The following Case expression 111.98/80.44 "case fm_R of { 111.98/80.44 Branch _ _ _ fm_rl fm_rr |sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R} 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 111.98/80.44 " 111.98/80.44 The following Case expression 111.98/80.44 "case fm_L of { 111.98/80.44 Branch _ _ _ fm_ll fm_lr |sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R} 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 111.98/80.44 " 111.98/80.44 111.98/80.44 ---------------------------------------- 111.98/80.44 111.98/80.44 (4) 111.98/80.44 Obligation: 111.98/80.44 mainModule Main 111.98/80.44 module FiniteMap where { 111.98/80.44 import qualified Main; 111.98/80.44 import qualified Maybe; 111.98/80.44 import qualified Prelude; 111.98/80.44 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 111.98/80.44 111.98/80.44 instance (Eq a, Eq b) => Eq FiniteMap a b where { 111.98/80.44 } 111.98/80.44 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 111.98/80.44 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 111.98/80.44 111.98/80.44 addListToFM0 old new = new; 111.98/80.44 111.98/80.44 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 111.98/80.44 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 111.98/80.44 add fmap (key,elt) = addToFM_C combiner fmap key elt; 111.98/80.44 }; 111.98/80.44 111.98/80.44 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 111.98/80.44 addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.98/80.44 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 111.98/80.44 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 111.98/80.44 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.98/80.44 111.98/80.44 emptyFM :: FiniteMap b a; 111.98/80.44 emptyFM = EmptyFM; 111.98/80.44 111.98/80.44 findMax :: FiniteMap b a -> (b,a); 111.98/80.44 findMax (Branch key elt _ _ EmptyFM) = (key,elt); 111.98/80.44 findMax (Branch key elt _ _ fm_r) = findMax fm_r; 111.98/80.44 111.98/80.44 findMin :: FiniteMap b a -> (b,a); 111.98/80.44 findMin (Branch key elt _ EmptyFM _) = (key,elt); 111.98/80.44 findMin (Branch key elt _ fm_l _) = findMin fm_l; 111.98/80.44 111.98/80.44 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.98/80.44 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 111.98/80.44 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 111.98/80.44 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 111.98/80.44 | otherwise = mkBranch 2 key elt fm_L fm_R where { 111.98/80.44 double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.98/80.44 double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.98/80.44 mkBalBranch0 fm_L fm_R (Branch _ _ _ fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 111.98/80.44 | otherwise = double_L fm_L fm_R; 111.98/80.44 mkBalBranch1 fm_L fm_R (Branch _ _ _ fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 111.98/80.44 | otherwise = double_R fm_L fm_R; 111.98/80.44 single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.98/80.44 single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.98/80.44 size_l = sizeFM fm_L; 111.98/80.44 size_r = sizeFM fm_R; 111.98/80.44 }; 111.98/80.44 111.98/80.44 mkBranch :: Ord b => Int -> b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.98/80.44 mkBranch which key elt fm_l fm_r = let { 111.98/80.44 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.98/80.44 } in result where { 111.98/80.44 balance_ok = True; 111.98/80.44 left_ok = left_ok0 fm_l key fm_l; 111.98/80.44 left_ok0 fm_l key EmptyFM = True; 111.98/80.44 left_ok0 fm_l key (Branch left_key _ _ _ _) = let { 111.98/80.44 biggest_left_key = fst (findMax fm_l); 111.98/80.44 } in biggest_left_key < key; 111.98/80.44 left_size = sizeFM fm_l; 111.98/80.44 right_ok = right_ok0 fm_r key fm_r; 111.98/80.44 right_ok0 fm_r key EmptyFM = True; 111.98/80.44 right_ok0 fm_r key (Branch right_key _ _ _ _) = let { 111.98/80.44 smallest_right_key = fst (findMin fm_r); 111.98/80.44 } in key < smallest_right_key; 111.98/80.44 right_size = sizeFM fm_r; 111.98/80.44 unbox :: Int -> Int; 111.98/80.44 unbox x = x; 111.98/80.44 }; 111.98/80.44 111.98/80.44 sIZE_RATIO :: Int; 111.98/80.44 sIZE_RATIO = 5; 111.98/80.44 111.98/80.44 sizeFM :: FiniteMap a b -> Int; 111.98/80.44 sizeFM EmptyFM = 0; 111.98/80.44 sizeFM (Branch _ _ size _ _) = size; 111.98/80.44 111.98/80.44 unitFM :: a -> b -> FiniteMap a b; 111.98/80.44 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.98/80.44 111.98/80.44 } 111.98/80.44 module Maybe where { 111.98/80.44 import qualified FiniteMap; 111.98/80.44 import qualified Main; 111.98/80.44 import qualified Prelude; 111.98/80.44 } 111.98/80.44 module Main where { 111.98/80.44 import qualified FiniteMap; 111.98/80.44 import qualified Maybe; 111.98/80.44 import qualified Prelude; 111.98/80.44 } 111.98/80.44 111.98/80.44 ---------------------------------------- 111.98/80.44 111.98/80.44 (5) BR (EQUIVALENT) 111.98/80.44 Replaced joker patterns by fresh variables and removed binding patterns. 