10.05/4.16 YES 12.11/4.73 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 12.11/4.73 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 12.11/4.73 12.11/4.73 12.11/4.73 H-Termination with start terms of the given HASKELL could be proven: 12.11/4.73 12.11/4.73 (0) HASKELL 12.11/4.73 (1) BR [EQUIVALENT, 0 ms] 12.11/4.73 (2) HASKELL 12.11/4.73 (3) COR [EQUIVALENT, 0 ms] 12.11/4.73 (4) HASKELL 12.11/4.73 (5) Narrow [SOUND, 0 ms] 12.11/4.73 (6) AND 12.11/4.73 (7) QDP 12.11/4.73 (8) DependencyGraphProof [EQUIVALENT, 0 ms] 12.11/4.73 (9) AND 12.11/4.73 (10) QDP 12.11/4.73 (11) TransformationProof [EQUIVALENT, 0 ms] 12.11/4.73 (12) QDP 12.11/4.73 (13) UsableRulesProof [EQUIVALENT, 0 ms] 12.11/4.73 (14) QDP 12.11/4.73 (15) QReductionProof [EQUIVALENT, 0 ms] 12.11/4.73 (16) QDP 12.11/4.73 (17) TransformationProof [EQUIVALENT, 0 ms] 12.11/4.73 (18) QDP 12.11/4.73 (19) UsableRulesProof [EQUIVALENT, 0 ms] 12.11/4.73 (20) QDP 12.11/4.73 (21) QReductionProof [EQUIVALENT, 0 ms] 12.11/4.73 (22) QDP 12.11/4.73 (23) TransformationProof [EQUIVALENT, 0 ms] 12.11/4.73 (24) QDP 12.11/4.73 (25) TransformationProof [EQUIVALENT, 0 ms] 12.11/4.73 (26) QDP 12.11/4.73 (27) DependencyGraphProof [EQUIVALENT, 0 ms] 12.11/4.73 (28) QDP 12.11/4.73 (29) UsableRulesProof [EQUIVALENT, 0 ms] 12.11/4.73 (30) QDP 12.11/4.73 (31) QReductionProof [EQUIVALENT, 0 ms] 12.11/4.73 (32) QDP 12.11/4.73 (33) TransformationProof [EQUIVALENT, 0 ms] 12.11/4.73 (34) QDP 12.11/4.73 (35) UsableRulesProof [EQUIVALENT, 0 ms] 12.11/4.73 (36) QDP 12.11/4.73 (37) QReductionProof [EQUIVALENT, 0 ms] 12.11/4.73 (38) QDP 12.11/4.73 (39) QDPSizeChangeProof [EQUIVALENT, 0 ms] 12.11/4.73 (40) YES 12.11/4.73 (41) QDP 12.11/4.73 (42) QDPOrderProof [EQUIVALENT, 31 ms] 12.11/4.73 (43) QDP 12.11/4.73 (44) DependencyGraphProof [EQUIVALENT, 0 ms] 12.11/4.73 (45) QDP 12.11/4.73 (46) QDPSizeChangeProof [EQUIVALENT, 0 ms] 12.11/4.73 (47) YES 12.11/4.73 (48) QDP 12.11/4.73 (49) DependencyGraphProof [EQUIVALENT, 0 ms] 12.11/4.73 (50) AND 12.11/4.73 (51) QDP 12.11/4.73 (52) MRRProof [EQUIVALENT, 0 ms] 12.11/4.73 (53) QDP 12.11/4.73 (54) PisEmptyProof [EQUIVALENT, 0 ms] 12.11/4.73 (55) YES 12.11/4.73 (56) QDP 12.11/4.73 (57) QDPOrderProof [EQUIVALENT, 9 ms] 12.11/4.73 (58) QDP 12.11/4.73 (59) DependencyGraphProof [EQUIVALENT, 0 ms] 12.11/4.73 (60) QDP 12.11/4.73 (61) QDPSizeChangeProof [EQUIVALENT, 0 ms] 12.11/4.73 (62) YES 12.11/4.73 (63) QDP 12.11/4.73 (64) QDPSizeChangeProof [EQUIVALENT, 0 ms] 12.11/4.73 (65) YES 12.11/4.73 12.11/4.73 12.11/4.73 ---------------------------------------- 12.11/4.73 12.11/4.73 (0) 12.11/4.73 Obligation: 12.11/4.73 mainModule Main 12.11/4.73 module Main where { 12.11/4.73 import qualified Prelude; 12.11/4.73 data MyBool = MyTrue | MyFalse ; 12.11/4.73 12.11/4.73 data MyInt = Pos Main.Nat | Neg Main.Nat ; 12.11/4.73 12.11/4.73 data Main.Nat = Succ Main.Nat | Zero ; 12.11/4.73 12.11/4.73 data Ratio a = CnPc a a ; 12.11/4.73 12.11/4.73 data Tup2 b a = Tup2 b a ; 12.11/4.73 12.11/4.73 error :: a; 12.11/4.73 error = stop MyTrue; 12.11/4.73 12.11/4.73 fst :: Tup2 a b -> a; 12.11/4.73 fst (Tup2 x _) = x; 12.11/4.73 12.11/4.73 primDivNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.73 primDivNatS Main.Zero Main.Zero = Main.error; 12.11/4.73 primDivNatS (Main.Succ x) Main.Zero = Main.error; 12.11/4.73 primDivNatS (Main.Succ x) (Main.Succ y) = primDivNatS0 x y (primGEqNatS x y); 12.11/4.73 primDivNatS Main.Zero (Main.Succ x) = Main.Zero; 12.11/4.73 12.11/4.73 primDivNatS0 x y MyTrue = Main.Succ (primDivNatS (primMinusNatS x y) (Main.Succ y)); 12.11/4.73 primDivNatS0 x y MyFalse = Main.Zero; 12.11/4.73 12.11/4.73 primGEqNatS :: Main.Nat -> Main.Nat -> MyBool; 12.11/4.73 primGEqNatS (Main.Succ x) Main.Zero = MyTrue; 12.11/4.73 primGEqNatS (Main.Succ x) (Main.Succ y) = primGEqNatS x y; 12.11/4.73 primGEqNatS Main.Zero (Main.Succ x) = MyFalse; 12.11/4.73 primGEqNatS Main.Zero Main.Zero = MyTrue; 12.11/4.73 12.11/4.73 primMinusNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.73 primMinusNatS (Main.Succ x) (Main.Succ y) = primMinusNatS x y; 12.11/4.73 primMinusNatS Main.Zero (Main.Succ y) = Main.Zero; 12.11/4.73 primMinusNatS x Main.Zero = x; 12.11/4.73 12.11/4.73 primModNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.73 primModNatS Main.Zero Main.Zero = Main.error; 12.11/4.73 primModNatS Main.Zero (Main.Succ x) = Main.Zero; 12.11/4.73 primModNatS (Main.Succ x) Main.Zero = Main.error; 12.11/4.73 primModNatS (Main.Succ x) (Main.Succ Main.Zero) = Main.Zero; 12.11/4.73 primModNatS (Main.Succ x) (Main.Succ (Main.Succ y)) = primModNatS0 x y (primGEqNatS x (Main.Succ y)); 12.11/4.73 12.11/4.73 primModNatS0 x y MyTrue = primModNatS (primMinusNatS x (Main.Succ y)) (Main.Succ (Main.Succ y)); 12.11/4.73 primModNatS0 x y MyFalse = Main.Succ x; 12.11/4.73 12.11/4.73 primQrmInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; 12.11/4.73 primQrmInt x y = Tup2 (primQuotInt x y) (primRemInt x y); 12.11/4.73 12.11/4.73 primQuotInt :: MyInt -> MyInt -> MyInt; 12.11/4.73 primQuotInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); 12.11/4.73 primQuotInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); 12.11/4.73 primQuotInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); 12.11/4.73 primQuotInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); 12.11/4.73 primQuotInt vx vy = Main.error; 12.11/4.73 12.11/4.73 primRemInt :: MyInt -> MyInt -> MyInt; 12.11/4.73 primRemInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); 12.11/4.73 primRemInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); 12.11/4.73 primRemInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); 12.11/4.73 primRemInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); 12.11/4.73 primRemInt vv vw = Main.error; 12.11/4.73 12.11/4.73 properFraction :: Ratio MyInt -> Tup2 MyInt (Ratio MyInt); 12.11/4.73 properFraction (CnPc x y) = Tup2 (qProperFraction x y) (CnPc (rProperFraction x y) y); 12.11/4.73 12.11/4.73 qProperFraction :: MyInt -> MyInt -> MyInt; 12.11/4.73 qProperFraction x y = fst (quotRemMyInt x y); 12.11/4.73 12.11/4.73 quotRemMyInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; 12.11/4.73 quotRemMyInt = primQrmInt; 12.11/4.73 12.11/4.73 rProperFraction :: MyInt -> MyInt -> MyInt; 12.11/4.73 rProperFraction x y = snd (quotRemMyInt x y); 12.11/4.73 12.11/4.73 snd :: Tup2 a b -> b; 12.11/4.73 snd (Tup2 _ y) = y; 12.11/4.73 12.11/4.73 stop :: MyBool -> a; 12.11/4.73 stop MyFalse = stop MyFalse; 12.11/4.73 12.11/4.73 } 12.11/4.73 12.11/4.73 ---------------------------------------- 12.11/4.73 12.11/4.73 (1) BR (EQUIVALENT) 12.11/4.73 Replaced joker patterns by fresh variables and removed binding patterns. 12.11/4.73 ---------------------------------------- 12.11/4.73 12.11/4.73 (2) 12.11/4.73 Obligation: 12.11/4.73 mainModule Main 12.11/4.73 module Main where { 12.11/4.73 import qualified Prelude; 12.11/4.73 data MyBool = MyTrue | MyFalse ; 12.11/4.73 12.11/4.73 data MyInt = Pos Main.Nat | Neg Main.Nat ; 12.11/4.74 12.11/4.74 data Main.Nat = Succ Main.Nat | Zero ; 12.11/4.74 12.11/4.74 data Ratio a = CnPc a a ; 12.11/4.74 12.11/4.74 data Tup2 b a = Tup2 b a ; 12.11/4.74 12.11/4.74 error :: a; 12.11/4.74 error = stop MyTrue; 12.11/4.74 12.11/4.74 fst :: Tup2 b a -> b; 12.11/4.74 fst (Tup2 x wv) = x; 12.11/4.74 12.11/4.74 primDivNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.74 primDivNatS Main.Zero Main.Zero = Main.error; 12.11/4.74 primDivNatS (Main.Succ x) Main.Zero = Main.error; 12.11/4.74 primDivNatS (Main.Succ x) (Main.Succ y) = primDivNatS0 x y (primGEqNatS x y); 12.11/4.74 primDivNatS Main.Zero (Main.Succ x) = Main.Zero; 12.11/4.74 12.11/4.74 primDivNatS0 x y MyTrue = Main.Succ (primDivNatS (primMinusNatS x y) (Main.Succ y)); 12.11/4.74 primDivNatS0 x y MyFalse = Main.Zero; 12.11/4.74 12.11/4.74 primGEqNatS :: Main.Nat -> Main.Nat -> MyBool; 12.11/4.74 primGEqNatS (Main.Succ x) Main.Zero = MyTrue; 12.11/4.74 primGEqNatS (Main.Succ x) (Main.Succ y) = primGEqNatS x y; 12.11/4.74 primGEqNatS Main.Zero (Main.Succ x) = MyFalse; 12.11/4.74 primGEqNatS Main.Zero Main.Zero = MyTrue; 12.11/4.74 12.11/4.74 primMinusNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.74 primMinusNatS (Main.Succ x) (Main.Succ y) = primMinusNatS x y; 12.11/4.74 primMinusNatS Main.Zero (Main.Succ y) = Main.Zero; 12.11/4.74 primMinusNatS x Main.Zero = x; 12.11/4.74 12.11/4.74 primModNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.74 primModNatS Main.Zero Main.Zero = Main.error; 12.11/4.74 primModNatS Main.Zero (Main.Succ x) = Main.Zero; 12.11/4.74 primModNatS (Main.Succ x) Main.Zero = Main.error; 12.11/4.74 primModNatS (Main.Succ x) (Main.Succ Main.Zero) = Main.Zero; 12.11/4.74 primModNatS (Main.Succ x) (Main.Succ (Main.Succ y)) = primModNatS0 x y (primGEqNatS x (Main.Succ y)); 12.11/4.74 12.11/4.74 primModNatS0 x y MyTrue = primModNatS (primMinusNatS x (Main.Succ y)) (Main.Succ (Main.Succ y)); 12.11/4.74 primModNatS0 x y MyFalse = Main.Succ x; 12.11/4.74 12.11/4.74 primQrmInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; 