7.62/3.60 YES 9.05/4.05 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 9.05/4.05 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 9.05/4.05 9.05/4.05 9.05/4.05 H-Termination with start terms of the given HASKELL could be proven: 9.05/4.05 9.05/4.05 (0) HASKELL 9.05/4.05 (1) BR [EQUIVALENT, 0 ms] 9.05/4.05 (2) HASKELL 9.05/4.05 (3) COR [EQUIVALENT, 0 ms] 9.05/4.05 (4) HASKELL 9.05/4.05 (5) Narrow [SOUND, 0 ms] 9.05/4.05 (6) QDP 9.05/4.05 (7) QDPSizeChangeProof [EQUIVALENT, 0 ms] 9.05/4.05 (8) YES 9.05/4.05 9.05/4.05 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (0) 9.05/4.05 Obligation: 9.05/4.05 mainModule Main 9.05/4.05 module Main where { 9.05/4.05 import qualified Prelude; 9.05/4.05 data MyBool = MyTrue | MyFalse ; 9.05/4.05 9.05/4.05 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.05/4.05 9.05/4.05 data Main.Nat = Succ Main.Nat | Zero ; 9.05/4.05 9.05/4.05 evenMyInt :: MyInt -> MyBool; 9.05/4.05 evenMyInt = primEvenInt; 9.05/4.05 9.05/4.05 primEvenInt :: MyInt -> MyBool; 9.05/4.05 primEvenInt (Main.Pos x) = primEvenNat x; 9.05/4.05 primEvenInt (Main.Neg x) = primEvenNat x; 9.05/4.05 9.05/4.05 primEvenNat :: Main.Nat -> MyBool; 9.05/4.05 primEvenNat Main.Zero = MyTrue; 9.05/4.05 primEvenNat (Main.Succ Main.Zero) = MyFalse; 9.05/4.05 primEvenNat (Main.Succ (Main.Succ x)) = primEvenNat x; 9.05/4.05 9.05/4.05 } 9.05/4.05 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (1) BR (EQUIVALENT) 9.05/4.05 Replaced joker patterns by fresh variables and removed binding patterns. 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (2) 9.05/4.05 Obligation: 9.05/4.05 mainModule Main 9.05/4.05 module Main where { 9.05/4.05 import qualified Prelude; 9.05/4.05 data MyBool = MyTrue | MyFalse ; 9.05/4.05 9.05/4.05 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.05/4.05 9.05/4.05 data Main.Nat = Succ Main.Nat | Zero ; 9.05/4.05 9.05/4.05 evenMyInt :: MyInt -> MyBool; 9.05/4.05 evenMyInt = primEvenInt; 9.05/4.05 9.05/4.05 primEvenInt :: MyInt -> MyBool; 9.05/4.05 primEvenInt (Main.Pos x) = primEvenNat x; 9.05/4.05 primEvenInt (Main.Neg x) = primEvenNat x; 9.05/4.05 9.05/4.05 primEvenNat :: Main.Nat -> MyBool; 9.05/4.05 primEvenNat Main.Zero = MyTrue; 9.05/4.05 primEvenNat (Main.Succ Main.Zero) = MyFalse; 9.05/4.05 primEvenNat (Main.Succ (Main.Succ x)) = primEvenNat x; 9.05/4.05 9.05/4.05 } 9.05/4.05 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (3) COR (EQUIVALENT) 9.05/4.05 Cond Reductions: 9.05/4.05 The following Function with conditions 9.05/4.05 "undefined |Falseundefined; 9.05/4.05 " 9.05/4.05 is transformed to 9.05/4.05 "undefined = undefined1; 9.05/4.05 " 9.05/4.05 "undefined0 True = undefined; 9.05/4.05 " 9.05/4.05 "undefined1 = undefined0 False; 9.05/4.05 " 9.05/4.05 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (4) 9.05/4.05 Obligation: 9.05/4.05 mainModule Main 9.05/4.05 module Main where { 9.05/4.05 import qualified Prelude; 9.05/4.05 data MyBool = MyTrue | MyFalse ; 9.05/4.05 9.05/4.05 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.05/4.05 9.05/4.05 data Main.Nat = Succ Main.Nat | Zero ; 9.05/4.05 9.05/4.05 evenMyInt :: MyInt -> MyBool; 9.05/4.05 evenMyInt = primEvenInt; 9.05/4.05 9.05/4.05 primEvenInt :: MyInt -> MyBool; 9.05/4.05 primEvenInt (Main.Pos x) = primEvenNat x; 9.05/4.05 primEvenInt (Main.Neg x) = primEvenNat x; 9.05/4.05 9.05/4.05 primEvenNat :: Main.Nat -> MyBool; 9.05/4.05 primEvenNat Main.Zero = MyTrue; 9.05/4.05 primEvenNat (Main.Succ Main.Zero) = MyFalse; 9.05/4.05 primEvenNat (Main.Succ (Main.Succ x)) = primEvenNat x; 9.05/4.05 9.05/4.05 } 9.05/4.05 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (5) Narrow (SOUND) 9.05/4.05 Haskell To QDPs 9.05/4.05 9.05/4.05 digraph dp_graph { 9.05/4.05 node [outthreshold=100, inthreshold=100];1[label="evenMyInt",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 