111.98/80.44 ---------------------------------------- 111.98/80.44 111.98/80.44 (6) 111.98/80.44 Obligation: 111.98/80.44 mainModule Main 111.98/80.44 module FiniteMap where { 111.98/80.44 import qualified Main; 111.98/80.44 import qualified Maybe; 111.98/80.44 import qualified Prelude; 111.98/80.44 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 111.98/80.44 111.98/80.44 instance (Eq a, Eq b) => Eq FiniteMap a b where { 111.98/80.44 } 111.98/80.44 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 111.98/80.44 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 111.98/80.44 111.98/80.44 addListToFM0 old new = new; 111.98/80.44 111.98/80.44 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 111.98/80.44 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 111.98/80.44 add fmap (key,elt) = addToFM_C combiner fmap key elt; 111.98/80.44 }; 111.98/80.44 111.98/80.44 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 111.98/80.44 addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.98/80.44 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt | new_key < key = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r 111.98/80.44 | new_key > key = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) 111.98/80.44 | otherwise = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.98/80.44 111.98/80.44 emptyFM :: FiniteMap a b; 111.98/80.44 emptyFM = EmptyFM; 111.98/80.44 111.98/80.44 findMax :: FiniteMap b a -> (b,a); 111.98/80.44 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 111.98/80.44 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 111.98/80.44 111.98/80.44 findMin :: FiniteMap b a -> (b,a); 111.98/80.44 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 111.98/80.44 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 111.98/80.44 111.98/80.44 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 111.98/80.44 mkBalBranch key elt fm_L fm_R | size_l + size_r < 2 = mkBranch 1 key elt fm_L fm_R 111.98/80.44 | size_r > sIZE_RATIO * size_l = mkBalBranch0 fm_L fm_R fm_R 111.98/80.44 | size_l > sIZE_RATIO * size_r = mkBalBranch1 fm_L fm_R fm_L 111.98/80.44 | otherwise = mkBranch 2 key elt fm_L fm_R where { 111.98/80.44 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.98/80.44 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.98/80.44 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) | sizeFM fm_rl < 2 * sizeFM fm_rr = single_L fm_L fm_R 111.98/80.44 | otherwise = double_L fm_L fm_R; 111.98/80.44 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) | sizeFM fm_lr < 2 * sizeFM fm_ll = single_R fm_L fm_R 111.98/80.44 | otherwise = double_R fm_L fm_R; 111.98/80.44 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.98/80.44 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.98/80.44 size_l = sizeFM fm_L; 111.98/80.44 size_r = sizeFM fm_R; 111.98/80.44 }; 111.98/80.44 111.98/80.44 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 111.98/80.44 mkBranch which key elt fm_l fm_r = let { 111.98/80.44 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 111.98/80.44 } in result where { 111.98/80.44 balance_ok = True; 111.98/80.44 left_ok = left_ok0 fm_l key fm_l; 111.98/80.44 left_ok0 fm_l key EmptyFM = True; 111.98/80.44 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 111.98/80.44 biggest_left_key = fst (findMax fm_l); 111.98/80.44 } in biggest_left_key < key; 111.98/80.44 left_size = sizeFM fm_l; 111.98/80.44 right_ok = right_ok0 fm_r key fm_r; 111.98/80.44 right_ok0 fm_r key EmptyFM = True; 111.98/80.44 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 111.98/80.44 smallest_right_key = fst (findMin fm_r); 111.98/80.44 } in key < smallest_right_key; 111.98/80.44 right_size = sizeFM fm_r; 111.98/80.44 unbox :: Int -> Int; 111.98/80.44 unbox x = x; 111.98/80.44 }; 111.98/80.44 111.98/80.44 sIZE_RATIO :: Int; 111.98/80.44 sIZE_RATIO = 5; 111.98/80.44 111.98/80.44 sizeFM :: FiniteMap b a -> Int; 111.98/80.44 sizeFM EmptyFM = 0; 111.98/80.44 sizeFM (Branch vz wu size wv ww) = size; 111.98/80.44 111.98/80.44 unitFM :: b -> a -> FiniteMap b a; 111.98/80.44 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 111.98/80.44 111.98/80.44 } 111.98/80.44 module Maybe where { 111.98/80.44 import qualified FiniteMap; 111.98/80.44 import qualified Main; 111.98/80.44 import qualified Prelude; 111.98/80.44 } 111.98/80.44 module Main where { 111.98/80.44 import qualified FiniteMap; 111.98/80.44 import qualified Maybe; 111.98/80.44 import qualified Prelude; 111.98/80.44 } 111.98/80.44 111.98/80.44 ---------------------------------------- 111.98/80.44 111.98/80.44 (7) COR (EQUIVALENT) 111.98/80.44 Cond Reductions: 111.98/80.44 The following Function with conditions 111.98/80.44 "undefined |Falseundefined; 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "undefined = undefined1; 111.98/80.44 " 111.98/80.44 "undefined0 True = undefined; 111.98/80.44 " 111.98/80.44 "undefined1 = undefined0 False; 111.98/80.44 " 111.98/80.44 The following Function with conditions 111.98/80.44 "addToFM_C combiner EmptyFM key elt = unitFM key elt; 111.98/80.44 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt|new_key < keymkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r|new_key > keymkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt)|otherwiseBranch new_key (combiner elt new_elt) size fm_l fm_r; 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 111.98/80.44 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 111.98/80.44 " 111.98/80.44 "addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 111.98/80.44 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 