12.11/4.74 primQrmInt x y = Tup2 (primQuotInt x y) (primRemInt x y); 12.11/4.74 12.11/4.74 primQuotInt :: MyInt -> MyInt -> MyInt; 12.11/4.74 primQuotInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); 12.11/4.74 primQuotInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); 12.11/4.74 primQuotInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); 12.11/4.74 primQuotInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); 12.11/4.74 primQuotInt vx vy = Main.error; 12.11/4.74 12.11/4.74 primRemInt :: MyInt -> MyInt -> MyInt; 12.11/4.74 primRemInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); 12.11/4.74 primRemInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); 12.11/4.74 primRemInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); 12.11/4.74 primRemInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); 12.11/4.74 primRemInt vv vw = Main.error; 12.11/4.74 12.11/4.74 properFraction :: Ratio MyInt -> Tup2 MyInt (Ratio MyInt); 12.11/4.74 properFraction (CnPc x y) = Tup2 (qProperFraction x y) (CnPc (rProperFraction x y) y); 12.11/4.74 12.11/4.74 qProperFraction :: MyInt -> MyInt -> MyInt; 12.11/4.74 qProperFraction x y = fst (quotRemMyInt x y); 12.11/4.74 12.11/4.74 quotRemMyInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; 12.11/4.74 quotRemMyInt = primQrmInt; 12.11/4.74 12.11/4.74 rProperFraction :: MyInt -> MyInt -> MyInt; 12.11/4.74 rProperFraction x y = snd (quotRemMyInt x y); 12.11/4.74 12.11/4.74 snd :: Tup2 b a -> a; 12.11/4.74 snd (Tup2 ww y) = y; 12.11/4.74 12.11/4.74 stop :: MyBool -> a; 12.11/4.74 stop MyFalse = stop MyFalse; 12.11/4.74 12.11/4.74 } 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (3) COR (EQUIVALENT) 12.11/4.74 Cond Reductions: 12.11/4.74 The following Function with conditions 12.11/4.74 "undefined |Falseundefined; 12.11/4.74 " 12.11/4.74 is transformed to 12.11/4.74 "undefined = undefined1; 12.11/4.74 " 12.11/4.74 "undefined0 True = undefined; 12.11/4.74 " 12.11/4.74 "undefined1 = undefined0 False; 12.11/4.74 " 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (4) 12.11/4.74 Obligation: 12.11/4.74 mainModule Main 12.11/4.74 module Main where { 12.11/4.74 import qualified Prelude; 12.11/4.74 data MyBool = MyTrue | MyFalse ; 12.11/4.74 12.11/4.74 data MyInt = Pos Main.Nat | Neg Main.Nat ; 12.11/4.74 12.11/4.74 data Main.Nat = Succ Main.Nat | Zero ; 12.11/4.74 12.11/4.74 data Ratio a = CnPc a a ; 12.11/4.74 12.11/4.74 data Tup2 a b = Tup2 a b ; 12.11/4.74 12.11/4.74 error :: a; 12.11/4.74 error = stop MyTrue; 12.11/4.74 12.11/4.74 fst :: Tup2 b a -> b; 12.11/4.74 fst (Tup2 x wv) = x; 12.11/4.74 12.11/4.74 primDivNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.74 primDivNatS Main.Zero Main.Zero = Main.error; 12.11/4.74 primDivNatS (Main.Succ x) Main.Zero = Main.error; 12.11/4.74 primDivNatS (Main.Succ x) (Main.Succ y) = primDivNatS0 x y (primGEqNatS x y); 12.11/4.74 primDivNatS Main.Zero (Main.Succ x) = Main.Zero; 12.11/4.74 12.11/4.74 primDivNatS0 x y MyTrue = Main.Succ (primDivNatS (primMinusNatS x y) (Main.Succ y)); 12.11/4.74 primDivNatS0 x y MyFalse = Main.Zero; 12.11/4.74 12.11/4.74 primGEqNatS :: Main.Nat -> Main.Nat -> MyBool; 12.11/4.74 primGEqNatS (Main.Succ x) Main.Zero = MyTrue; 12.11/4.74 primGEqNatS (Main.Succ x) (Main.Succ y) = primGEqNatS x y; 12.11/4.74 primGEqNatS Main.Zero (Main.Succ x) = MyFalse; 12.11/4.74 primGEqNatS Main.Zero Main.Zero = MyTrue; 12.11/4.74 12.11/4.74 primMinusNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.74 primMinusNatS (Main.Succ x) (Main.Succ y) = primMinusNatS x y; 12.11/4.74 primMinusNatS Main.Zero (Main.Succ y) = Main.Zero; 12.11/4.74 primMinusNatS x Main.Zero = x; 12.11/4.74 12.11/4.74 primModNatS :: Main.Nat -> Main.Nat -> Main.Nat; 12.11/4.74 primModNatS Main.Zero Main.Zero = Main.error; 12.11/4.74 primModNatS Main.Zero (Main.Succ x) = Main.Zero; 12.11/4.74 primModNatS (Main.Succ x) Main.Zero = Main.error; 12.11/4.74 primModNatS (Main.Succ x) (Main.Succ Main.Zero) = Main.Zero; 12.11/4.74 primModNatS (Main.Succ x) (Main.Succ (Main.Succ y)) = primModNatS0 x y (primGEqNatS x (Main.Succ y)); 12.11/4.74 12.11/4.74 primModNatS0 x y MyTrue = primModNatS (primMinusNatS x (Main.Succ y)) (Main.Succ (Main.Succ y)); 12.11/4.74 primModNatS0 x y MyFalse = Main.Succ x; 12.11/4.74 12.11/4.74 primQrmInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; 12.11/4.74 primQrmInt x y = Tup2 (primQuotInt x y) (primRemInt x y); 12.11/4.74 12.11/4.74 primQuotInt :: MyInt -> MyInt -> MyInt; 12.11/4.74 primQuotInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); 12.11/4.74 primQuotInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); 12.11/4.74 primQuotInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primDivNatS x (Main.Succ y)); 12.11/4.74 primQuotInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Pos (primDivNatS x (Main.Succ y)); 12.11/4.74 primQuotInt vx vy = Main.error; 12.11/4.74 12.11/4.74 primRemInt :: MyInt -> MyInt -> MyInt; 12.11/4.74 primRemInt (Main.Pos x) (Main.Pos (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); 12.11/4.74 primRemInt (Main.Pos x) (Main.Neg (Main.Succ y)) = Main.Pos (primModNatS x (Main.Succ y)); 12.11/4.74 primRemInt (Main.Neg x) (Main.Pos (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); 12.11/4.74 primRemInt (Main.Neg x) (Main.Neg (Main.Succ y)) = Main.Neg (primModNatS x (Main.Succ y)); 12.11/4.74 primRemInt vv vw = Main.error; 12.11/4.74 12.11/4.74 properFraction :: Ratio MyInt -> Tup2 MyInt (Ratio MyInt); 12.11/4.74 properFraction (CnPc x y) = Tup2 (qProperFraction x y) (CnPc (rProperFraction x y) y); 12.11/4.74 12.11/4.74 qProperFraction :: MyInt -> MyInt -> MyInt; 12.11/4.74 qProperFraction x y = fst (quotRemMyInt x y); 12.11/4.74 12.11/4.74 quotRemMyInt :: MyInt -> MyInt -> Tup2 MyInt MyInt; 12.11/4.74 quotRemMyInt = primQrmInt; 12.11/4.74 12.11/4.74 rProperFraction :: MyInt -> MyInt -> MyInt; 12.11/4.74 rProperFraction x y = snd (quotRemMyInt x y); 12.11/4.74 12.11/4.74 snd :: Tup2 b a -> a; 12.11/4.74 snd (Tup2 ww y) = y; 12.11/4.74 12.11/4.74 stop :: MyBool -> a; 12.11/4.74 stop MyFalse = stop MyFalse; 12.11/4.74 12.11/4.74 } 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (5) Narrow (SOUND) 12.11/4.74 Haskell To QDPs 12.11/4.74 12.11/4.74 digraph dp_graph { 12.11/4.74 node [outthreshold=100, inthreshold=100];1[label="properFraction",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 12.11/4.74 3[label="properFraction wx3",fontsize=16,color="burlywood",shape="triangle"];666[label="wx3/CnPc wx30 wx31",fontsize=10,color="white",style="solid",shape="box"];3 -> 666[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 666 -> 4[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 4[label="properFraction (CnPc wx30 wx31)",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 12.11/4.74 5[label="Tup2 (qProperFraction wx30 wx31) (CnPc (rProperFraction wx30 wx31) wx31)",fontsize=16,color="green",shape="box"];5 -> 6[label="",style="dashed", color="green", weight=3]; 12.11/4.74 5 -> 7[label="",style="dashed", color="green", weight=3]; 12.11/4.74 6[label="qProperFraction wx30 wx31",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 12.11/4.74 7[label="rProperFraction wx30 wx31",fontsize=16,color="black",shape="box"];7 -> 9[label="",style="solid", color="black", weight=3]; 12.11/4.74 8[label="fst (quotRemMyInt wx30 wx31)",fontsize=16,color="black",shape="box"];8 -> 10[label="",style="solid", color="black", weight=3]; 12.11/4.74 9[label="snd (quotRemMyInt wx30 wx31)",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 12.11/4.74 10[label="fst (primQrmInt wx30 wx31)",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 12.11/4.74 11[label="snd (primQrmInt wx30 wx31)",fontsize=16,color="black",shape="box"];11 -> 13[label="",style="solid", color="black", weight=3]; 12.11/4.74 12[label="fst (Tup2 (primQuotInt wx30 wx31) (primRemInt wx30 wx31))",fontsize=16,color="black",shape="box"];12 -> 14[label="",style="solid", color="black", weight=3]; 12.11/4.74 13[label="snd (Tup2 (primQuotInt wx30 wx31) (primRemInt wx30 wx31))",fontsize=16,color="black",shape="box"];13 -> 15[label="",style="solid", color="black", weight=3]; 12.11/4.74 14[label="primQuotInt wx30 wx31",fontsize=16,color="burlywood",shape="box"];667[label="wx30/Pos wx300",fontsize=10,color="white",style="solid",shape="box"];14 -> 667[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 667 -> 16[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 668[label="wx30/Neg wx300",fontsize=10,color="white",style="solid",shape="box"];14 -> 668[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 668 -> 17[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 15[label="primRemInt wx30 wx31",fontsize=16,color="burlywood",shape="box"];669[label="wx30/Pos wx300",fontsize=10,color="white",style="solid",shape="box"];15 -> 669[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 669 -> 18[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 670[label="wx30/Neg wx300",fontsize=10,color="white",style="solid",shape="box"];15 -> 