8.05/3.65 YES 9.90/4.21 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 9.90/4.21 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 9.90/4.21 9.90/4.21 9.90/4.21 H-Termination with start terms of the given HASKELL could be proven: 9.90/4.21 9.90/4.21 (0) HASKELL 9.90/4.21 (1) BR [EQUIVALENT, 0 ms] 9.90/4.21 (2) HASKELL 9.90/4.21 (3) COR [EQUIVALENT, 0 ms] 9.90/4.21 (4) HASKELL 9.90/4.21 (5) Narrow [SOUND, 0 ms] 9.90/4.21 (6) QDP 9.90/4.21 (7) TransformationProof [EQUIVALENT, 0 ms] 9.90/4.21 (8) QDP 9.90/4.21 (9) DependencyGraphProof [EQUIVALENT, 0 ms] 9.90/4.21 (10) QDP 9.90/4.21 (11) TransformationProof [EQUIVALENT, 0 ms] 9.90/4.21 (12) QDP 9.90/4.21 (13) DependencyGraphProof [EQUIVALENT, 0 ms] 9.90/4.21 (14) QDP 9.90/4.21 (15) UsableRulesProof [EQUIVALENT, 0 ms] 9.90/4.21 (16) QDP 9.90/4.21 (17) QReductionProof [EQUIVALENT, 0 ms] 9.90/4.21 (18) QDP 9.90/4.21 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 9.90/4.21 (20) YES 9.90/4.21 9.90/4.21 9.90/4.21 ---------------------------------------- 9.90/4.21 9.90/4.21 (0) 9.90/4.21 Obligation: 9.90/4.21 mainModule Main 9.90/4.21 module Main where { 9.90/4.21 import qualified Prelude; 9.90/4.21 data List a = Cons a (List a) | Nil ; 9.90/4.21 9.90/4.21 data MyBool = MyTrue | MyFalse ; 9.90/4.21 9.90/4.21 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.90/4.21 9.90/4.21 data Main.Nat = Succ Main.Nat | Zero ; 9.90/4.21 9.90/4.21 data Ordering = LT | EQ | GT ; 9.90/4.21 9.90/4.21 data Tup2 a b = Tup2 a b ; 9.90/4.21 9.90/4.21 compareMyInt :: MyInt -> MyInt -> Ordering; 9.90/4.21 compareMyInt = primCmpInt; 9.90/4.21 9.90/4.21 esEsOrdering :: Ordering -> Ordering -> MyBool; 9.90/4.21 esEsOrdering LT LT = MyTrue; 9.90/4.21 esEsOrdering LT EQ = MyFalse; 9.90/4.21 esEsOrdering LT GT = MyFalse; 9.90/4.21 esEsOrdering EQ LT = MyFalse; 9.90/4.21 esEsOrdering EQ EQ = MyTrue; 9.90/4.21 esEsOrdering EQ GT = MyFalse; 9.90/4.21 esEsOrdering GT LT = MyFalse; 9.90/4.21 esEsOrdering GT EQ = MyFalse; 9.90/4.21 esEsOrdering GT GT = MyTrue; 9.90/4.21 9.90/4.21 fsEsOrdering :: Ordering -> Ordering -> MyBool; 9.90/4.21 fsEsOrdering x y = not (esEsOrdering x y); 9.90/4.21 9.90/4.21 ltEsMyInt :: MyInt -> MyInt -> MyBool; 9.90/4.21 ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; 9.90/4.21 9.90/4.21 msMyInt :: MyInt -> MyInt -> MyInt; 9.90/4.21 msMyInt = primMinusInt; 9.90/4.21 9.90/4.21 not :: MyBool -> MyBool; 9.90/4.21 not MyTrue = MyFalse; 9.90/4.21 not MyFalse = MyTrue; 9.90/4.21 9.90/4.21 primCmpInt :: MyInt -> MyInt -> Ordering; 9.90/4.21 primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; 9.90/4.21 primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; 9.90/4.21 primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; 9.90/4.21 primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; 9.90/4.21 primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; 9.90/4.21 primCmpInt (Main.Pos x) (Main.Neg y) = GT; 9.90/4.21 primCmpInt (Main.Neg x) (Main.Pos y) = LT; 9.90/4.21 primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; 9.90/4.21 9.90/4.21 primCmpNat :: Main.Nat -> Main.Nat -> Ordering; 9.90/4.21 primCmpNat Main.Zero Main.Zero = EQ; 9.90/4.21 primCmpNat Main.Zero (Main.Succ y) = LT; 9.90/4.21 primCmpNat (Main.Succ x) Main.Zero = GT; 9.90/4.21 primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; 9.90/4.21 9.90/4.21 primMinusInt :: MyInt -> MyInt -> MyInt; 9.90/4.21 primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); 9.90/4.21 primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); 9.90/4.21 primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; 9.90/4.21 primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; 9.90/4.21 9.90/4.21 primMinusNat :: Main.Nat -> Main.Nat -> MyInt; 9.90/4.21 primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; 9.90/4.21 primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); 9.90/4.21 primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); 9.90/4.21 primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; 9.90/4.21 9.90/4.21 primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; 9.90/4.21 primPlusNat Main.Zero Main.Zero = Main.Zero; 9.90/4.21 primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; 9.90/4.21 primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; 