111.98/80.44 " 111.98/80.44 "addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 111.98/80.44 " 111.98/80.44 "addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 111.98/80.44 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 111.98/80.44 " 111.98/80.44 "addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 111.98/80.44 " 111.98/80.44 "addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 111.98/80.44 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 111.98/80.44 " 111.98/80.44 The following Function with conditions 111.98/80.44 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.98/80.44 " 111.98/80.44 "mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 111.98/80.44 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.98/80.44 " 111.98/80.44 "mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 111.98/80.44 " 111.98/80.44 "mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 111.98/80.44 " 111.98/80.44 The following Function with conditions 111.98/80.44 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.98/80.44 " 111.98/80.44 "mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 111.98/80.44 " 111.98/80.44 "mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 111.98/80.44 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.98/80.44 " 111.98/80.44 "mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 111.98/80.44 " 111.98/80.44 The following Function with conditions 111.98/80.44 "mkBalBranch key elt fm_L fm_R|size_l + size_r < 2mkBranch 1 key elt fm_L fm_R|size_r > sIZE_RATIO * size_lmkBalBranch0 fm_L fm_R fm_R|size_l > sIZE_RATIO * size_rmkBalBranch1 fm_L fm_R fm_L|otherwisemkBranch 2 key elt fm_L fm_R where { 111.98/80.44 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.98/80.44 ; 111.98/80.44 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.98/80.44 ; 111.98/80.44 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr)|sizeFM fm_rl < 2 * sizeFM fm_rrsingle_L fm_L fm_R|otherwisedouble_L fm_L fm_R; 111.98/80.44 ; 111.98/80.44 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr)|sizeFM fm_lr < 2 * sizeFM fm_llsingle_R fm_L fm_R|otherwisedouble_R fm_L fm_R; 111.98/80.44 ; 111.98/80.44 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.98/80.44 ; 111.98/80.44 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.98/80.44 ; 111.98/80.44 size_l = sizeFM fm_L; 111.98/80.44 ; 111.98/80.44 size_r = sizeFM fm_R; 111.98/80.44 } 111.98/80.44 ; 111.98/80.44 " 111.98/80.44 is transformed to 111.98/80.44 "mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 111.98/80.44 " 111.98/80.44 "mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 111.98/80.44 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 111.98/80.44 ; 111.98/80.44 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 111.98/80.44 ; 111.98/80.44 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 111.98/80.44 ; 111.98/80.44 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 111.98/80.44 ; 111.98/80.44 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 111.98/80.44 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 111.98/80.44 ; 111.98/80.44 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 111.98/80.44 ; 111.98/80.44 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 111.98/80.44 ; 111.98/80.44 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 111.98/80.44 ; 111.98/80.44 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 111.98/80.44 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 111.98/80.44 ; 111.98/80.44 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 111.98/80.44 ; 111.98/80.44 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 111.98/80.44 ; 111.98/80.44 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 111.98/80.44 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 111.98/80.44 ; 111.98/80.44 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 111.98/80.44 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 111.98/80.44 ; 111.98/80.44 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 111.98/80.44 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 111.98/80.44 ; 111.98/80.44 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 111.98/80.44 ; 111.98/80.44 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 111.98/80.44 ; 111.98/80.44 size_l = sizeFM fm_L; 111.98/80.44 ; 111.98/80.44 size_r = sizeFM fm_R; 111.98/80.44 } 111.98/80.44 ; 111.98/80.44 " 111.98/80.44 111.98/80.44 ---------------------------------------- 111.98/80.44 111.98/80.44 (8) 111.98/80.44 Obligation: 112.36/80.50 mainModule Main 112.36/80.50 module FiniteMap where { 112.36/80.50 import qualified Main; 112.36/80.50 import qualified Maybe; 112.36/80.50 import qualified Prelude; 112.36/80.50 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 112.36/80.50 112.36/80.50 instance (Eq a, Eq b) => Eq FiniteMap b a where { 112.36/80.50 } 112.36/80.50 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 112.36/80.50 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 112.36/80.50 112.36/80.50 addListToFM0 old new = new; 112.36/80.50 112.36/80.50 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 112.36/80.50 addListToFM_C combiner fm key_elt_pairs = foldl add fm key_elt_pairs where { 112.36/80.50 add fmap (key,elt) = addToFM_C combiner