670[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 670 -> 19[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 16[label="primQuotInt (Pos wx300) wx31",fontsize=16,color="burlywood",shape="box"];671[label="wx31/Pos wx310",fontsize=10,color="white",style="solid",shape="box"];16 -> 671[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 671 -> 20[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 672[label="wx31/Neg wx310",fontsize=10,color="white",style="solid",shape="box"];16 -> 672[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 672 -> 21[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 17[label="primQuotInt (Neg wx300) wx31",fontsize=16,color="burlywood",shape="box"];673[label="wx31/Pos wx310",fontsize=10,color="white",style="solid",shape="box"];17 -> 673[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 673 -> 22[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 674[label="wx31/Neg wx310",fontsize=10,color="white",style="solid",shape="box"];17 -> 674[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 674 -> 23[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 18[label="primRemInt (Pos wx300) wx31",fontsize=16,color="burlywood",shape="box"];675[label="wx31/Pos wx310",fontsize=10,color="white",style="solid",shape="box"];18 -> 675[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 675 -> 24[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 676[label="wx31/Neg wx310",fontsize=10,color="white",style="solid",shape="box"];18 -> 676[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 676 -> 25[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 19[label="primRemInt (Neg wx300) wx31",fontsize=16,color="burlywood",shape="box"];677[label="wx31/Pos wx310",fontsize=10,color="white",style="solid",shape="box"];19 -> 677[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 677 -> 26[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 678[label="wx31/Neg wx310",fontsize=10,color="white",style="solid",shape="box"];19 -> 678[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 678 -> 27[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 20[label="primQuotInt (Pos wx300) (Pos wx310)",fontsize=16,color="burlywood",shape="box"];679[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];20 -> 679[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 679 -> 28[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 680[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];20 -> 680[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 680 -> 29[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 21[label="primQuotInt (Pos wx300) (Neg wx310)",fontsize=16,color="burlywood",shape="box"];681[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];21 -> 681[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 681 -> 30[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 682[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];21 -> 682[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 682 -> 31[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 22[label="primQuotInt (Neg wx300) (Pos wx310)",fontsize=16,color="burlywood",shape="box"];683[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];22 -> 683[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 683 -> 32[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 684[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];22 -> 684[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 684 -> 33[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 23[label="primQuotInt (Neg wx300) (Neg wx310)",fontsize=16,color="burlywood",shape="box"];685[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];23 -> 685[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 685 -> 34[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 686[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];23 -> 686[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 686 -> 35[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 24[label="primRemInt (Pos wx300) (Pos wx310)",fontsize=16,color="burlywood",shape="box"];687[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];24 -> 687[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 687 -> 36[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 688[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];24 -> 688[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 688 -> 37[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 25[label="primRemInt (Pos wx300) (Neg wx310)",fontsize=16,color="burlywood",shape="box"];689[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];25 -> 689[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 689 -> 38[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 690[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];25 -> 690[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 690 -> 39[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 26[label="primRemInt (Neg wx300) (Pos wx310)",fontsize=16,color="burlywood",shape="box"];691[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];26 -> 691[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 691 -> 40[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 692[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];26 -> 692[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 692 -> 41[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 27[label="primRemInt (Neg wx300) (Neg wx310)",fontsize=16,color="burlywood",shape="box"];693[label="wx310/Succ wx3100",fontsize=10,color="white",style="solid",shape="box"];27 -> 693[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 693 -> 42[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 694[label="wx310/Zero",fontsize=10,color="white",style="solid",shape="box"];27 -> 694[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 694 -> 43[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 28[label="primQuotInt (Pos wx300) (Pos (Succ wx3100))",fontsize=16,color="black",shape="box"];28 -> 44[label="",style="solid", color="black", weight=3]; 12.11/4.74 29[label="primQuotInt (Pos wx300) (Pos Zero)",fontsize=16,color="black",shape="box"];29 -> 45[label="",style="solid", color="black", weight=3]; 12.11/4.74 30[label="primQuotInt (Pos wx300) (Neg (Succ wx3100))",fontsize=16,color="black",shape="box"];30 -> 46[label="",style="solid", color="black", weight=3]; 12.11/4.74 31[label="primQuotInt (Pos wx300) (Neg Zero)",fontsize=16,color="black",shape="box"];31 -> 47[label="",style="solid", color="black", weight=3]; 12.11/4.74 32[label="primQuotInt (Neg wx300) (Pos (Succ wx3100))",fontsize=16,color="black",shape="box"];32 -> 48[label="",style="solid", color="black", weight=3]; 12.11/4.74 33[label="primQuotInt (Neg wx300) (Pos Zero)",fontsize=16,color="black",shape="box"];33 -> 49[label="",style="solid", color="black", weight=3]; 12.11/4.74 34[label="primQuotInt (Neg wx300) (Neg (Succ wx3100))",fontsize=16,color="black",shape="box"];34 -> 50[label="",style="solid", color="black", weight=3]; 12.11/4.74 35[label="primQuotInt (Neg wx300) (Neg Zero)",fontsize=16,color="black",shape="box"];35 -> 51[label="",style="solid", color="black", weight=3]; 12.11/4.74 36[label="primRemInt (Pos wx300) (Pos (Succ wx3100))",fontsize=16,color="black",shape="box"];36 -> 52[label="",style="solid", color="black", weight=3]; 12.11/4.74 37[label="primRemInt (Pos wx300) (Pos Zero)",fontsize=16,color="black",shape="box"];37 -> 53[label="",style="solid", color="black", weight=3]; 12.11/4.74 38[label="primRemInt (Pos wx300) (Neg (Succ wx3100))",fontsize=16,color="black",shape="box"];38 -> 54[label="",style="solid", color="black", weight=3]; 12.11/4.74 39[label="primRemInt (Pos wx300) (Neg Zero)",fontsize=16,color="black",shape="box"];39 -> 55[label="",style="solid", color="black", weight=3]; 12.11/4.74 40[label="primRemInt (Neg wx300) (Pos (Succ wx3100))",fontsize=16,color="black",shape="box"];40 -> 56[label="",style="solid", color="black", weight=3]; 12.11/4.74 41[label="primRemInt (Neg wx300) (Pos Zero)",fontsize=16,color="black",shape="box"];41 -> 57[label="",style="solid", color="black", weight=3]; 12.11/4.74 42[label="primRemInt (Neg wx300) (Neg (Succ wx3100))",fontsize=16,color="black",shape="box"];42 -> 58[label="",style="solid", color="black", weight=3]; 12.11/4.74 43[label="primRemInt (Neg wx300) (Neg Zero)",fontsize=16,color="black",shape="box"];43 -> 59[label="",style="solid", color="black", weight=3]; 12.11/4.74 44[label="Pos (primDivNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];44 -> 60[label="",style="dashed", color="green", weight=3]; 12.11/4.74 45[label="error",fontsize=16,color="black",shape="triangle"];45 -> 61[label="",style="solid", color="black", weight=3]; 12.11/4.74 46[label="Neg (primDivNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];46 -> 62[label="",style="dashed", color="green", weight=3]; 12.11/4.74 47 -> 45[label="",style="dashed", color="red", weight=0]; 12.11/4.74 47[label="error",fontsize=16,color="magenta"];48[label="Neg (primDivNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];48 -> 63[label="",style="dashed", color="green", weight=3]; 