9.90/4.21 primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); 9.90/4.21 9.90/4.21 splitAt :: MyInt -> List a -> Tup2 (List a) (List a); 9.90/4.21 splitAt n xs = splitAt3 n xs; 9.90/4.21 splitAt vv Nil = splitAt1 vv Nil; 9.90/4.21 splitAt n (Cons x xs) = splitAt0 n (Cons x xs); 9.90/4.21 9.90/4.21 splitAt0 n (Cons x xs) = Tup2 (Cons x (splitAt0Xs' n xs)) (splitAt0Xs'' n xs); 9.90/4.21 9.90/4.21 splitAt0Vu42 wy wz = splitAt (msMyInt wy (Main.Pos (Main.Succ Main.Zero))) wz; 9.90/4.21 9.90/4.21 splitAt0Xs' wy wz = splitAt0Xs'0 wy wz (splitAt0Vu42 wy wz); 9.90/4.21 9.90/4.21 splitAt0Xs'' wy wz = splitAt0Xs''0 wy wz (splitAt0Vu42 wy wz); 9.90/4.21 9.90/4.21 splitAt0Xs''0 wy wz (Tup2 vw xs'') = xs''; 9.90/4.21 9.90/4.21 splitAt0Xs'0 wy wz (Tup2 xs' vx) = xs'; 9.90/4.21 9.90/4.21 splitAt1 vv Nil = Tup2 Nil Nil; 9.90/4.21 splitAt1 wu wv = splitAt0 wu wv; 9.90/4.21 9.90/4.21 splitAt2 n xs MyTrue = Tup2 Nil xs; 9.90/4.21 splitAt2 n xs MyFalse = splitAt1 n xs; 9.90/4.21 9.90/4.21 splitAt3 n xs = splitAt2 n xs (ltEsMyInt n (Main.Pos Main.Zero)); 9.90/4.21 splitAt3 ww wx = splitAt1 ww wx; 9.90/4.21 9.90/4.21 } 9.90/4.21 9.90/4.21 ---------------------------------------- 9.90/4.21 9.90/4.21 (1) BR (EQUIVALENT) 9.90/4.21 Replaced joker patterns by fresh variables and removed binding patterns. 9.90/4.21 ---------------------------------------- 9.90/4.21 9.90/4.21 (2) 9.90/4.21 Obligation: 9.90/4.21 mainModule Main 9.90/4.21 module Main where { 9.90/4.21 import qualified Prelude; 9.90/4.21 data List a = Cons a (List a) | Nil ; 9.90/4.21 9.90/4.21 data MyBool = MyTrue | MyFalse ; 9.90/4.21 9.90/4.21 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.90/4.21 9.90/4.21 data Main.Nat = Succ Main.Nat | Zero ; 9.90/4.21 9.90/4.21 data Ordering = LT | EQ | GT ; 9.90/4.21 9.90/4.21 data Tup2 b a = Tup2 b a ; 9.90/4.21 9.90/4.21 compareMyInt :: MyInt -> MyInt -> Ordering; 9.90/4.21 compareMyInt = primCmpInt; 9.90/4.21 9.90/4.21 esEsOrdering :: Ordering -> Ordering -> MyBool; 9.90/4.21 esEsOrdering LT LT = MyTrue; 9.90/4.21 esEsOrdering LT EQ = MyFalse; 9.90/4.21 esEsOrdering LT GT = MyFalse; 9.90/4.21 esEsOrdering EQ LT = MyFalse; 9.90/4.21 esEsOrdering EQ EQ = MyTrue; 9.90/4.21 esEsOrdering EQ GT = MyFalse; 9.90/4.21 esEsOrdering GT LT = MyFalse; 9.90/4.21 esEsOrdering GT EQ = MyFalse; 9.90/4.21 esEsOrdering GT GT = MyTrue; 9.90/4.21 9.90/4.21 fsEsOrdering :: Ordering -> Ordering -> MyBool; 9.90/4.21 fsEsOrdering x y = not (esEsOrdering x y); 9.90/4.22 9.90/4.22 ltEsMyInt :: MyInt -> MyInt -> MyBool; 9.90/4.22 ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; 9.90/4.22 9.90/4.22 msMyInt :: MyInt -> MyInt -> MyInt; 9.90/4.22 msMyInt = primMinusInt; 9.90/4.22 9.90/4.22 not :: MyBool -> MyBool; 9.90/4.22 not MyTrue = MyFalse; 9.90/4.22 not MyFalse = MyTrue; 9.90/4.22 9.90/4.22 primCmpInt :: MyInt -> MyInt -> Ordering; 9.90/4.22 primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; 9.90/4.22 primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; 9.90/4.22 primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; 9.90/4.22 primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; 9.90/4.22 primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; 9.90/4.22 primCmpInt (Main.Pos x) (Main.Neg y) = GT; 9.90/4.22 primCmpInt (Main.Neg x) (Main.Pos y) = LT; 9.90/4.22 primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; 9.90/4.22 9.90/4.22 primCmpNat :: Main.Nat -> Main.Nat -> Ordering; 9.90/4.22 primCmpNat Main.Zero Main.Zero = EQ; 9.90/4.22 primCmpNat Main.Zero (Main.Succ y) = LT; 9.90/4.22 primCmpNat (Main.Succ x) Main.Zero = GT; 9.90/4.22 primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; 9.90/4.22 9.90/4.22 primMinusInt :: MyInt -> MyInt -> MyInt; 9.90/4.22 primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); 9.90/4.22 primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); 9.90/4.22 primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; 9.90/4.22 primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; 9.90/4.22 9.90/4.22 primMinusNat :: Main.Nat -> Main.Nat -> MyInt; 9.90/4.22 primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; 9.90/4.22 primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); 9.90/4.22 primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); 9.90/4.22 primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; 9.90/4.22 9.90/4.22 primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; 9.90/4.22 primPlusNat Main.Zero Main.Zero = Main.Zero; 9.90/4.22 primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; 9.90/4.22 primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; 9.90/4.22 primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); 9.90/4.22 9.90/4.22 splitAt :: MyInt -> List a -> Tup2 (List a) (List a); 9.90/4.22 splitAt n xs = splitAt3 n xs; 9.90/4.22 splitAt vv Nil = splitAt1 vv Nil; 9.90/4.22 splitAt n (Cons x xs) = splitAt0 n (Cons x xs); 9.90/4.22 9.90/4.22 splitAt0 n (Cons x xs) = Tup2 (Cons x (splitAt0Xs' n xs)) (splitAt0Xs'' n xs); 9.90/4.22 9.90/4.22 splitAt0Vu42 wy wz = splitAt (msMyInt wy (Main.Pos (Main.Succ Main.Zero))) wz; 9.90/4.22 9.90/4.22 splitAt0Xs' wy wz = splitAt0Xs'0 wy wz (splitAt0Vu42 wy wz); 9.90/4.22 9.90/4.22 splitAt0Xs'' wy wz = splitAt0Xs''0 wy wz (splitAt0Vu42 wy wz); 9.90/4.22 9.90/4.22 splitAt0Xs''0 wy wz (Tup2 vw xs'') = xs''; 9.90/4.22 9.90/4.22 splitAt0Xs'0 wy wz (Tup2 xs' vx) = xs'; 9.90/4.22 9.90/4.22 splitAt1 vv Nil = Tup2 Nil Nil; 9.90/4.22 splitAt1 wu wv = splitAt0 wu wv; 9.90/4.22 9.90/4.22 splitAt2 n xs MyTrue = Tup2 Nil xs; 9.90/4.22 splitAt2 n xs MyFalse = splitAt1 n xs; 9.90/4.22 9.90/4.22 splitAt3 n xs = splitAt2 n xs (ltEsMyInt n (Main.Pos Main.Zero)); 9.90/4.22 splitAt3 ww wx = splitAt1 ww wx; 9.90/4.22 9.90/4.22 } 9.90/4.22 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (3) COR (EQUIVALENT) 9.90/4.22 Cond Reductions: 9.90/4.22 The following Function with conditions 9.90/4.22 "undefined |Falseundefined; 9.90/4.22 " 9.90/4.22 is transformed to 9.90/4.22 "undefined = undefined1; 9.90/4.22 " 9.90/4.22 "undefined0 True = undefined; 9.90/4.22 " 9.90/4.22 "undefined1 = undefined0 False; 9.90/4.22 " 9.90/4.22 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (4) 9.90/4.22 Obligation: 9.90/4.22 mainModule Main 9.90/4.22 module Main where { 9.90/4.22 import qualified Prelude; 9.90/4.22 data List a = Cons a (List a) | Nil ; 9.90/4.22 9.90/4.22 data MyBool = MyTrue | MyFalse ; 9.90/4.22 9.90/4.22 data MyInt = Pos Main.Nat | Neg Main.Nat ; 9.90/4.22 9.90/4.22 data Main.Nat = Succ Main.Nat | Zero ; 9.90/4.22 9.90/4.22 data Ordering = LT | EQ | GT ; 9.90/4.22 9.90/4.22 data Tup2 b a = Tup2 b a ; 9.90/4.22 9.90/4.22 compareMyInt :: MyInt -> MyInt -> Ordering; 9.90/4.22 compareMyInt = primCmpInt; 9.90/4.22 9.90/4.22 esEsOrdering :: Ordering -> Ordering -> MyBool; 9.90/4.22 esEsOrdering LT LT = MyTrue; 9.90/4.22 esEsOrdering LT EQ = MyFalse; 9.90/4.22 esEsOrdering LT GT = MyFalse; 9.90/4.22 esEsOrdering EQ LT = MyFalse; 9.90/4.22 esEsOrdering EQ EQ = MyTrue; 9.90/4.22 esEsOrdering EQ GT = MyFalse; 9.90/4.22 esEsOrdering GT LT = MyFalse; 9.90/4.22 esEsOrdering GT EQ = MyFalse; 9.90/4.22 esEsOrdering GT GT = MyTrue; 9.90/4.22 9.90/4.22 fsEsOrdering :: Ordering -> Ordering -> MyBool; 9.90/4.22 fsEsOrdering x y = not (esEsOrdering x y); 9.90/4.22 9.90/4.22 ltEsMyInt :: MyInt -> MyInt -> MyBool; 9.90/4.22 ltEsMyInt x y = fsEsOrdering (compareMyInt x y) GT; 9.90/4.22 9.90/4.22 msMyInt :: MyInt -> MyInt -> MyInt; 9.90/4.22 msMyInt = primMinusInt; 9.90/4.22 9.90/4.22 not :: MyBool -> MyBool; 9.90/4.22 not MyTrue = MyFalse; 9.90/4.22 not MyFalse = MyTrue; 9.90/4.22 9.90/4.22 primCmpInt :: MyInt -> MyInt -> Ordering; 9.90/4.22 primCmpInt (Main.Pos Main.Zero) (Main.Pos Main.Zero) = EQ; 9.90/4.22 primCmpInt (Main.Pos Main.Zero) (Main.Neg Main.Zero) = EQ; 9.90/4.22 primCmpInt (Main.Neg Main.Zero) (Main.Pos Main.Zero) = EQ; 9.90/4.22 primCmpInt (Main.Neg Main.Zero) (Main.Neg Main.Zero) = EQ; 9.90/4.22 primCmpInt (Main.Pos x) (Main.Pos y) = primCmpNat x y; 9.90/4.22 primCmpInt (Main.Pos x) (Main.Neg y) = GT; 9.90/4.22 primCmpInt (Main.Neg x) (Main.Pos y) = LT; 9.90/4.22 primCmpInt (Main.Neg x) (Main.Neg y) = primCmpNat y x; 9.90/4.22 9.90/4.22 primCmpNat :: Main.Nat -> Main.Nat -> Ordering; 9.90/4.22 primCmpNat Main.Zero Main.Zero = EQ; 9.90/4.22 primCmpNat Main.Zero (Main.Succ y) = LT; 9.90/4.22 primCmpNat (Main.Succ x) Main.Zero = GT; 9.90/4.22 primCmpNat (Main.Succ x) (Main.Succ y) = primCmpNat x y; 9.90/4.22 9.90/4.22 primMinusInt :: MyInt -> MyInt -> MyInt; 9.90/4.22 primMinusInt (Main.Pos x) (Main.Neg y) = Main.Pos (primPlusNat x y); 9.90/4.22 primMinusInt (Main.Neg x) (Main.Pos y) = Main.Neg (primPlusNat x y); 9.90/4.22 primMinusInt (Main.Neg x) (Main.Neg y) = primMinusNat y x; 9.90/4.22 primMinusInt (Main.Pos x) (Main.Pos y) = primMinusNat x y; 9.90/4.22 9.90/4.22 primMinusNat :: Main.Nat -> Main.Nat -> MyInt; 9.90/4.22 primMinusNat Main.Zero Main.Zero = Main.Pos Main.Zero; 9.90/4.22 primMinusNat Main.Zero (Main.Succ y) = Main.Neg (Main.Succ y); 9.90/4.22 primMinusNat (Main.Succ x) Main.Zero = Main.Pos (Main.Succ x); 9.90/4.22 primMinusNat (Main.Succ x) (Main.Succ y) = primMinusNat x y; 9.90/4.22 9.90/4.22 primPlusNat :: Main.Nat -> Main.Nat -> Main.Nat; 9.90/4.22 primPlusNat Main.Zero Main.Zero = Main.Zero; 9.90/4.22 primPlusNat Main.Zero (Main.Succ y) = Main.Succ y; 9.90/4.22 primPlusNat (Main.Succ x) Main.Zero = Main.Succ x; 9.90/4.22 primPlusNat (Main.Succ x) (Main.Succ y) = Main.Succ (Main.Succ (primPlusNat x y)); 9.90/4.22 9.90/4.22 splitAt :: MyInt -> List a -> Tup2 (List a) (List a); 9.90/4.22 splitAt n xs = splitAt3 n xs; 9.90/4.22 splitAt vv Nil = splitAt1 vv Nil; 9.90/4.22 splitAt n (Cons x xs) = splitAt0 n (Cons x xs); 9.90/4.22 9.90/4.22 splitAt0 n (Cons x xs) = Tup2 (Cons x (splitAt0Xs' n xs)) (splitAt0Xs'' n xs); 9.90/4.22 9.90/4.22 splitAt0Vu42 wy wz = splitAt (msMyInt wy (Main.Pos (Main.Succ Main.Zero))) wz; 9.90/4.22 9.90/4.22 splitAt0Xs' wy wz = splitAt0Xs'0 wy wz (splitAt0Vu42 wy wz); 9.90/4.22 9.90/4.22 splitAt0Xs'' wy wz = splitAt0Xs''0 wy wz (splitAt0Vu42 wy wz); 9.90/4.22 9.90/4.22 splitAt0Xs''0 wy wz (Tup2 vw xs'') = xs''; 9.90/4.22 9.90/4.22 splitAt0Xs'0 wy wz (Tup2 xs' vx) = xs'; 9.90/4.22 9.90/4.22 splitAt1 vv Nil = Tup2 Nil Nil; 9.90/4.22 splitAt1 wu wv = splitAt0 wu wv; 9.90/4.22 9.90/4.22 splitAt2 n xs MyTrue = Tup2 Nil xs; 9.90/4.22 splitAt2 n xs MyFalse = splitAt1 n xs; 9.90/4.22 9.90/4.22 splitAt3 n xs = splitAt2 n xs (ltEsMyInt n (Main.Pos Main.Zero)); 9.90/4.22 splitAt3 ww wx = splitAt1 ww wx; 9.90/4.22 9.90/4.22 } 9.90/4.22 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (5) Narrow (SOUND) 9.90/4.22 Haskell To QDPs 9.90/4.22 9.90/4.22 digraph dp_graph { 9.90/4.22 node [outthreshold=100, inthreshold=100];1[label="splitAt",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 9.90/4.22 3[label="splitAt xu3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 9.90/4.22 4[label="splitAt xu3 xu4",fontsize=16,color="black",shape="triangle"];4 -> 5[label="",style="solid", color="black", weight=3]; 9.90/4.22 5[label="splitAt3 xu3 xu4",fontsize=16,color="black",shape="box"];5 -> 6[label="",style="solid", color="black", weight=3]; 9.90/4.22 6[label="splitAt2 xu3 xu4 (ltEsMyInt xu3 (Pos Zero))",fontsize=16,color="black",shape="box"];6 -> 7[label="",style="solid", color="black", weight=3]; 9.90/4.22 7[label="splitAt2 xu3 xu4 (fsEsOrdering (compareMyInt xu3 (Pos Zero)) GT)",fontsize=16,color="black",shape="box"];7 -> 8[label="",style="solid", color="black", weight=3]; 9.90/4.22 8[label="splitAt2 xu3 xu4 (not (esEsOrdering (compareMyInt xu3 (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];8 -> 9[label="",style="solid", color="black", weight=3]; 9.90/4.22 9[label="splitAt2 xu3 xu4 (not (esEsOrdering (primCmpInt xu3 (Pos Zero)) GT))",fontsize=16,color="burlywood",shape="box"];64[label="xu3/Pos xu30",fontsize=10,color="white",style="solid",shape="box"];9 -> 64[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 64 -> 10[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 65[label="xu3/Neg xu30",fontsize=10,color="white",style="solid",shape="box"];9 -> 65[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 65 -> 11[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 10[label="splitAt2 (Pos xu30) xu4 (not (esEsOrdering (primCmpInt (Pos xu30) (Pos Zero)) GT))",fontsize=16,color="burlywood",shape="box"];66[label="xu30/Succ xu300",fontsize=10,color="white",style="solid",shape="box"];10 -> 66[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 66 -> 12[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 67[label="xu30/Zero",fontsize=10,color="white",style="solid",shape="box"];10 -> 67[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 67 -> 13[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 