fmap key elt; 112.36/80.50 }; 112.36/80.50 112.36/80.50 addToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> b -> a -> FiniteMap b a; 112.36/80.50 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 112.36/80.50 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 112.36/80.50 112.36/80.50 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 112.36/80.50 112.36/80.50 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 112.36/80.50 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 112.36/80.50 112.36/80.50 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 112.36/80.50 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 112.36/80.50 112.36/80.50 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 112.36/80.50 112.36/80.50 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 112.36/80.50 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 112.36/80.50 112.36/80.50 emptyFM :: FiniteMap a b; 112.36/80.50 emptyFM = EmptyFM; 112.36/80.50 112.36/80.50 findMax :: FiniteMap a b -> (a,b); 112.36/80.50 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 112.36/80.50 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 112.36/80.50 112.36/80.50 findMin :: FiniteMap b a -> (b,a); 112.36/80.50 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 112.36/80.50 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 112.36/80.50 112.36/80.50 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 112.36/80.50 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 112.36/80.50 112.36/80.50 mkBalBranch6 key elt fm_L fm_R = mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 112.36/80.50 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 112.36/80.50 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 112.36/80.50 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 112.36/80.50 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 112.36/80.50 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 112.36/80.50 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 112.36/80.50 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 112.36/80.50 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 112.36/80.50 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 112.36/80.50 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 112.36/80.50 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 112.36/80.50 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 112.36/80.50 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 112.36/80.50 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 112.36/80.50 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 112.36/80.50 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 112.36/80.50 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 112.36/80.50 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 112.36/80.50 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 112.36/80.50 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 112.36/80.50 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 112.36/80.50 size_l = sizeFM fm_L; 112.36/80.50 size_r = sizeFM fm_R; 112.36/80.50 }; 112.36/80.50 112.36/80.50 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 112.36/80.50 mkBranch which key elt fm_l fm_r = let { 112.36/80.50 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 112.36/80.50 } in result where { 112.36/80.50 balance_ok = True; 112.36/80.50 left_ok = left_ok0 fm_l key fm_l; 112.36/80.50 left_ok0 fm_l key EmptyFM = True; 112.36/80.50 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 112.36/80.50 biggest_left_key = fst (findMax fm_l); 112.36/80.50 } in biggest_left_key < key; 112.36/80.50 left_size = sizeFM fm_l; 112.36/80.50 right_ok = right_ok0 fm_r key fm_r; 112.36/80.50 right_ok0 fm_r key EmptyFM = True; 112.36/80.50 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 112.36/80.50 smallest_right_key = fst (findMin fm_r); 112.36/80.50 } in key < smallest_right_key; 112.36/80.50 right_size = sizeFM fm_r; 112.36/80.50 unbox :: Int -> Int; 112.36/80.50 unbox x = x; 112.36/80.50 }; 112.36/80.50 112.36/80.50 sIZE_RATIO :: Int; 112.36/80.50 sIZE_RATIO = 5; 112.36/80.50 112.36/80.50 sizeFM :: FiniteMap a b -> Int; 112.36/80.50 sizeFM EmptyFM = 0; 112.36/80.50 sizeFM (Branch vz wu size wv ww) = size; 112.36/80.50 112.36/80.50 unitFM :: a -> b -> FiniteMap a b; 112.36/80.50 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 112.36/80.50 112.36/80.50 } 112.36/80.50 module Maybe where { 112.36/80.50 import qualified FiniteMap; 112.36/80.50 import qualified Main; 112.36/80.50 import qualified Prelude; 112.36/80.50 } 112.36/80.50 module Main where { 112.36/80.50 import qualified FiniteMap; 112.36/80.50 import qualified Maybe; 112.36/80.50 import qualified Prelude; 112.36/80.50 } 112.36/80.50 112.36/80.50 ---------------------------------------- 112.36/80.50 112.36/80.50 (9) LetRed (EQUIVALENT) 112.36/80.50 Let/Where Reductions: 112.36/80.50 The bindings of the following Let/Where expression 112.36/80.50 "mkBalBranch5 key elt fm_L fm_R (size_l + size_r < 2) where { 112.36/80.50 double_L fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 112.36/80.50 ; 112.36/80.50 double_R (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 key elt fm_lrr fm_r); 112.36/80.50 ; 112.36/80.50 mkBalBranch0 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 