12.11/4.74 49 -> 45[label="",style="dashed", color="red", weight=0]; 12.11/4.74 49[label="error",fontsize=16,color="magenta"];50[label="Pos (primDivNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];50 -> 64[label="",style="dashed", color="green", weight=3]; 12.11/4.74 51 -> 45[label="",style="dashed", color="red", weight=0]; 12.11/4.74 51[label="error",fontsize=16,color="magenta"];52[label="Pos (primModNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];52 -> 65[label="",style="dashed", color="green", weight=3]; 12.11/4.74 53 -> 45[label="",style="dashed", color="red", weight=0]; 12.11/4.74 53[label="error",fontsize=16,color="magenta"];54[label="Pos (primModNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];54 -> 66[label="",style="dashed", color="green", weight=3]; 12.11/4.74 55 -> 45[label="",style="dashed", color="red", weight=0]; 12.11/4.74 55[label="error",fontsize=16,color="magenta"];56[label="Neg (primModNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];56 -> 67[label="",style="dashed", color="green", weight=3]; 12.11/4.74 57 -> 45[label="",style="dashed", color="red", weight=0]; 12.11/4.74 57[label="error",fontsize=16,color="magenta"];58[label="Neg (primModNatS wx300 (Succ wx3100))",fontsize=16,color="green",shape="box"];58 -> 68[label="",style="dashed", color="green", weight=3]; 12.11/4.74 59 -> 45[label="",style="dashed", color="red", weight=0]; 12.11/4.74 59[label="error",fontsize=16,color="magenta"];60[label="primDivNatS wx300 (Succ wx3100)",fontsize=16,color="burlywood",shape="triangle"];695[label="wx300/Succ wx3000",fontsize=10,color="white",style="solid",shape="box"];60 -> 695[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 695 -> 69[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 696[label="wx300/Zero",fontsize=10,color="white",style="solid",shape="box"];60 -> 696[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 696 -> 70[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 61[label="stop MyTrue",fontsize=16,color="black",shape="box"];61 -> 71[label="",style="solid", color="black", weight=3]; 12.11/4.74 62 -> 60[label="",style="dashed", color="red", weight=0]; 12.11/4.74 62[label="primDivNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];62 -> 72[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 63 -> 60[label="",style="dashed", color="red", weight=0]; 12.11/4.74 63[label="primDivNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];63 -> 73[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 64 -> 60[label="",style="dashed", color="red", weight=0]; 12.11/4.74 64[label="primDivNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];64 -> 74[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 64 -> 75[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 65[label="primModNatS wx300 (Succ wx3100)",fontsize=16,color="burlywood",shape="triangle"];697[label="wx300/Succ wx3000",fontsize=10,color="white",style="solid",shape="box"];65 -> 697[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 697 -> 76[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 698[label="wx300/Zero",fontsize=10,color="white",style="solid",shape="box"];65 -> 698[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 698 -> 77[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 66 -> 65[label="",style="dashed", color="red", weight=0]; 12.11/4.74 66[label="primModNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];66 -> 78[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 67 -> 65[label="",style="dashed", color="red", weight=0]; 12.11/4.74 67[label="primModNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];67 -> 79[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 68 -> 65[label="",style="dashed", color="red", weight=0]; 12.11/4.74 68[label="primModNatS wx300 (Succ wx3100)",fontsize=16,color="magenta"];68 -> 80[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 68 -> 81[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 69[label="primDivNatS (Succ wx3000) (Succ wx3100)",fontsize=16,color="black",shape="box"];69 -> 82[label="",style="solid", color="black", weight=3]; 12.11/4.74 70[label="primDivNatS Zero (Succ wx3100)",fontsize=16,color="black",shape="box"];70 -> 83[label="",style="solid", color="black", weight=3]; 12.11/4.74 71[label="error []",fontsize=16,color="red",shape="box"];72[label="wx3100",fontsize=16,color="green",shape="box"];73[label="wx300",fontsize=16,color="green",shape="box"];74[label="wx300",fontsize=16,color="green",shape="box"];75[label="wx3100",fontsize=16,color="green",shape="box"];76[label="primModNatS (Succ wx3000) (Succ wx3100)",fontsize=16,color="burlywood",shape="box"];699[label="wx3100/Succ wx31000",fontsize=10,color="white",style="solid",shape="box"];76 -> 699[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 699 -> 84[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 700[label="wx3100/Zero",fontsize=10,color="white",style="solid",shape="box"];76 -> 700[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 700 -> 85[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 77[label="primModNatS Zero (Succ wx3100)",fontsize=16,color="black",shape="box"];77 -> 86[label="",style="solid", color="black", weight=3]; 12.11/4.74 78[label="wx3100",fontsize=16,color="green",shape="box"];79[label="wx300",fontsize=16,color="green",shape="box"];80[label="wx300",fontsize=16,color="green",shape="box"];81[label="wx3100",fontsize=16,color="green",shape="box"];82[label="primDivNatS0 wx3000 wx3100 (primGEqNatS wx3000 wx3100)",fontsize=16,color="burlywood",shape="box"];701[label="wx3000/Succ wx30000",fontsize=10,color="white",style="solid",shape="box"];82 -> 701[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 701 -> 87[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 702[label="wx3000/Zero",fontsize=10,color="white",style="solid",shape="box"];82 -> 702[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 702 -> 88[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 83[label="Zero",fontsize=16,color="green",shape="box"];84[label="primModNatS (Succ wx3000) (Succ (Succ wx31000))",fontsize=16,color="black",shape="box"];84 -> 89[label="",style="solid", color="black", weight=3]; 12.11/4.74 85[label="primModNatS (Succ wx3000) (Succ Zero)",fontsize=16,color="black",shape="box"];85 -> 90[label="",style="solid", color="black", weight=3]; 12.11/4.74 86[label="Zero",fontsize=16,color="green",shape="box"];87[label="primDivNatS0 (Succ wx30000) wx3100 (primGEqNatS (Succ wx30000) wx3100)",fontsize=16,color="burlywood",shape="box"];703[label="wx3100/Succ wx31000",fontsize=10,color="white",style="solid",shape="box"];87 -> 703[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 703 -> 91[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 704[label="wx3100/Zero",fontsize=10,color="white",style="solid",shape="box"];87 -> 704[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 704 -> 92[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 88[label="primDivNatS0 Zero wx3100 (primGEqNatS Zero wx3100)",fontsize=16,color="burlywood",shape="box"];705[label="wx3100/Succ wx31000",fontsize=10,color="white",style="solid",shape="box"];88 -> 705[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 705 -> 93[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 706[label="wx3100/Zero",fontsize=10,color="white",style="solid",shape="box"];88 -> 706[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 706 -> 94[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 89[label="primModNatS0 wx3000 wx31000 (primGEqNatS wx3000 (Succ wx31000))",fontsize=16,color="burlywood",shape="box"];707[label="wx3000/Succ wx30000",fontsize=10,color="white",style="solid",shape="box"];89 -> 707[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 707 -> 95[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 708[label="wx3000/Zero",fontsize=10,color="white",style="solid",shape="box"];89 -> 708[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 708 -> 96[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 90[label="Zero",fontsize=16,color="green",shape="box"];91[label="primDivNatS0 (Succ wx30000) (Succ wx31000) (primGEqNatS (Succ wx30000) (Succ wx31000))",fontsize=16,color="black",shape="box"];91 -> 97[label="",style="solid", color="black", weight=3]; 12.11/4.74 92[label="primDivNatS0 (Succ wx30000) Zero (primGEqNatS (Succ wx30000) Zero)",fontsize=16,color="black",shape="box"];92 -> 98[label="",style="solid", color="black", weight=3]; 12.11/4.74 93[label="primDivNatS0 Zero (Succ wx31000) (primGEqNatS Zero (Succ wx31000))",fontsize=16,color="black",shape="box"];93 -> 99[label="",style="solid", color="black", weight=3]; 12.11/4.74 94[label="primDivNatS0 Zero Zero (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];94 -> 100[label="",style="solid", color="black", weight=3]; 12.11/4.74 95[label="primModNatS0 (Succ wx30000) wx31000 (primGEqNatS (Succ wx30000) (Succ wx31000))",fontsize=16,color="black",shape="box"];95 -> 101[label="",style="solid", color="black", weight=3]; 12.11/4.74 96[label="primModNatS0 