11[label="splitAt2 (Neg xu30) xu4 (not (esEsOrdering (primCmpInt (Neg xu30) (Pos Zero)) GT))",fontsize=16,color="burlywood",shape="box"];68[label="xu30/Succ xu300",fontsize=10,color="white",style="solid",shape="box"];11 -> 68[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 68 -> 14[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 69[label="xu30/Zero",fontsize=10,color="white",style="solid",shape="box"];11 -> 69[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 69 -> 15[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 12[label="splitAt2 (Pos (Succ xu300)) xu4 (not (esEsOrdering (primCmpInt (Pos (Succ xu300)) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];12 -> 16[label="",style="solid", color="black", weight=3]; 9.90/4.22 13[label="splitAt2 (Pos Zero) xu4 (not (esEsOrdering (primCmpInt (Pos Zero) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];13 -> 17[label="",style="solid", color="black", weight=3]; 9.90/4.22 14[label="splitAt2 (Neg (Succ xu300)) xu4 (not (esEsOrdering (primCmpInt (Neg (Succ xu300)) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];14 -> 18[label="",style="solid", color="black", weight=3]; 9.90/4.22 15[label="splitAt2 (Neg Zero) xu4 (not (esEsOrdering (primCmpInt (Neg Zero) (Pos Zero)) GT))",fontsize=16,color="black",shape="box"];15 -> 19[label="",style="solid", color="black", weight=3]; 9.90/4.22 16[label="splitAt2 (Pos (Succ xu300)) xu4 (not (esEsOrdering (primCmpNat (Succ xu300) Zero) GT))",fontsize=16,color="black",shape="box"];16 -> 20[label="",style="solid", color="black", weight=3]; 9.90/4.22 17[label="splitAt2 (Pos Zero) xu4 (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];17 -> 21[label="",style="solid", color="black", weight=3]; 9.90/4.22 18[label="splitAt2 (Neg (Succ xu300)) xu4 (not (esEsOrdering LT GT))",fontsize=16,color="black",shape="box"];18 -> 22[label="",style="solid", color="black", weight=3]; 9.90/4.22 19[label="splitAt2 (Neg Zero) xu4 (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];19 -> 23[label="",style="solid", color="black", weight=3]; 9.90/4.22 20[label="splitAt2 (Pos (Succ xu300)) xu4 (not (esEsOrdering GT GT))",fontsize=16,color="black",shape="box"];20 -> 24[label="",style="solid", color="black", weight=3]; 9.90/4.22 21[label="splitAt2 (Pos Zero) xu4 (not MyFalse)",fontsize=16,color="black",shape="box"];21 -> 25[label="",style="solid", color="black", weight=3]; 9.90/4.22 22[label="splitAt2 (Neg (Succ xu300)) xu4 (not MyFalse)",fontsize=16,color="black",shape="box"];22 -> 26[label="",style="solid", color="black", weight=3]; 9.90/4.22 23[label="splitAt2 (Neg Zero) xu4 (not MyFalse)",fontsize=16,color="black",shape="box"];23 -> 27[label="",style="solid", color="black", weight=3]; 9.90/4.22 24[label="splitAt2 (Pos (Succ xu300)) xu4 (not MyTrue)",fontsize=16,color="black",shape="box"];24 -> 28[label="",style="solid", color="black", weight=3]; 9.90/4.22 25[label="splitAt2 (Pos Zero) xu4 MyTrue",fontsize=16,color="black",shape="box"];25 -> 29[label="",style="solid", color="black", weight=3]; 9.90/4.22 26[label="splitAt2 (Neg (Succ xu300)) xu4 MyTrue",fontsize=16,color="black",shape="box"];26 -> 30[label="",style="solid", color="black", weight=3]; 9.90/4.22 27[label="splitAt2 (Neg Zero) xu4 MyTrue",fontsize=16,color="black",shape="box"];27 -> 31[label="",style="solid", color="black", weight=3]; 9.90/4.22 28[label="splitAt2 (Pos (Succ xu300)) xu4 MyFalse",fontsize=16,color="black",shape="box"];28 -> 32[label="",style="solid", color="black", weight=3]; 9.90/4.22 29[label="Tup2 Nil xu4",fontsize=16,color="green",shape="box"];30[label="Tup2 Nil xu4",fontsize=16,color="green",shape="box"];31[label="Tup2 Nil xu4",fontsize=16,color="green",shape="box"];32[label="splitAt1 (Pos (Succ xu300)) xu4",fontsize=16,color="burlywood",shape="box"];70[label="xu4/Cons xu40 xu41",fontsize=10,color="white",style="solid",shape="box"];32 -> 70[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 70 -> 33[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 71[label="xu4/Nil",fontsize=10,color="white",style="solid",shape="box"];32 -> 71[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 71 -> 34[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 33[label="splitAt1 (Pos (Succ xu300)) (Cons xu40 