112.36/80.50 ; 112.36/80.50 mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr True = double_L fm_L fm_R; 112.36/80.50 ; 112.36/80.50 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr True = single_L fm_L fm_R; 112.36/80.50 mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch00 fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 112.36/80.50 ; 112.36/80.50 mkBalBranch02 fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch01 fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 112.36/80.50 ; 112.36/80.50 mkBalBranch1 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 112.36/80.50 ; 112.36/80.50 mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr True = double_R fm_L fm_R; 112.36/80.50 ; 112.36/80.50 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr True = single_R fm_L fm_R; 112.36/80.50 mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch10 fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 112.36/80.50 ; 112.36/80.50 mkBalBranch12 fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch11 fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 112.36/80.50 ; 112.36/80.50 mkBalBranch2 key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 112.36/80.50 ; 112.36/80.50 mkBalBranch3 key elt fm_L fm_R True = mkBalBranch1 fm_L fm_R fm_L; 112.36/80.50 mkBalBranch3 key elt fm_L fm_R False = mkBalBranch2 key elt fm_L fm_R otherwise; 112.36/80.50 ; 112.36/80.50 mkBalBranch4 key elt fm_L fm_R True = mkBalBranch0 fm_L fm_R fm_R; 112.36/80.50 mkBalBranch4 key elt fm_L fm_R False = mkBalBranch3 key elt fm_L fm_R (size_l > sIZE_RATIO * size_r); 112.36/80.50 ; 112.36/80.50 mkBalBranch5 key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 112.36/80.50 mkBalBranch5 key elt fm_L fm_R False = mkBalBranch4 key elt fm_L fm_R (size_r > sIZE_RATIO * size_l); 112.36/80.50 ; 112.36/80.50 single_L fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr; 112.36/80.50 ; 112.36/80.50 single_R (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r); 112.46/80.55 ; 112.46/80.55 size_l = sizeFM fm_L; 112.46/80.55 ; 112.46/80.55 size_r = sizeFM fm_R; 112.46/80.55 } 112.46/80.55 " 112.46/80.55 are unpacked to the following functions on top level 112.46/80.55 "mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 112.46/80.55 " 112.46/80.55 "mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 112.46/80.55 " 112.46/80.55 "mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 112.46/80.55 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 112.46/80.55 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 112.46/80.55 " 112.46/80.55 "mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 112.46/80.55 " 112.46/80.55 "mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 112.46/80.55 " 112.46/80.55 "mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 112.46/80.55 " 112.46/80.55 "mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 " 112.46/80.55 "mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 112.46/80.55 " 112.46/80.55 The bindings of the following Let/Where expression 112.46/80.55 "foldl add fm key_elt_pairs where { 112.46/80.55 add fmap (key,elt) = addToFM_C combiner fmap key elt; 112.46/80.55 } 112.46/80.55 " 112.46/80.55 are unpacked to the following functions on top level 112.46/80.55 "addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 112.46/80.55 " 112.46/80.55 The bindings of the following Let/Where expression 112.46/80.55 "let { 112.46/80.55 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 112.46/80.55 } in result where { 112.46/80.55 balance_ok = True; 112.46/80.55 ; 112.46/80.55 left_ok = left_ok0 fm_l key fm_l; 112.46/80.55 ; 112.46/80.55 left_ok0 fm_l key EmptyFM = True; 112.46/80.55 left_ok0 fm_l key (Branch left_key xv xw xx xy) = let { 112.46/80.55 biggest_left_key = fst (findMax fm_l); 112.46/80.55 } in biggest_left_key < key; 112.46/80.55 ; 112.46/80.55 left_size = sizeFM fm_l; 112.46/80.55 ; 112.46/80.55 right_ok = right_ok0 fm_r key fm_r; 112.46/80.55 ; 112.46/80.55 right_ok0 fm_r key EmptyFM = True; 112.46/80.55 right_ok0 fm_r key (Branch right_key xz yu yv yw) = let { 112.46/80.55 smallest_right_key = fst (findMin fm_r); 112.46/80.55 } in key < smallest_right_key; 112.46/80.55 ; 112.46/80.55 right_size = sizeFM fm_r; 112.46/80.55 ; 112.46/80.55 unbox x = x; 112.46/80.55 } 112.46/80.55 " 112.46/80.55 are unpacked to the following functions on top level 112.46/80.55 "mkBranchRight_size vxw vxx vxy = sizeFM vxw; 112.46/80.55 " 112.46/80.55 "mkBranchBalance_ok vxw vxx vxy = True; 112.46/80.55 " 112.46/80.55 "mkBranchUnbox vxw vxx vxy x = x; 112.46/80.55 " 112.46/80.55 "mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxw vxx vxw; 112.46/80.55 " 112.46/80.55 "mkBranchLeft_size vxw vxx vxy = sizeFM vxy; 112.46/80.55 " 112.46/80.55 "mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxy vxx vxy; 112.46/80.55 " 112.46/80.55 "mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 112.46/80.55 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 112.46/80.55 " 112.46/80.55 "mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 112.46/80.55 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 112.46/80.55 " 112.46/80.55 The bindings of the following Let/Where expression 112.46/80.55 "let { 112.46/80.55 