Zero wx31000 (primGEqNatS Zero (Succ wx31000))",fontsize=16,color="black",shape="box"];96 -> 102[label="",style="solid", color="black", weight=3]; 12.11/4.74 97 -> 548[label="",style="dashed", color="red", weight=0]; 12.11/4.74 97[label="primDivNatS0 (Succ wx30000) (Succ wx31000) (primGEqNatS wx30000 wx31000)",fontsize=16,color="magenta"];97 -> 549[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 97 -> 550[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 97 -> 551[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 97 -> 552[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 98[label="primDivNatS0 (Succ wx30000) Zero MyTrue",fontsize=16,color="black",shape="box"];98 -> 105[label="",style="solid", color="black", weight=3]; 12.11/4.74 99[label="primDivNatS0 Zero (Succ wx31000) MyFalse",fontsize=16,color="black",shape="box"];99 -> 106[label="",style="solid", color="black", weight=3]; 12.11/4.74 100[label="primDivNatS0 Zero Zero MyTrue",fontsize=16,color="black",shape="box"];100 -> 107[label="",style="solid", color="black", weight=3]; 12.11/4.74 101[label="primModNatS0 (Succ wx30000) wx31000 (primGEqNatS wx30000 wx31000)",fontsize=16,color="burlywood",shape="box"];709[label="wx30000/Succ wx300000",fontsize=10,color="white",style="solid",shape="box"];101 -> 709[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 709 -> 108[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 710[label="wx30000/Zero",fontsize=10,color="white",style="solid",shape="box"];101 -> 710[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 710 -> 109[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 102[label="primModNatS0 Zero wx31000 MyFalse",fontsize=16,color="black",shape="box"];102 -> 110[label="",style="solid", color="black", weight=3]; 12.11/4.74 549[label="wx31000",fontsize=16,color="green",shape="box"];550[label="wx31000",fontsize=16,color="green",shape="box"];551[label="wx30000",fontsize=16,color="green",shape="box"];552[label="wx30000",fontsize=16,color="green",shape="box"];548[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS wx44 wx45)",fontsize=16,color="burlywood",shape="triangle"];711[label="wx44/Succ wx440",fontsize=10,color="white",style="solid",shape="box"];548 -> 711[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 711 -> 589[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 712[label="wx44/Zero",fontsize=10,color="white",style="solid",shape="box"];548 -> 712[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 712 -> 590[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 105[label="Succ (primDivNatS (primMinusNatS (Succ wx30000) Zero) (Succ Zero))",fontsize=16,color="green",shape="box"];105 -> 115[label="",style="dashed", color="green", weight=3]; 12.11/4.74 106[label="Zero",fontsize=16,color="green",shape="box"];107[label="Succ (primDivNatS (primMinusNatS Zero Zero) (Succ Zero))",fontsize=16,color="green",shape="box"];107 -> 116[label="",style="dashed", color="green", weight=3]; 12.11/4.74 108[label="primModNatS0 (Succ (Succ wx300000)) wx31000 (primGEqNatS (Succ wx300000) wx31000)",fontsize=16,color="burlywood",shape="box"];713[label="wx31000/Succ wx310000",fontsize=10,color="white",style="solid",shape="box"];108 -> 713[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 713 -> 117[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 714[label="wx31000/Zero",fontsize=10,color="white",style="solid",shape="box"];108 -> 714[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 714 -> 118[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 109[label="primModNatS0 (Succ Zero) wx31000 (primGEqNatS Zero wx31000)",fontsize=16,color="burlywood",shape="box"];715[label="wx31000/Succ wx310000",fontsize=10,color="white",style="solid",shape="box"];109 -> 715[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 715 -> 119[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 716[label="wx31000/Zero",fontsize=10,color="white",style="solid",shape="box"];109 -> 716[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 716 -> 120[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 110[label="Succ Zero",fontsize=16,color="green",shape="box"];589[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS (Succ wx440) wx45)",fontsize=16,color="burlywood",shape="box"];717[label="wx45/Succ wx450",fontsize=10,color="white",style="solid",shape="box"];589 -> 717[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 717 -> 630[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 718[label="wx45/Zero",fontsize=10,color="white",style="solid",shape="box"];589 -> 718[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 718 -> 631[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 590[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS Zero wx45)",fontsize=16,color="burlywood",shape="box"];719[label="wx45/Succ wx450",fontsize=10,color="white",style="solid",shape="box"];590 -> 719[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 719 -> 632[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 720[label="wx45/Zero",fontsize=10,color="white",style="solid",shape="box"];590 -> 720[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 720 -> 633[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 115 -> 60[label="",style="dashed", color="red", weight=0]; 12.11/4.74 115[label="primDivNatS (primMinusNatS (Succ wx30000) Zero) (Succ Zero)",fontsize=16,color="magenta"];115 -> 125[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 115 -> 126[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 116 -> 60[label="",style="dashed", color="red", weight=0]; 12.11/4.74 116[label="primDivNatS (primMinusNatS Zero Zero) (Succ Zero)",fontsize=16,color="magenta"];116 -> 127[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 116 -> 128[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 117[label="primModNatS0 (Succ (Succ wx300000)) (Succ wx310000) (primGEqNatS (Succ wx300000) (Succ wx310000))",fontsize=16,color="black",shape="box"];117 -> 129[label="",style="solid", color="black", weight=3]; 12.11/4.74 118[label="primModNatS0 (Succ (Succ wx300000)) Zero (primGEqNatS (Succ wx300000) Zero)",fontsize=16,color="black",shape="box"];118 -> 130[label="",style="solid", color="black", weight=3]; 12.11/4.74 119[label="primModNatS0 (Succ Zero) (Succ wx310000) (primGEqNatS Zero (Succ wx310000))",fontsize=16,color="black",shape="box"];119 -> 131[label="",style="solid", color="black", weight=3]; 12.11/4.74 120[label="primModNatS0 (Succ Zero) Zero (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];120 -> 132[label="",style="solid", color="black", weight=3]; 12.11/4.74 630[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS (Succ wx440) (Succ wx450))",fontsize=16,color="black",shape="box"];630 -> 636[label="",style="solid", color="black", weight=3]; 12.11/4.74 631[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS (Succ wx440) Zero)",fontsize=16,color="black",shape="box"];631 -> 637[label="",style="solid", color="black", weight=3]; 12.11/4.74 632[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS Zero (Succ wx450))",fontsize=16,color="black",shape="box"];632 -> 638[label="",style="solid", color="black", weight=3]; 12.11/4.74 633[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];633 -> 639[label="",style="solid", color="black", weight=3]; 12.11/4.74 125[label="primMinusNatS (Succ wx30000) Zero",fontsize=16,color="black",shape="triangle"];125 -> 138[label="",style="solid", color="black", weight=3]; 12.11/4.74 126[label="Zero",fontsize=16,color="green",shape="box"];127[label="primMinusNatS Zero Zero",fontsize=16,color="black",shape="triangle"];127 -> 139[label="",style="solid", color="black", weight=3]; 12.11/4.74 128[label="Zero",fontsize=16,color="green",shape="box"];129 -> 593[label="",style="dashed", color="red", weight=0]; 12.11/4.74 129[label="primModNatS0 (Succ (Succ wx300000)) (Succ wx310000) (primGEqNatS wx300000 wx310000)",fontsize=16,color="magenta"];129 -> 594[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 129 -> 595[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 129 -> 596[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 129 -> 597[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 130[label="primModNatS0 (Succ (Succ wx300000)) Zero MyTrue",fontsize=16,color="black",shape="box"];130 -> 142[label="",style="solid", color="black", weight=3]; 12.11/4.74 131 -> 399[label="",style="dashed", color="red", weight=0]; 12.11/4.74 131[label="primModNatS0 (Succ Zero) (Succ wx310000) MyFalse",fontsize=16,color="magenta"];131 -> 400[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 131 -> 401[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 132[label="primModNatS0 (Succ Zero) Zero MyTrue",fontsize=16,color="black",shape="box"];132 -> 144[label="",style="solid", color="black", weight=3]; 12.11/4.74 636 -> 548[label="",style="dashed", color="red", weight=0]; 12.11/4.74 636[label="primDivNatS0 (Succ wx42) (Succ wx43) (primGEqNatS wx440 wx450)",fontsize=16,color="magenta"];636 -> 644[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 636 -> 