xu41)",fontsize=16,color="black",shape="box"];33 -> 35[label="",style="solid", color="black", weight=3]; 9.90/4.22 34[label="splitAt1 (Pos (Succ xu300)) Nil",fontsize=16,color="black",shape="box"];34 -> 36[label="",style="solid", color="black", weight=3]; 9.90/4.22 35[label="splitAt0 (Pos (Succ xu300)) (Cons xu40 xu41)",fontsize=16,color="black",shape="box"];35 -> 37[label="",style="solid", color="black", weight=3]; 9.90/4.22 36[label="Tup2 Nil Nil",fontsize=16,color="green",shape="box"];37[label="Tup2 (Cons xu40 (splitAt0Xs' (Pos (Succ xu300)) xu41)) (splitAt0Xs'' (Pos (Succ xu300)) xu41)",fontsize=16,color="green",shape="box"];37 -> 38[label="",style="dashed", color="green", weight=3]; 9.90/4.22 37 -> 39[label="",style="dashed", color="green", weight=3]; 9.90/4.22 38[label="splitAt0Xs' (Pos (Succ xu300)) xu41",fontsize=16,color="black",shape="box"];38 -> 40[label="",style="solid", color="black", weight=3]; 9.90/4.22 39[label="splitAt0Xs'' (Pos (Succ xu300)) xu41",fontsize=16,color="black",shape="box"];39 -> 41[label="",style="solid", color="black", weight=3]; 9.90/4.22 40 -> 44[label="",style="dashed", color="red", weight=0]; 9.90/4.22 40[label="splitAt0Xs'0 (Pos (Succ xu300)) xu41 (splitAt0Vu42 (Pos (Succ xu300)) xu41)",fontsize=16,color="magenta"];40 -> 45[label="",style="dashed", color="magenta", weight=3]; 9.90/4.22 41 -> 49[label="",style="dashed", color="red", weight=0]; 9.90/4.22 41[label="splitAt0Xs''0 (Pos (Succ xu300)) xu41 (splitAt0Vu42 (Pos (Succ xu300)) xu41)",fontsize=16,color="magenta"];41 -> 50[label="",style="dashed", color="magenta", weight=3]; 9.90/4.22 45[label="splitAt0Vu42 (Pos (Succ xu300)) xu41",fontsize=16,color="black",shape="triangle"];45 -> 47[label="",style="solid", color="black", weight=3]; 9.90/4.22 44[label="splitAt0Xs'0 (Pos (Succ xu300)) xu41 xu5",fontsize=16,color="burlywood",shape="triangle"];72[label="xu5/Tup2 xu50 xu51",fontsize=10,color="white",style="solid",shape="box"];44 -> 72[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 72 -> 48[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 50 -> 45[label="",style="dashed", color="red", weight=0]; 9.90/4.22 50[label="splitAt0Vu42 (Pos (Succ xu300)) xu41",fontsize=16,color="magenta"];49[label="splitAt0Xs''0 (Pos (Succ xu300)) xu41 xu6",fontsize=16,color="burlywood",shape="triangle"];73[label="xu6/Tup2 xu60 xu61",fontsize=10,color="white",style="solid",shape="box"];49 -> 73[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 73 -> 52[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 47 -> 4[label="",style="dashed", color="red", weight=0]; 9.90/4.22 47[label="splitAt (msMyInt (Pos (Succ xu300)) (Pos (Succ Zero))) xu41",fontsize=16,color="magenta"];47 -> 53[label="",style="dashed", color="magenta", weight=3]; 9.90/4.22 47 -> 54[label="",style="dashed", color="magenta", weight=3]; 9.90/4.22 48[label="splitAt0Xs'0 (Pos (Succ xu300)) xu41 (Tup2 xu50 xu51)",fontsize=16,color="black",shape="box"];48 -> 55[label="",style="solid", color="black", weight=3]; 9.90/4.22 52[label="splitAt0Xs''0 (Pos (Succ xu300)) xu41 (Tup2 xu60 xu61)",fontsize=16,color="black",shape="box"];52 -> 56[label="",style="solid", color="black", weight=3]; 9.90/4.22 53[label="msMyInt (Pos (Succ xu300)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];53 -> 57[label="",style="solid", color="black", weight=3]; 9.90/4.22 54[label="xu41",fontsize=16,color="green",shape="box"];55[label="xu50",fontsize=16,color="green",shape="box"];56[label="xu61",fontsize=16,color="green",shape="box"];57[label="primMinusInt (Pos (Succ xu300)) (Pos (Succ Zero))",fontsize=16,color="black",shape="box"];57 -> 58[label="",style="solid", color="black", weight=3]; 9.90/4.22 58[label="primMinusNat (Succ xu300) (Succ Zero)",fontsize=16,color="black",shape="box"];58 -> 59[label="",style="solid", color="black", weight=3]; 9.90/4.22 59[label="primMinusNat xu300 Zero",fontsize=16,color="burlywood",shape="box"];74[label="xu300/Succ xu3000",fontsize=10,color="white",style="solid",shape="box"];59 -> 74[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 74 -> 60[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 75[label="xu300/Zero",fontsize=10,color="white",style="solid",shape="box"];59 -> 75[label="",style="solid", color="burlywood", weight=9]; 9.90/4.22 75 -> 