7.73/3.52 YES 9.36/3.98 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 9.36/3.98 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 9.36/3.98 9.36/3.98 9.36/3.98 H-Termination with start terms of the given HASKELL could be proven: 9.36/3.98 9.36/3.98 (0) HASKELL 9.36/3.98 (1) BR [EQUIVALENT, 0 ms] 9.36/3.98 (2) HASKELL 9.36/3.98 (3) COR [EQUIVALENT, 0 ms] 9.36/3.98 (4) HASKELL 9.36/3.98 (5) Narrow [EQUIVALENT, 0 ms] 9.36/3.98 (6) YES 9.36/3.98 9.36/3.98 9.36/3.98 ---------------------------------------- 9.36/3.98 9.36/3.98 (0) 9.36/3.98 Obligation: 9.36/3.98 mainModule Main 9.36/3.98 module Main where { 9.36/3.98 import qualified Prelude; 9.36/3.98 data Float = Float MyInt MyInt ; 9.36/3.98 9.36/3.98 data Integer = Integer MyInt ; 9.36/3.98 9.36/3.98 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.36/3.98 9.36/3.98 data Main.Nat = Succ Main.Nat | Zero ; 9.36/3.98 9.36/3.98 data Ratio a = CnPc a a ; 9.36/3.98 9.36/3.98 fromRationalFloat :: Ratio Integer -> Float; 9.36/3.98 fromRationalFloat = primRationalToFloat; 9.36/3.98 9.36/3.98 primRationalToFloat :: Ratio Integer -> Float; 9.36/3.98 primRationalToFloat = rationalToFloat; 9.36/3.98 9.36/3.98 pt :: (b -> a) -> (c -> b) -> c -> a; 9.36/3.98 pt f g x = f (g x); 9.36/3.98 9.36/3.98 rationalToFloat :: Ratio Integer -> Float; 9.36/3.98 rationalToFloat (CnPc (Integer x) (Integer y)) = Float x y; 9.36/3.98 9.36/3.98 realToFrac = pt fromRationalFloat toRational; 9.36/3.99 9.36/3.99 toIntegerMyInt :: MyInt -> Integer; 9.36/3.99 toIntegerMyInt x = Integer x; 9.36/3.99 9.36/3.99 toRational (CnPc x y) = CnPc (toIntegerMyInt x) (toIntegerMyInt y); 9.36/3.99 9.36/3.99 } 9.36/3.99 9.36/3.99 ---------------------------------------- 9.36/3.99 9.36/3.99 (1) BR (EQUIVALENT) 9.36/3.99 Replaced joker patterns by fresh variables and removed binding patterns. 9.36/3.99 ---------------------------------------- 9.36/3.99 9.36/3.99 (2) 9.36/3.99 Obligation: 9.36/3.99 mainModule Main 9.36/3.99 module Main where { 9.36/3.99 import qualified Prelude; 9.36/3.99 data Float = Float MyInt MyInt ; 9.36/3.99 9.36/3.99 data Integer = Integer MyInt ; 9.36/3.99 9.36/3.99 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.36/3.99 9.36/3.99 data Main.Nat = Succ Main.Nat | Zero ; 9.36/3.99 9.36/3.99 data Ratio a = CnPc a a ; 9.36/3.99 9.36/3.99 fromRationalFloat :: Ratio Integer -> Float; 9.36/3.99 fromRationalFloat = primRationalToFloat; 9.36/3.99 9.36/3.99 primRationalToFloat :: Ratio Integer -> Float; 9.36/3.99 primRationalToFloat = rationalToFloat; 9.36/3.99 9.36/3.99 pt :: (b -> a) -> (c -> b) -> c -> a; 9.36/3.99 pt f g x = f (g x); 9.36/3.99 9.36/3.99 rationalToFloat :: Ratio Integer -> Float; 9.36/3.99 rationalToFloat (CnPc (Integer x) (Integer y)) = Float x y; 9.36/3.99 9.36/3.99 realToFrac = pt fromRationalFloat toRational; 9.36/3.99 9.36/3.99 toIntegerMyInt :: MyInt -> Integer; 9.36/3.99 toIntegerMyInt x = Integer x; 9.36/3.99 9.36/3.99 toRational (CnPc x y) = CnPc (toIntegerMyInt x) (toIntegerMyInt y); 9.36/3.99 9.36/3.99 } 9.36/3.99 9.36/3.99 ---------------------------------------- 9.36/3.99 9.36/3.99 (3) COR (EQUIVALENT) 9.36/3.99 Cond Reductions: 9.36/3.99 The following Function with conditions 9.36/3.99 "undefined |Falseundefined; 9.36/3.99 " 9.36/3.99 is