645[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 637[label="primDivNatS0 (Succ wx42) (Succ wx43) MyTrue",fontsize=16,color="black",shape="triangle"];637 -> 646[label="",style="solid", color="black", weight=3]; 12.11/4.74 638[label="primDivNatS0 (Succ wx42) (Succ wx43) MyFalse",fontsize=16,color="black",shape="box"];638 -> 647[label="",style="solid", color="black", weight=3]; 12.11/4.74 639 -> 637[label="",style="dashed", color="red", weight=0]; 12.11/4.74 639[label="primDivNatS0 (Succ wx42) (Succ wx43) MyTrue",fontsize=16,color="magenta"];138[label="Succ wx30000",fontsize=16,color="green",shape="box"];139[label="Zero",fontsize=16,color="green",shape="box"];594[label="wx310000",fontsize=16,color="green",shape="box"];595[label="wx310000",fontsize=16,color="green",shape="box"];596[label="wx300000",fontsize=16,color="green",shape="box"];597[label="Succ wx300000",fontsize=16,color="green",shape="box"];593[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS wx49 wx50)",fontsize=16,color="burlywood",shape="triangle"];721[label="wx49/Succ wx490",fontsize=10,color="white",style="solid",shape="box"];593 -> 721[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 721 -> 634[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 722[label="wx49/Zero",fontsize=10,color="white",style="solid",shape="box"];593 -> 722[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 722 -> 635[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 142 -> 65[label="",style="dashed", color="red", weight=0]; 12.11/4.74 142[label="primModNatS (primMinusNatS (Succ (Succ wx300000)) (Succ Zero)) (Succ (Succ Zero))",fontsize=16,color="magenta"];142 -> 155[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 142 -> 156[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 400[label="Zero",fontsize=16,color="green",shape="box"];401[label="wx310000",fontsize=16,color="green",shape="box"];399[label="primModNatS0 (Succ wx33) (Succ wx34) MyFalse",fontsize=16,color="black",shape="triangle"];399 -> 414[label="",style="solid", color="black", weight=3]; 12.11/4.74 144 -> 65[label="",style="dashed", color="red", weight=0]; 12.11/4.74 144[label="primModNatS (primMinusNatS (Succ Zero) (Succ Zero)) (Succ (Succ Zero))",fontsize=16,color="magenta"];144 -> 157[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 144 -> 158[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 644[label="wx450",fontsize=16,color="green",shape="box"];645[label="wx440",fontsize=16,color="green",shape="box"];646[label="Succ (primDivNatS (primMinusNatS (Succ wx42) (Succ wx43)) (Succ (Succ wx43)))",fontsize=16,color="green",shape="box"];646 -> 652[label="",style="dashed", color="green", weight=3]; 12.11/4.74 647[label="Zero",fontsize=16,color="green",shape="box"];634[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS (Succ wx490) wx50)",fontsize=16,color="burlywood",shape="box"];723[label="wx50/Succ wx500",fontsize=10,color="white",style="solid",shape="box"];634 -> 723[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 723 -> 640[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 724[label="wx50/Zero",fontsize=10,color="white",style="solid",shape="box"];634 -> 724[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 724 -> 641[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 635[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS Zero wx50)",fontsize=16,color="burlywood",shape="box"];725[label="wx50/Succ wx500",fontsize=10,color="white",style="solid",shape="box"];635 -> 725[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 725 -> 642[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 726[label="wx50/Zero",fontsize=10,color="white",style="solid",shape="box"];635 -> 726[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 726 -> 643[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 155 -> 440[label="",style="dashed", color="red", weight=0]; 12.11/4.74 155[label="primMinusNatS (Succ (Succ wx300000)) (Succ Zero)",fontsize=16,color="magenta"];155 -> 441[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 155 -> 442[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 156[label="Succ Zero",fontsize=16,color="green",shape="box"];414[label="Succ (Succ wx33)",fontsize=16,color="green",shape="box"];157 -> 440[label="",style="dashed", color="red", weight=0]; 12.11/4.74 157[label="primMinusNatS (Succ Zero) (Succ Zero)",fontsize=16,color="magenta"];157 -> 443[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 157 -> 444[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 158[label="Succ Zero",fontsize=16,color="green",shape="box"];652 -> 60[label="",style="dashed", color="red", weight=0]; 12.11/4.74 652[label="primDivNatS (primMinusNatS (Succ wx42) (Succ wx43)) (Succ (Succ wx43))",fontsize=16,color="magenta"];652 -> 658[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 652 -> 659[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 640[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS (Succ wx490) (Succ wx500))",fontsize=16,color="black",shape="box"];640 -> 648[label="",style="solid", color="black", weight=3]; 12.11/4.74 641[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS (Succ wx490) Zero)",fontsize=16,color="black",shape="box"];641 -> 649[label="",style="solid", color="black", weight=3]; 12.11/4.74 642[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS Zero (Succ wx500))",fontsize=16,color="black",shape="box"];642 -> 650[label="",style="solid", color="black", weight=3]; 12.11/4.74 643[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS Zero Zero)",fontsize=16,color="black",shape="box"];643 -> 651[label="",style="solid", color="black", weight=3]; 12.11/4.74 441[label="Zero",fontsize=16,color="green",shape="box"];442[label="Succ wx300000",fontsize=16,color="green",shape="box"];440[label="primMinusNatS (Succ wx36) (Succ wx37)",fontsize=16,color="black",shape="triangle"];440 -> 475[label="",style="solid", color="black", weight=3]; 12.11/4.74 443[label="Zero",fontsize=16,color="green",shape="box"];444[label="Zero",fontsize=16,color="green",shape="box"];658 -> 475[label="",style="dashed", color="red", weight=0]; 12.11/4.74 658[label="primMinusNatS (Succ wx42) (Succ wx43)",fontsize=16,color="magenta"];658 -> 662[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 658 -> 663[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 659[label="Succ wx43",fontsize=16,color="green",shape="box"];648 -> 593[label="",style="dashed", color="red", weight=0]; 12.11/4.74 648[label="primModNatS0 (Succ wx47) (Succ wx48) (primGEqNatS wx490 wx500)",fontsize=16,color="magenta"];648 -> 653[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 648 -> 654[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 649[label="primModNatS0 (Succ wx47) (Succ wx48) MyTrue",fontsize=16,color="black",shape="triangle"];649 -> 655[label="",style="solid", color="black", weight=3]; 12.11/4.74 650 -> 399[label="",style="dashed", color="red", weight=0]; 12.11/4.74 650[label="primModNatS0 (Succ wx47) (Succ wx48) MyFalse",fontsize=16,color="magenta"];650 -> 656[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 650 -> 657[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 651 -> 649[label="",style="dashed", color="red", weight=0]; 12.11/4.74 651[label="primModNatS0 (Succ wx47) (Succ wx48) MyTrue",fontsize=16,color="magenta"];475[label="primMinusNatS wx36 wx37",fontsize=16,color="burlywood",shape="triangle"];727[label="wx36/Succ wx360",fontsize=10,color="white",style="solid",shape="box"];475 -> 727[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 727 -> 516[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 728[label="wx36/Zero",fontsize=10,color="white",style="solid",shape="box"];475 -> 728[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 728 -> 517[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 662[label="Succ wx43",fontsize=16,color="green",shape="box"];663[label="Succ wx42",fontsize=16,color="green",shape="box"];653[label="wx500",fontsize=16,color="green",shape="box"];654[label="wx490",fontsize=16,color="green",shape="box"];655 -> 65[label="",style="dashed", color="red", weight=0]; 12.11/4.74 655[label="primModNatS (primMinusNatS (Succ wx47) (Succ (Succ wx48))) (Succ (Succ (Succ wx48)))",fontsize=16,color="magenta"];655 -> 660[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 655 -> 661[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 656[label="wx47",fontsize=16,color="green",shape="box"];657[label="wx48",fontsize=16,color="green",shape="box"];516[label="primMinusNatS (Succ wx360) wx37",fontsize=16,color="burlywood",shape="box"];729[label="wx37/Succ wx370",fontsize=10,color="white",style="solid",shape="box"];516 -> 729[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 729 -> 530[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 730[label="wx37/Zero",fontsize=10,color="white",style="solid",shape="box"];516 -> 730[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 730 -> 531[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 517[label="primMinusNatS Zero