61[label="",style="solid", color="burlywood", weight=3]; 9.90/4.22 60[label="primMinusNat (Succ xu3000) Zero",fontsize=16,color="black",shape="box"];60 -> 62[label="",style="solid", color="black", weight=3]; 9.90/4.22 61[label="primMinusNat Zero Zero",fontsize=16,color="black",shape="box"];61 -> 63[label="",style="solid", color="black", weight=3]; 9.90/4.22 62[label="Pos (Succ xu3000)",fontsize=16,color="green",shape="box"];63[label="Pos Zero",fontsize=16,color="green",shape="box"];} 9.90/4.22 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (6) 9.90/4.22 Obligation: 9.90/4.22 Q DP problem: 9.90/4.22 The TRS P consists of the following rules: 9.90/4.22 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) 9.90/4.22 new_splitAt0Vu42(xu300, xu41, h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) 9.90/4.22 9.90/4.22 The TRS R consists of the following rules: 9.90/4.22 9.90/4.22 new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) 9.90/4.22 new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) 9.90/4.22 9.90/4.22 The set Q consists of the following terms: 9.90/4.22 9.90/4.22 new_primMinusNat(Main.Zero) 9.90/4.22 new_primMinusNat(Main.Succ(x0)) 9.90/4.22 9.90/4.22 We have to consider all minimal (P,Q,R)-chains. 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (7) TransformationProof (EQUIVALENT) 9.90/4.22 By narrowing [LPAR04] the rule new_splitAt0Vu42(xu300, xu41, h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) at position [0] we obtained the following new rules [LPAR04]: 9.90/4.22 9.90/4.22 (new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2),new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2)) 9.90/4.22 (new_splitAt0Vu42(Main.Zero, y1, y2) -> new_splitAt(Main.Pos(Main.Zero), y1, y2),new_splitAt0Vu42(Main.Zero, y1, y2) -> new_splitAt(Main.Pos(Main.Zero), y1, y2)) 9.90/4.22 9.90/4.22 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (8) 9.90/4.22 Obligation: 9.90/4.22 Q DP problem: 9.90/4.22 The TRS P consists of the following rules: 9.90/4.22 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) 9.90/4.22 new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) 9.90/4.22 new_splitAt0Vu42(Main.Zero, y1, y2) -> new_splitAt(Main.Pos(Main.Zero), y1, y2) 9.90/4.22 9.90/4.22 The TRS R consists of the following rules: 9.90/4.22 9.90/4.22 new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) 9.90/4.22 new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) 9.90/4.22 9.90/4.22 The set Q consists of the following terms: 9.90/4.22 9.90/4.22 new_primMinusNat(Main.Zero) 9.90/4.22 new_primMinusNat(Main.Succ(x0)) 9.90/4.22 9.90/4.22 We have to consider all minimal (P,Q,R)-chains. 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (9) DependencyGraphProof (EQUIVALENT) 9.90/4.22 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (10) 9.90/4.22 Obligation: 9.90/4.22 Q DP problem: 9.90/4.22 The TRS P consists of the following rules: 9.90/4.22 9.90/4.22 new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) 9.90/4.22 9.90/4.22 The TRS R consists of the following rules: 9.90/4.22 9.90/4.22 new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) 9.90/4.22 new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) 9.90/4.22 9.90/4.22 The set Q consists of the following terms: 9.90/4.22 9.90/4.22 new_primMinusNat(Main.Zero) 9.90/4.22 new_primMinusNat(Main.Succ(x0)) 9.90/4.22 9.90/4.22 We have to consider all minimal (P,Q,R)-chains. 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (11) TransformationProof (EQUIVALENT) 9.90/4.22 By narrowing [LPAR04] the rule new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt(new_primMinusNat(xu300), xu41, h) at position [0] we obtained the following new rules [LPAR04]: 9.90/4.22 9.90/4.22 (new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3),new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3)) 9.90/4.22 (new_splitAt(Main.Pos(Main.Succ(Main.Zero)), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Zero), y2, y3),new_splitAt(Main.Pos(Main.Succ(Main.Zero)), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Zero), y2, y3)) 9.90/4.22 9.90/4.22 9.90/4.22 ---------------------------------------- 9.90/4.22 9.90/4.22 (12) 9.90/4.22 Obligation: 9.90/4.22 Q DP problem: 9.90/4.22 The TRS P consists of the