9.05/4.05 3[label="evenMyInt vx3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 9.05/4.05 4[label="primEvenInt vx3",fontsize=16,color="burlywood",shape="box"];18[label="vx3/Pos vx30",fontsize=10,color="white",style="solid",shape="box"];4 -> 18[label="",style="solid", color="burlywood", weight=9]; 9.05/4.05 18 -> 5[label="",style="solid", color="burlywood", weight=3]; 9.05/4.05 19[label="vx3/Neg vx30",fontsize=10,color="white",style="solid",shape="box"];4 -> 19[label="",style="solid", color="burlywood", weight=9]; 9.05/4.05 19 -> 6[label="",style="solid", color="burlywood", weight=3]; 9.05/4.05 5[label="primEvenInt (Pos vx30)",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 9.05/4.05 6[label="primEvenInt (Neg vx30)",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 9.05/4.05 7[label="primEvenNat vx30",fontsize=16,color="burlywood",shape="triangle"];20[label="vx30/Succ vx300",fontsize=10,color="white",style="solid",shape="box"];7 -> 20[label="",style="solid", color="burlywood", weight=9]; 9.05/4.05 20 -> 9[label="",style="solid", color="burlywood", weight=3]; 9.05/4.05 21[label="vx30/Zero",fontsize=10,color="white",style="solid",shape="box"];7 -> 21[label="",style="solid", color="burlywood", weight=9]; 9.05/4.05 21 -> 10[label="",style="solid", color="burlywood", weight=3]; 9.05/4.05 8 -> 7[label="",style="dashed", color="red", weight=0]; 9.05/4.05 8[label="primEvenNat vx30",fontsize=16,color="magenta"];8 -> 11[label="",style="dashed", color="magenta", weight=3]; 9.05/4.05 9[label="primEvenNat (Succ vx300)",fontsize=16,color="burlywood",shape="box"];22[label="vx300/Succ vx3000",fontsize=10,color="white",style="solid",shape="box"];9 -> 22[label="",style="solid", color="burlywood", weight=9]; 9.05/4.05 22 -> 12[label="",style="solid", color="burlywood", weight=3]; 9.05/4.05 23[label="vx300/Zero",fontsize=10,color="white",style="solid",shape="box"];9 -> 23[label="",style="solid", color="burlywood", weight=9]; 9.05/4.05 23 -> 13[label="",style="solid", color="burlywood", weight=3]; 9.05/4.05 10[label="primEvenNat Zero",fontsize=16,color="black",shape="box"];10 -> 14[label="",style="solid", color="black", weight=3]; 9.05/4.05 11[label="vx30",fontsize=16,color="green",shape="box"];12[label="primEvenNat (Succ (Succ vx3000))",fontsize=16,color="black",shape="box"];12 -> 15[label="",style="solid", color="black", weight=3]; 9.05/4.05 13[label="primEvenNat (Succ Zero)",fontsize=16,color="black",shape="box"];13 -> 16[label="",style="solid", color="black", weight=3]; 9.05/4.05 14[label="MyTrue",fontsize=16,color="green",shape="box"];15 -> 7[label="",style="dashed", color="red", weight=0]; 9.05/4.05 15[label="primEvenNat vx3000",fontsize=16,color="magenta"];15 -> 17[label="",style="dashed", color="magenta", weight=3]; 9.05/4.05 16[label="MyFalse",fontsize=16,color="green",shape="box"];17[label="vx3000",fontsize=16,color="green",shape="box"];} 9.05/4.05 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (6) 9.05/4.05 Obligation: 9.05/4.05 Q DP problem: 9.05/4.05 The TRS P consists of the following rules: 9.05/4.05 9.05/4.05 new_primEvenNat(Main.Succ(Main.Succ(vx3000))) -> new_primEvenNat(vx3000) 9.05/4.05 9.05/4.05 R is empty. 9.05/4.05 Q is empty. 9.05/4.05 We have to consider all minimal (P,Q,R)-chains. 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (7) QDPSizeChangeProof (EQUIVALENT) 9.05/4.05 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 9.05/4.05 9.05/4.05 From the DPs we obtained the following set of size-change graphs: 9.05/4.05 *new_primEvenNat(Main.Succ(Main.Succ(vx3000))) -> new_primEvenNat(vx3000) 9.05/4.05 The graph contains the following edges 1 > 1 9.05/4.05 9.05/4.05 9.05/4.05 ---------------------------------------- 9.05/4.05 9.05/4.05 (8) 9.05/4.05 YES 9.30/4.10 EOF