result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r; 112.46/80.55 } in result" 112.46/80.55 are unpacked to the following functions on top level 112.46/80.55 "mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vxz vyw (1 + mkBranchLeft_size vyv vxz vyw + mkBranchRight_size vyv vxz vyw)) vyw vyv; 112.46/80.55 " 112.46/80.55 The bindings of the following Let/Where expression 112.46/80.55 "let { 112.46/80.55 biggest_left_key = fst (findMax fm_l); 112.46/80.55 } in biggest_left_key < key" 112.46/80.55 are unpacked to the following functions on top level 112.46/80.55 "mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 112.46/80.55 " 112.46/80.55 The bindings of the following Let/Where expression 112.46/80.55 "let { 112.46/80.55 smallest_right_key = fst (findMin fm_r); 112.46/80.55 } in key < smallest_right_key" 112.46/80.55 are unpacked to the following functions on top level 112.46/80.55 "mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 112.46/80.55 " 112.46/80.55 112.46/80.55 ---------------------------------------- 112.46/80.55 112.46/80.55 (10) 112.46/80.55 Obligation: 112.46/80.55 mainModule Main 112.46/80.55 module FiniteMap where { 112.46/80.55 import qualified Main; 112.46/80.55 import qualified Maybe; 112.46/80.55 import qualified Prelude; 112.46/80.55 data FiniteMap b a = EmptyFM | Branch b a Int (FiniteMap b a) (FiniteMap b a) ; 112.46/80.55 112.46/80.55 instance (Eq a, Eq b) => Eq FiniteMap a b where { 112.46/80.55 } 112.46/80.55 addListToFM :: Ord a => FiniteMap a b -> [(a,b)] -> FiniteMap a b; 112.46/80.55 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 112.46/80.55 112.46/80.55 addListToFM0 old new = new; 112.46/80.55 112.46/80.55 addListToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> [(a,b)] -> FiniteMap a b; 112.46/80.55 addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; 112.46/80.55 112.46/80.55 addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 112.46/80.55 112.46/80.55 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 112.46/80.55 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 112.46/80.55 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 112.46/80.55 112.46/80.55 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 112.46/80.55 112.46/80.55 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 112.46/80.55 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 112.46/80.55 112.46/80.55 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 112.46/80.55 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 112.46/80.55 112.46/80.55 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 112.46/80.55 112.46/80.55 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 112.46/80.55 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 112.46/80.55 112.46/80.55 emptyFM :: FiniteMap b a; 112.46/80.55 emptyFM = EmptyFM; 112.46/80.55 112.46/80.55 findMax :: FiniteMap b a -> (b,a); 112.46/80.55 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 112.46/80.55 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 112.46/80.55 112.46/80.55 findMin :: FiniteMap a b -> (a,b); 112.46/80.55 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 112.46/80.55 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 112.46/80.55 112.46/80.55 mkBalBranch :: Ord b => b -> a -> FiniteMap b a -> FiniteMap b a -> FiniteMap b a; 112.46/80.55 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 112.46/80.55 112.46/80.55 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < 2); 112.46/80.55 112.46/80.55 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch 5 key_rl elt_rl (mkBranch 6 vwx vwy fm_l fm_rll) (mkBranch 7 key_r elt_r fm_rlr fm_rr); 112.46/80.55 112.46/80.55 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl) (mkBranch 12 vwx vwy fm_lrr fm_r); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < 2 * sizeFM fm_rr); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < 2 * sizeFM fm_ll); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 2 key elt fm_L fm_R; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 112.46/80.55 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 112.46/80.55 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch 1 key elt fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 112.46/80.55 112.46/80.55 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch 3 key_r elt_r (mkBranch 4 vwx vwy fm_l fm_rl) fm_rr; 112.46/80.55 112.46/80.55 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch 8 key_l elt_l fm_ll (mkBranch 9 vwx vwy fm_lr fm_r); 112.46/80.55 112.46/80.55 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 112.46/80.55 112.46/80.55 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 112.46/80.55 112.46/80.55 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 112.46/80.55 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_r fm_l; 112.46/80.55 112.46/80.55 mkBranchBalance_ok vxw vxx vxy = True; 112.46/80.55 112.46/80.55 mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxy vxx vxy; 112.46/80.55 112.46/80.55 mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 112.46/80.55 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 112.46/80.55 112.46/80.55 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 112.46/80.55 112.46/80.55 mkBranchLeft_size vxw vxx vxy = sizeFM vxy; 112.46/80.55 