wx37",fontsize=16,color="burlywood",shape="box"];731[label="wx37/Succ wx370",fontsize=10,color="white",style="solid",shape="box"];517 -> 731[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 731 -> 532[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 732[label="wx37/Zero",fontsize=10,color="white",style="solid",shape="box"];517 -> 732[label="",style="solid", color="burlywood", weight=9]; 12.11/4.74 732 -> 533[label="",style="solid", color="burlywood", weight=3]; 12.11/4.74 660 -> 475[label="",style="dashed", color="red", weight=0]; 12.11/4.74 660[label="primMinusNatS (Succ wx47) (Succ (Succ wx48))",fontsize=16,color="magenta"];660 -> 664[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 660 -> 665[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 661[label="Succ (Succ wx48)",fontsize=16,color="green",shape="box"];530[label="primMinusNatS (Succ wx360) (Succ wx370)",fontsize=16,color="black",shape="box"];530 -> 544[label="",style="solid", color="black", weight=3]; 12.11/4.74 531[label="primMinusNatS (Succ wx360) Zero",fontsize=16,color="black",shape="box"];531 -> 545[label="",style="solid", color="black", weight=3]; 12.11/4.74 532[label="primMinusNatS Zero (Succ wx370)",fontsize=16,color="black",shape="box"];532 -> 546[label="",style="solid", color="black", weight=3]; 12.11/4.74 533[label="primMinusNatS Zero Zero",fontsize=16,color="black",shape="box"];533 -> 547[label="",style="solid", color="black", weight=3]; 12.11/4.74 664[label="Succ (Succ wx48)",fontsize=16,color="green",shape="box"];665[label="Succ wx47",fontsize=16,color="green",shape="box"];544 -> 475[label="",style="dashed", color="red", weight=0]; 12.11/4.74 544[label="primMinusNatS wx360 wx370",fontsize=16,color="magenta"];544 -> 591[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 544 -> 592[label="",style="dashed", color="magenta", weight=3]; 12.11/4.74 545[label="Succ wx360",fontsize=16,color="green",shape="box"];546[label="Zero",fontsize=16,color="green",shape="box"];547[label="Zero",fontsize=16,color="green",shape="box"];591[label="wx370",fontsize=16,color="green",shape="box"];592[label="wx360",fontsize=16,color="green",shape="box"];} 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (6) 12.11/4.74 Complex Obligation (AND) 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (7) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Zero, Main.Zero) -> new_primModNatS00(wx47, wx48) 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Zero) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) 12.11/4.74 new_primModNatS00(wx47, wx48) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS0(wx300000), Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Succ(wx310000))) -> new_primModNatS0(Main.Succ(wx300000), wx310000, wx300000, wx310000) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS0(x0) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (8) DependencyGraphProof (EQUIVALENT) 12.11/4.74 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (9) 12.11/4.74 Complex Obligation (AND) 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (10) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS0(wx300000), Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS0(x0) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (11) TransformationProof (EQUIVALENT) 12.11/4.74 By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS0(wx300000), Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: 12.11/4.74 12.11/4.74 (new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero))) 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (12) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS0(x0) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (13) UsableRulesProof (EQUIVALENT) 12.11/4.74 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (14) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS0(x0) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (15) QReductionProof (EQUIVALENT) 12.11/4.74 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 12.11/4.74 12.11/4.74 new_primMinusNatS0(x0) 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (16) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (17) TransformationProof (EQUIVALENT) 12.11/4.74 By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS1, Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: 12.11/4.74 12.11/4.74 (new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero))) 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (18) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (19) UsableRulesProof (EQUIVALENT) 12.11/4.74 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (20) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (21) QReductionProof (EQUIVALENT) 12.11/4.74 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 12.11/4.74 12.11/4.74 new_primMinusNatS1 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (22) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (23) TransformationProof (EQUIVALENT) 12.11/4.74 By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: 12.11/4.74 12.11/4.74 (new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero))) 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (24) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (25) TransformationProof (EQUIVALENT) 12.11/4.74 By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS3(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: 12.11/4.74 12.11/4.74 (new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Zero, Main.Zero), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Zero, Main.Zero), Main.Succ(Main.Zero))) 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (26) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Zero)), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Zero, Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (27) DependencyGraphProof (EQUIVALENT) 12.11/4.74 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (28) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (29) UsableRulesProof (EQUIVALENT) 12.11/4.74 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (30) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (31) QReductionProof (EQUIVALENT) 12.11/4.74 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 12.11/4.74 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (32) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (33) TransformationProof (EQUIVALENT) 12.11/4.74 By rewriting [LPAR04] the rule new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx300000), Main.Zero), Main.Succ(Main.Zero)) at position [0] we obtained the following new rules [LPAR04]: 12.11/4.74 12.11/4.74 (new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)),new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero))) 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (34) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (35) UsableRulesProof (EQUIVALENT) 12.11/4.74 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (36) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 R is empty. 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (37) QReductionProof (EQUIVALENT) 12.11/4.74 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (38) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)) 12.11/4.74 12.11/4.74 R is empty. 12.11/4.74 Q is empty. 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (39) QDPSizeChangeProof (EQUIVALENT) 12.11/4.74 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 12.11/4.74 12.11/4.74 From the DPs we obtained the following set of size-change graphs: 12.11/4.74 *new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Zero)) -> new_primModNatS(Main.Succ(wx300000), Main.Succ(Main.Zero)) 12.11/4.74 The graph contains the following edges 1 > 1, 2 >= 2 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (40) 12.11/4.74 YES 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (41) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS00(wx47, wx48) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Succ(wx310000))) -> new_primModNatS0(Main.Succ(wx300000), wx310000, wx300000, wx310000) 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Zero, Main.Zero) -> new_primModNatS00(wx47, wx48) 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Zero) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS0(x0) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (42) QDPOrderProof (EQUIVALENT) 12.11/4.74 We use the reduction pair processor [LPAR04,JAR06]. 12.11/4.74 12.11/4.74 12.11/4.74 The following pairs can be oriented strictly and are deleted. 12.11/4.74 12.11/4.74 new_primModNatS(Main.Succ(Main.Succ(Main.Succ(wx300000))), Main.Succ(Main.Succ(wx310000))) -> new_primModNatS0(Main.Succ(wx300000), wx310000, wx300000, wx310000) 12.11/4.74 The remaining pairs can at least be oriented weakly. 