transformed to 9.36/3.99 "undefined = undefined1; 9.36/3.99 " 9.36/3.99 "undefined0 True = undefined; 9.36/3.99 " 9.36/3.99 "undefined1 = undefined0 False; 9.36/3.99 " 9.36/3.99 9.36/3.99 ---------------------------------------- 9.36/3.99 9.36/3.99 (4) 9.36/3.99 Obligation: 9.36/3.99 mainModule Main 9.36/3.99 module Main where { 9.36/3.99 import qualified Prelude; 9.36/3.99 data Float = Float MyInt MyInt ; 9.36/3.99 9.36/3.99 data Integer = Integer MyInt ; 9.36/3.99 9.36/3.99 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.36/3.99 9.36/3.99 data Main.Nat = Succ Main.Nat | Zero ; 9.36/3.99 9.36/3.99 data Ratio a = CnPc a a ; 9.36/3.99 9.36/3.99 fromRationalFloat :: Ratio Integer -> Float; 9.36/3.99 fromRationalFloat = primRationalToFloat; 9.36/3.99 9.36/3.99 primRationalToFloat :: Ratio Integer -> Float; 9.36/3.99 primRationalToFloat = rationalToFloat; 9.36/3.99 9.36/3.99 pt :: (a -> b) -> (c -> a) -> c -> b; 9.36/3.99 pt f g x = f (g x); 9.36/3.99 9.36/3.99 rationalToFloat :: Ratio Integer -> Float; 9.36/3.99 rationalToFloat (CnPc (Integer x) (Integer y)) = Float x y; 9.36/3.99 9.36/3.99 realToFrac = pt fromRationalFloat toRational; 9.36/3.99 9.36/3.99 toIntegerMyInt :: MyInt -> Integer; 9.36/3.99 toIntegerMyInt x = Integer x; 9.36/3.99 9.36/3.99 toRational (CnPc x y) = CnPc (toIntegerMyInt x) (toIntegerMyInt y); 9.36/3.99 9.36/3.99 } 9.36/3.99 9.36/3.99 ---------------------------------------- 9.36/3.99 9.36/3.99 (5) Narrow (EQUIVALENT) 9.36/3.99 Haskell To QDPs 9.36/3.99 9.36/3.99 digraph dp_graph { 9.36/3.99 node [outthreshold=100, inthreshold=100];1[label="realToFrac",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 9.36/3.99 3[label="realToFrac vx3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 9.36/3.99 4[label="pt fromRationalFloat toRational vx3",fontsize=16,color="black",shape="box"];4 -> 5[label="",style="solid", color="black", weight=3]; 9.36/3.99 5[label="fromRationalFloat (toRational vx3)",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 9.36/3.99 6[label="primRationalToFloat (toRational vx3)",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 9.36/3.99 7[label="rationalToFloat (toRational vx3)",fontsize=16,color="burlywood",shape="box"];13[label="vx3/CnPc vx30 vx31",fontsize=10,color="white",style="solid",shape="box"];7 -> 13[label="",style="solid", color="burlywood", weight=9]; 9.36/3.99 13 -> 8[label="",style="solid", color="burlywood", weight=3]; 9.36/3.99 8[label="rationalToFloat (toRational (CnPc vx30 vx31))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9.36/3.99 9[label="rationalToFloat (CnPc (toIntegerMyInt vx30) (toIntegerMyInt vx31))",fontsize=16,color="black",shape="box"];9 -> 10[label="",style="solid", color="black", weight=3]; 9.36/3.99 10[label="rationalToFloat (CnPc (Integer vx30) (toIntegerMyInt vx31))",fontsize=16,color="black",shape="box"];10 -> 11[label="",style="solid", color="black", weight=3]; 9.36/3.99 11[label="rationalToFloat (CnPc (Integer vx30) (Integer vx31))",fontsize=16,color="black",shape="box"];11 -> 12[label="",style="solid", color="black", weight=3]; 9.36/3.99 12[label="Float vx30 vx31",fontsize=16,color="green",shape="box"];} 9.36/3.99 9.36/3.99 ---------------------------------------- 9.36/3.99 9.36/3.99 (6) 9.36/3.99 YES 9.36/4.03 EOF