112.46/80.55 mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vxz vyw (1 + mkBranchLeft_size vyv vxz vyw + mkBranchRight_size vyv vxz vyw)) vyw vyv; 112.46/80.55 112.46/80.55 mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxw vxx vxw; 112.46/80.55 112.46/80.55 mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 112.46/80.55 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 112.46/80.55 112.46/80.55 mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 112.46/80.55 112.46/80.55 mkBranchRight_size vxw vxx vxy = sizeFM vxw; 112.46/80.55 112.46/80.55 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); 112.46/80.55 mkBranchUnbox vxw vxx vxy x = x; 112.46/80.55 112.46/80.55 sIZE_RATIO :: Int; 112.46/80.55 sIZE_RATIO = 5; 112.46/80.55 112.46/80.55 sizeFM :: FiniteMap b a -> Int; 112.46/80.55 sizeFM EmptyFM = 0; 112.46/80.55 sizeFM (Branch vz wu size wv ww) = size; 112.46/80.55 112.46/80.55 unitFM :: a -> b -> FiniteMap a b; 112.46/80.55 unitFM key elt = Branch key elt 1 emptyFM emptyFM; 112.46/80.55 112.46/80.55 } 112.46/80.55 module Maybe where { 112.46/80.55 import qualified FiniteMap; 112.46/80.55 import qualified Main; 112.46/80.55 import qualified Prelude; 112.46/80.55 } 112.46/80.55 module Main where { 112.46/80.55 import qualified FiniteMap; 112.46/80.55 import qualified Maybe; 112.46/80.55 import qualified Prelude; 112.46/80.55 } 112.46/80.55 112.46/80.55 ---------------------------------------- 112.46/80.55 112.46/80.55 (11) NumRed (SOUND) 112.46/80.55 Num Reduction:All numbers are transformed to their corresponding representation with Succ, Pred and Zero. 112.46/80.55 ---------------------------------------- 112.46/80.55 112.46/80.55 (12) 112.46/80.55 Obligation: 112.46/80.55 mainModule Main 112.46/80.55 module FiniteMap where { 112.46/80.55 import qualified Main; 112.46/80.55 import qualified Maybe; 112.46/80.55 import qualified Prelude; 112.46/80.55 data FiniteMap a b = EmptyFM | Branch a b Int (FiniteMap a b) (FiniteMap a b) ; 112.46/80.55 112.46/80.55 instance (Eq a, Eq b) => Eq FiniteMap b a where { 112.46/80.55 } 112.46/80.55 addListToFM :: Ord b => FiniteMap b a -> [(b,a)] -> FiniteMap b a; 112.46/80.55 addListToFM fm key_elt_pairs = addListToFM_C addListToFM0 fm key_elt_pairs; 112.46/80.55 112.46/80.55 addListToFM0 old new = new; 112.46/80.55 112.46/80.55 addListToFM_C :: Ord b => (a -> a -> a) -> FiniteMap b a -> [(b,a)] -> FiniteMap b a; 112.46/80.55 addListToFM_C combiner fm key_elt_pairs = foldl (addListToFM_CAdd combiner) fm key_elt_pairs; 112.46/80.55 112.46/80.55 addListToFM_CAdd vxv fmap (key,elt) = addToFM_C vxv fmap key elt; 112.46/80.55 112.46/80.55 addToFM_C :: Ord a => (b -> b -> b) -> FiniteMap a b -> a -> b -> FiniteMap a b; 112.46/80.55 addToFM_C combiner EmptyFM key elt = addToFM_C4 combiner EmptyFM key elt; 112.46/80.55 addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt; 112.46/80.55 112.46/80.55 addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt True = Branch new_key (combiner elt new_elt) size fm_l fm_r; 112.46/80.55 112.46/80.55 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt); 112.46/80.55 addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C0 combiner key elt size fm_l fm_r new_key new_elt otherwise; 112.46/80.55 112.46/80.55 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt True = mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r; 112.46/80.55 addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt False = addToFM_C1 combiner key elt size fm_l fm_r new_key new_elt (new_key > key); 112.46/80.55 112.46/80.55 addToFM_C3 combiner (Branch key elt size fm_l fm_r) new_key new_elt = addToFM_C2 combiner key elt size fm_l fm_r new_key new_elt (new_key < key); 112.46/80.55 112.46/80.55 addToFM_C4 combiner EmptyFM key elt = unitFM key elt; 112.46/80.55 addToFM_C4 vvx vvy vvz vwu = addToFM_C3 vvx vvy vvz vwu; 112.46/80.55 112.46/80.55 emptyFM :: FiniteMap a b; 112.46/80.55 emptyFM = EmptyFM; 112.46/80.55 112.46/80.55 findMax :: FiniteMap a b -> (a,b); 112.46/80.55 findMax (Branch key elt yx yy EmptyFM) = (key,elt); 112.46/80.55 findMax (Branch key elt yz zu fm_r) = findMax fm_r; 112.46/80.55 112.46/80.55 findMin :: FiniteMap a b -> (a,b); 112.46/80.55 findMin (Branch key elt wx EmptyFM wy) = (key,elt); 112.46/80.55 findMin (Branch key elt wz fm_l xu) = findMin fm_l; 112.46/80.55 112.46/80.55 mkBalBranch :: Ord a => a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 112.46/80.55 mkBalBranch key elt fm_L fm_R = mkBalBranch6 key elt fm_L fm_R; 112.46/80.55 112.46/80.55 mkBalBranch6 key elt fm_L fm_R = mkBalBranch6MkBalBranch5 key elt fm_L fm_R key elt fm_L fm_R (mkBalBranch6Size_l key elt fm_L fm_R + mkBalBranch6Size_r key elt fm_L fm_R < Pos (Succ (Succ Zero))); 112.46/80.55 112.46/80.55 mkBalBranch6Double_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vuv (Branch key_rl elt_rl vuw fm_rll fm_rlr) fm_rr) = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ Zero)))))) key_rl elt_rl (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))) vwx vwy fm_l fm_rll) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))) key_r elt_r fm_rlr fm_rr); 112.46/80.55 112.46/80.55 mkBalBranch6Double_R vwx vwy vwz vxu (Branch key_l elt_l zw fm_ll (Branch key_lr elt_lr zx fm_lrl fm_lrr)) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))) key_lr