following rules: 9.90/4.22 9.90/4.22 new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) 9.90/4.22 new_splitAt(Main.Pos(Main.Succ(Main.Zero)), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Zero), y2, y3) 10.28/4.22 10.28/4.22 The TRS R consists of the following rules: 10.28/4.22 10.28/4.22 new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) 10.28/4.22 new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) 10.28/4.22 10.28/4.22 The set Q consists of the following terms: 10.28/4.22 10.28/4.22 new_primMinusNat(Main.Zero) 10.28/4.22 new_primMinusNat(Main.Succ(x0)) 10.28/4.22 10.28/4.22 We have to consider all minimal (P,Q,R)-chains. 10.28/4.22 ---------------------------------------- 10.28/4.22 10.28/4.22 (13) DependencyGraphProof (EQUIVALENT) 10.28/4.22 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node. 10.28/4.22 ---------------------------------------- 10.28/4.22 10.28/4.22 (14) 10.28/4.22 Obligation: 10.28/4.22 Q DP problem: 10.28/4.22 The TRS P consists of the following rules: 10.28/4.22 10.28/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) 10.28/4.22 new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) 10.28/4.22 new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) 10.28/4.22 10.28/4.22 The TRS R consists of the following rules: 10.28/4.22 10.28/4.22 new_primMinusNat(Main.Succ(xu3000)) -> Main.Pos(Main.Succ(xu3000)) 10.28/4.22 new_primMinusNat(Main.Zero) -> Main.Pos(Main.Zero) 10.28/4.22 10.28/4.22 The set Q consists of the following terms: 10.28/4.22 10.28/4.22 new_primMinusNat(Main.Zero) 10.28/4.22 new_primMinusNat(Main.Succ(x0)) 10.28/4.22 10.28/4.22 We have to consider all minimal (P,Q,R)-chains. 10.28/4.22 ---------------------------------------- 10.28/4.22 10.28/4.22 (15) UsableRulesProof (EQUIVALENT) 10.28/4.22 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 10.28/4.22 ---------------------------------------- 10.28/4.22 10.28/4.22 (16) 10.28/4.22 Obligation: 10.28/4.22 Q DP problem: 10.28/4.22 The TRS P consists of the following rules: 10.28/4.22 10.28/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) 10.28/4.22 new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) 10.28/4.22 new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) 10.28/4.22 10.28/4.22 R is empty. 10.28/4.22 The set Q consists of the following terms: 10.28/4.22 10.28/4.22 new_primMinusNat(Main.Zero) 10.28/4.22 new_primMinusNat(Main.Succ(x0)) 10.28/4.22 10.28/4.22 We have to consider all minimal (P,Q,R)-chains. 10.28/4.22 ---------------------------------------- 10.28/4.22 10.28/4.22 (17) QReductionProof (EQUIVALENT) 10.28/4.22 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 10.28/4.22 10.28/4.22 new_primMinusNat(Main.Zero) 10.28/4.22 new_primMinusNat(Main.Succ(x0)) 10.28/4.22 10.28/4.22 10.28/4.22 ---------------------------------------- 10.28/4.22 10.28/4.22 (18) 10.28/4.22 Obligation: 10.28/4.22 Q DP problem: 10.28/4.22 The TRS P consists of the following rules: 10.28/4.22 10.28/4.22 new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) 10.28/4.22 new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) 10.28/4.22 new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) 10.28/4.22 10.28/4.22 R is empty. 10.28/4.22 Q is empty. 10.28/4.22 We have to consider all minimal (P,Q,R)-chains. 10.28/4.22 ---------------------------------------- 10.28/4.22 10.28/4.22 (19) QDPSizeChangeProof (EQUIVALENT) 10.28/4.22 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 10.28/4.22 10.28/4.22 From the DPs we obtained the following set of size-change graphs: 10.28/4.22 *new_splitAt0Vu42(Main.Succ(x0), y1, y2) -> new_splitAt(Main.Pos(Main.Succ(x0)), y1, y2) 10.28/4.22 The graph contains the following edges 2 >= 2, 3 >= 3 10.28/4.22 10.28/4.22 10.28/4.22 *new_splitAt(Main.Pos(Main.Succ(Main.Succ(x0))), Cons(y1, y2), y3) -> new_splitAt(Main.Pos(Main.Succ(x0)), y2, y3) 10.28/4.22 The graph contains the following edges 2 > 2, 3 >= 3 10.28/4.22 10.28/4.22 10.28/4.22 *new_splitAt(Main.Pos(Main.Succ(xu300)), Cons(xu40, xu41), h) -> new_splitAt0Vu42(xu300, xu41, h) 10.28/4.22 The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3 10.28/4.22 10.28/4.22 10.28/4.22 ---------------------------------------- 10.28/4.22 10.28/4.22 (20) 10.28/4.22 YES 10.28/4.26 EOF