12.11/4.74 Used ordering: Polynomial interpretation [POLO]: 12.11/4.74 12.11/4.74 POL(Main.Succ(x_1)) = 1 + x_1 12.11/4.74 POL(Main.Zero) = 0 12.11/4.74 POL(new_primMinusNatS2(x_1, x_2)) = x_1 12.11/4.74 POL(new_primModNatS(x_1, x_2)) = x_1 12.11/4.74 POL(new_primModNatS0(x_1, x_2, x_3, x_4)) = 1 + x_1 12.11/4.74 POL(new_primModNatS00(x_1, x_2)) = 1 + x_1 12.11/4.74 12.11/4.74 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (43) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS00(wx47, wx48) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Zero, Main.Zero) -> new_primModNatS00(wx47, wx48) 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Zero) -> new_primModNatS(new_primMinusNatS2(Main.Succ(wx47), Main.Succ(Main.Succ(wx48))), Main.Succ(Main.Succ(wx48))) 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS0(x0) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (44) DependencyGraphProof (EQUIVALENT) 12.11/4.74 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (45) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS3(wx36, wx37) -> new_primMinusNatS2(wx36, wx37) 12.11/4.74 new_primMinusNatS1 -> new_primMinusNatS3(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS0(wx300000) -> new_primMinusNatS3(Main.Succ(wx300000), Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS0(x0) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS1 12.11/4.74 new_primMinusNatS3(x0, x1) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (46) QDPSizeChangeProof (EQUIVALENT) 12.11/4.74 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 12.11/4.74 12.11/4.74 From the DPs we obtained the following set of size-change graphs: 12.11/4.74 *new_primModNatS0(wx47, wx48, Main.Succ(wx490), Main.Succ(wx500)) -> new_primModNatS0(wx47, wx48, wx490, wx500) 12.11/4.74 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 > 4 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (47) 12.11/4.74 YES 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (48) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) 12.11/4.74 new_primDivNatS00(wx42, wx43) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) 12.11/4.74 new_primDivNatS(Main.Succ(Main.Zero), Main.Zero) -> new_primDivNatS(new_primMinusNatS5, Main.Zero) 12.11/4.74 new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Zero) -> new_primDivNatS(new_primMinusNatS4(wx30000), Main.Zero) 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Zero, Main.Zero) -> new_primDivNatS00(wx42, wx43) 12.11/4.74 new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Succ(wx31000)) -> new_primDivNatS0(wx30000, wx31000, wx30000, wx31000) 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Zero) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS5 -> Main.Zero 12.11/4.74 new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS4(x0) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS5 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (49) DependencyGraphProof (EQUIVALENT) 12.11/4.74 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (50) 12.11/4.74 Complex Obligation (AND) 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (51) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Zero) -> new_primDivNatS(new_primMinusNatS4(wx30000), Main.Zero) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS5 -> Main.Zero 12.11/4.74 new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS4(x0) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS5 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (52) MRRProof (EQUIVALENT) 12.11/4.74 By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. 12.11/4.74 12.11/4.74 Strictly oriented dependency pairs: 12.11/4.74 12.11/4.74 new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Zero) -> new_primDivNatS(new_primMinusNatS4(wx30000), Main.Zero) 12.11/4.74 12.11/4.74 Strictly oriented rules of the TRS R: 12.11/4.74 12.11/4.74 new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 Used ordering: Polynomial interpretation [POLO]: 12.11/4.74 12.11/4.74 POL(Main.Succ(x_1)) = 1 + 2*x_1 12.11/4.74 POL(Main.Zero) = 2 12.11/4.74 POL(new_primDivNatS(x_1, x_2)) = x_1 + x_2 12.11/4.74 POL(new_primMinusNatS2(x_1, x_2)) = x_1 + 2*x_2 12.11/4.74 POL(new_primMinusNatS4(x_1)) = 2 + 2*x_1 12.11/4.74 POL(new_primMinusNatS5) = 2 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (53) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 P is empty. 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS5 -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS4(x0) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS5 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (54) PisEmptyProof (EQUIVALENT) 12.11/4.74 The TRS P is empty. Hence, there is no (P,Q,R) chain. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (55) 12.11/4.74 YES 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (56) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Zero, Main.Zero) -> new_primDivNatS00(wx42, wx43) 12.11/4.74 new_primDivNatS00(wx42, wx43) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) 12.11/4.74 new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Succ(wx31000)) -> new_primDivNatS0(wx30000, wx31000, wx30000, wx31000) 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Zero) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS5 -> Main.Zero 12.11/4.74 new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS4(x0) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS5 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (57) QDPOrderProof (EQUIVALENT) 12.11/4.74 We use the reduction pair processor [LPAR04,JAR06]. 12.11/4.74 12.11/4.74 12.11/4.74 The following pairs can be oriented strictly and are deleted. 12.11/4.74 12.11/4.74 new_primDivNatS(Main.Succ(Main.Succ(wx30000)), Main.Succ(wx31000)) -> new_primDivNatS0(wx30000, wx31000, wx30000, wx31000) 12.11/4.74 The remaining pairs can at least be oriented weakly. 12.11/4.74 Used ordering: Polynomial interpretation [POLO]: 12.11/4.74 12.11/4.74 POL(Main.Succ(x_1)) = 1 + x_1 12.11/4.74 POL(Main.Zero) = 1 12.11/4.74 POL(new_primDivNatS(x_1, x_2)) = x_1 12.11/4.74 POL(new_primDivNatS0(x_1, x_2, x_3, x_4)) = 1 + x_1 12.11/4.74 POL(new_primDivNatS00(x_1, x_2)) = 1 + x_1 12.11/4.74 POL(new_primMinusNatS2(x_1, x_2)) = x_1 12.11/4.74 12.11/4.74 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 12.11/4.74 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (58) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Zero, Main.Zero) -> new_primDivNatS00(wx42, wx43) 12.11/4.74 new_primDivNatS00(wx42, wx43) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Zero) -> new_primDivNatS(new_primMinusNatS2(Main.Succ(wx42), Main.Succ(wx43)), Main.Succ(wx43)) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS5 -> Main.Zero 12.11/4.74 new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS4(x0) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS5 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (59) DependencyGraphProof (EQUIVALENT) 12.11/4.74 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (60) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) 12.11/4.74 12.11/4.74 The TRS R consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS5 -> Main.Zero 12.11/4.74 new_primMinusNatS4(wx30000) -> Main.Succ(wx30000) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) -> Main.Zero 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS2(wx360, wx370) 12.11/4.74 new_primMinusNatS2(Main.Succ(wx360), Main.Zero) -> Main.Succ(wx360) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(wx370)) -> Main.Zero 12.11/4.74 12.11/4.74 The set Q consists of the following terms: 12.11/4.74 12.11/4.74 new_primMinusNatS4(x0) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Succ(x0)) 12.11/4.74 new_primMinusNatS2(Main.Zero, Main.Zero) 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Zero) 12.11/4.74 new_primMinusNatS5 12.11/4.74 new_primMinusNatS2(Main.Succ(x0), Main.Succ(x1)) 12.11/4.74 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (61) QDPSizeChangeProof (EQUIVALENT) 12.11/4.74 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 12.11/4.74 12.11/4.74 From the DPs we obtained the following set of size-change graphs: 12.11/4.74 *new_primDivNatS0(wx42, wx43, Main.Succ(wx440), Main.Succ(wx450)) -> new_primDivNatS0(wx42, wx43, wx440, wx450) 12.11/4.74 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 > 4 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (62) 12.11/4.74 YES 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (63) 12.11/4.74 Obligation: 12.11/4.74 Q DP problem: 12.11/4.74 The TRS P consists of the following rules: 12.11/4.74 12.11/4.74 new_primMinusNatS(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS(wx360, wx370) 12.11/4.74 12.11/4.74 R is empty. 12.11/4.74 Q is empty. 12.11/4.74 We have to consider all minimal (P,Q,R)-chains. 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (64) QDPSizeChangeProof (EQUIVALENT) 12.11/4.74 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 12.11/4.74 12.11/4.74 From the DPs we obtained the following set of size-change graphs: 12.11/4.74 *new_primMinusNatS(Main.Succ(wx360), Main.Succ(wx370)) -> new_primMinusNatS(wx360, wx370) 12.11/4.74 The graph contains the following edges 1 > 1, 2 > 2 12.11/4.74 12.11/4.74 12.11/4.74 ---------------------------------------- 12.11/4.74 12.11/4.74 (65) 12.11/4.74 YES 12.27/4.79 EOF