elt_lr (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))))) key_l elt_l fm_ll fm_lrl) (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))))))) vwx vwy fm_lrr fm_r); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Double_L vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr True = mkBalBranch6Single_L vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr False = mkBalBranch6MkBalBranch00 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr otherwise; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch02 vwx vwy vwz vxu fm_L fm_R (Branch vux vuy vuz fm_rl fm_rr) = mkBalBranch6MkBalBranch01 vwx vwy vwz vxu fm_L fm_R vux vuy vuz fm_rl fm_rr (sizeFM fm_rl < Pos (Succ (Succ Zero)) * sizeFM fm_rr); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Double_R vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr True = mkBalBranch6Single_R vwx vwy vwz vxu fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr False = mkBalBranch6MkBalBranch10 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr otherwise; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch12 vwx vwy vwz vxu fm_L fm_R (Branch zy zz vuu fm_ll fm_lr) = mkBalBranch6MkBalBranch11 vwx vwy vwz vxu fm_L fm_R zy zz vuu fm_ll fm_lr (sizeFM fm_lr < Pos (Succ (Succ Zero)) * sizeFM fm_ll); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ (Succ Zero))) key elt fm_L fm_R; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch1 vwx vwy vwz vxu fm_L fm_R fm_L; 112.46/80.55 mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch2 vwx vwy vwz vxu key elt fm_L fm_R otherwise; 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R True = mkBalBranch6MkBalBranch0 vwx vwy vwz vxu fm_L fm_R fm_R; 112.46/80.55 mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch3 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_l vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_r vwx vwy vwz vxu); 112.46/80.55 112.46/80.55 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R True = mkBranch (Pos (Succ Zero)) key elt fm_L fm_R; 112.46/80.55 mkBalBranch6MkBalBranch5 vwx vwy vwz vxu key elt fm_L fm_R False = mkBalBranch6MkBalBranch4 vwx vwy vwz vxu key elt fm_L fm_R (mkBalBranch6Size_r vwx vwy vwz vxu > sIZE_RATIO * mkBalBranch6Size_l vwx vwy vwz vxu); 112.46/80.55 112.46/80.55 mkBalBranch6Single_L vwx vwy vwz vxu fm_l (Branch key_r elt_r vvu fm_rl fm_rr) = mkBranch (Pos (Succ (Succ (Succ Zero)))) key_r elt_r (mkBranch (Pos (Succ (Succ (Succ (Succ Zero))))) vwx vwy fm_l fm_rl) fm_rr; 112.46/80.55 112.46/80.55 mkBalBranch6Single_R vwx vwy vwz vxu (Branch key_l elt_l zv fm_ll fm_lr) fm_r = mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero))))))))) key_l elt_l fm_ll (mkBranch (Pos (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))))) vwx vwy fm_lr fm_r); 112.46/80.55 112.46/80.55 mkBalBranch6Size_l vwx vwy vwz vxu = sizeFM vwz; 112.46/80.55 112.46/80.55 mkBalBranch6Size_r vwx vwy vwz vxu = sizeFM vxu; 112.46/80.55 112.46/80.55 mkBranch :: Ord a => Int -> a -> b -> FiniteMap a b -> FiniteMap a b -> FiniteMap a b; 112.46/80.55 mkBranch which key elt fm_l fm_r = mkBranchResult key elt fm_r fm_l; 112.46/80.55 112.46/80.55 mkBranchBalance_ok vxw vxx vxy = True; 112.46/80.55 112.46/80.55 mkBranchLeft_ok vxw vxx vxy = mkBranchLeft_ok0 vxw vxx vxy vxy vxx vxy; 112.46/80.55 112.46/80.55 mkBranchLeft_ok0 vxw vxx vxy fm_l key EmptyFM = True; 112.46/80.55 mkBranchLeft_ok0 vxw vxx vxy fm_l key (Branch left_key xv xw xx xy) = mkBranchLeft_ok0Biggest_left_key fm_l < key; 112.46/80.55 112.46/80.55 mkBranchLeft_ok0Biggest_left_key vyx = fst (findMax vyx); 112.46/80.55 112.46/80.55 mkBranchLeft_size vxw vxx vxy = sizeFM vxy; 112.46/80.55 112.46/80.55 mkBranchResult vxz vyu vyv vyw = Branch vxz vyu (mkBranchUnbox vyv vxz vyw (Pos (Succ Zero) + mkBranchLeft_size vyv vxz vyw + mkBranchRight_size vyv vxz vyw)) vyw vyv; 112.46/80.55 112.46/80.55 mkBranchRight_ok vxw vxx vxy = mkBranchRight_ok0 vxw vxx vxy vxw vxx vxw; 112.46/80.55 112.46/80.55 mkBranchRight_ok0 vxw vxx vxy fm_r key EmptyFM = True; 112.46/80.55 mkBranchRight_ok0 vxw vxx vxy fm_r key (Branch right_key xz yu yv yw) = key < mkBranchRight_ok0Smallest_right_key fm_r; 112.46/80.55 112.46/80.55 mkBranchRight_ok0Smallest_right_key vyy = fst (findMin vyy); 112.46/80.55 112.46/80.55 mkBranchRight_size vxw vxx vxy = sizeFM vxw; 112.46/80.55 112.46/80.55 mkBranchUnbox :: Ord a => -> (FiniteMap a b) ( -> a ( -> (FiniteMap a b) (Int -> Int))); 112.46/80.55 mkBranchUnbox vxw vxx vxy x = x; 112.46/80.55 112.46/80.55 sIZE_RATIO :: Int; 112.46/80.55 sIZE_RATIO = Pos (Succ (Succ (Succ (Succ (Succ Zero))))); 112.46/80.55 112.46/80.55 sizeFM :: FiniteMap b a -> Int; 112.46/80.55 sizeFM EmptyFM = Pos Zero; 112.46/80.55 sizeFM (Branch vz wu size wv ww) = size; 112.46/80.55 112.46/80.55 unitFM :: b -> a -> FiniteMap b a; 112.46/80.55 unitFM key elt = Branch key elt (Pos (Succ Zero)) emptyFM emptyFM; 112.46/80.55 112.46/80.55 } 112.46/80.55 module Maybe where { 112.46/80.55 import qualified FiniteMap; 112.46/80.55 import qualified Main; 112.46/80.55 import qualified Prelude; 112.46/80.55 } 112.46/80.55 module Main where { 112.46/80.55 import qualified FiniteMap; 112.46/80.55 import qualified Maybe; 112.46/80.55 import qualified Prelude; 112.46/80.55 } 112.46/80.59 EOF