7.89/3.53 MAYBE 9.63/4.02 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 9.63/4.02 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 9.63/4.02 9.63/4.02 9.63/4.02 H-Termination with start terms of the given HASKELL could not be shown: 9.63/4.02 9.63/4.02 (0) HASKELL 9.63/4.02 (1) BR [EQUIVALENT, 0 ms] 9.63/4.02 (2) HASKELL 9.63/4.02 (3) COR [EQUIVALENT, 0 ms] 9.63/4.02 (4) HASKELL 9.63/4.02 (5) Narrow [SOUND, 0 ms] 9.63/4.02 (6) QDP 9.63/4.02 (7) NonTerminationLoopProof [COMPLETE, 0 ms] 9.63/4.02 (8) NO 9.63/4.02 (9) Narrow [COMPLETE, 0 ms] 9.63/4.02 (10) QDP 9.63/4.02 (11) PisEmptyProof [EQUIVALENT, 0 ms] 9.63/4.02 (12) YES 9.63/4.02 9.63/4.02 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (0) 9.63/4.02 Obligation: 9.63/4.02 mainModule Main 9.63/4.02 module Main where { 9.63/4.02 import qualified Prelude; 9.63/4.02 data MyBool = MyTrue | MyFalse ; 9.63/4.02 9.63/4.02 until :: (a -> MyBool) -> (a -> a) -> a -> a; 9.63/4.02 until p f x = until0 x p f (p x); 9.63/4.02 9.63/4.02 until0 x p f MyTrue = x; 9.63/4.02 until0 x p f MyFalse = until p f (f x); 9.63/4.02 9.63/4.02 } 9.63/4.02 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (1) BR (EQUIVALENT) 9.63/4.02 Replaced joker patterns by fresh variables and removed binding patterns. 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (2) 9.63/4.02 Obligation: 9.63/4.02 mainModule Main 9.63/4.02 module Main where { 9.63/4.02 import qualified Prelude; 9.63/4.02 data MyBool = MyTrue | MyFalse ; 9.63/4.02 9.63/4.02 until :: (a -> MyBool) -> (a -> a) -> a -> a; 9.63/4.02 until p f x = until0 x p f (p x); 9.63/4.02 9.63/4.02 until0 x p f MyTrue = x; 9.63/4.02 until0 x p f MyFalse = until p f (f x); 9.63/4.02 9.63/4.02 } 9.63/4.02 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (3) COR (EQUIVALENT) 9.63/4.02 Cond Reductions: 9.63/4.02 The following Function with conditions 9.63/4.02 "undefined |Falseundefined; 9.63/4.02 " 9.63/4.02 is transformed to 9.63/4.02 "undefined = undefined1; 9.63/4.02 " 9.63/4.02 "undefined0 True = undefined; 9.63/4.02 " 9.63/4.02 "undefined1 = undefined0 False; 9.63/4.02 " 9.63/4.02 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (4) 9.63/4.02 Obligation: 9.63/4.02 mainModule Main 9.63/4.02 module Main where { 9.63/4.02 import qualified Prelude; 9.63/4.02 data MyBool = MyTrue | MyFalse ; 9.63/4.02 9.63/4.02 until :: (a -> MyBool) -> (a -> a) -> a -> a; 9.63/4.02 until p f x = until0 x p f (p x); 9.63/4.02 9.63/4.02 until0 x p f MyTrue = x; 9.63/4.02 until0 x p f MyFalse = until p f (f x); 9.63/4.02 9.63/4.02 } 9.63/4.02 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (5) Narrow (SOUND) 9.63/4.02 Haskell To QDPs 9.63/4.02 9.63/4.02 digraph dp_graph { 9.63/4.02 node [outthreshold=100, inthreshold=100];1[label="until",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 9.63/4.02 3[label="until vx3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 9.63/4.02 4[label="until vx3 vx4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 9.63/4.02 5[label="until vx3 vx4 vx5",fontsize=16,color="black",shape="triangle"];5 -> 6[label="",style="solid", color="black", weight=3]; 9.63/4.02 6 -> 7[label="",style="dashed", color="red", weight=0]; 9.63/4.02 6[label="until0 vx5 vx3 vx4 (vx3 vx5)",fontsize=16,color="magenta"];6 -> 8[label="",style="dashed", color="magenta", weight=3]; 9.63/4.02 8[label="vx3 vx5",fontsize=16,color="green",shape="box"];8 -> 12[label="",style="dashed", color="green", weight=3]; 9.63/4.02 7[label="until0 vx5 vx3 vx4 vx6",fontsize=16,color="burlywood",shape="triangle"];17[label="vx6/MyTrue",fontsize=10,color="white",style="solid",shape="box"];7 -> 17[label="",style="solid", color="burlywood", weight=9]; 9.63/4.02 17 -> 10[label="",style="solid", color="burlywood", weight=3]; 9.63/4.02 18[label="vx6/MyFalse",fontsize=10,color="white",style="solid",shape="box"];7 -> 18[label="",style="solid", color="burlywood", weight=9]; 9.63/4.02 18 -> 11[label="",style="solid", color="burlywood", weight=3]; 9.63/4.02 12[label="vx5",fontsize=16,color="green",shape="box"];10[label="until0 vx5 vx3 vx4 MyTrue",fontsize=16,color="black",shape="box"];10 -> 13[label="",style="solid", color="black", weight=3]; 9.63/4.02 11[label="until0 vx5 vx3 vx4 MyFalse",fontsize=16,color="black",shape="box"];11 -> 14[label="",style="solid", color="black", weight=3]; 9.63/4.02 13[label="vx5",fontsize=16,color="green",shape="box"];14 -> 5[label="",style="dashed", color="red", weight=0]; 9.63/4.02 14[label="until vx3 vx4 (vx4 vx5)",fontsize=16,color="magenta"];14 -> 15[label="",style="dashed", color="magenta", weight=3]; 9.63/4.02 15[label="vx4 vx5",fontsize=16,color="green",shape="box"];15 -> 16[label="",style="dashed", color="green", weight=3]; 9.63/4.02 16[label="vx5",fontsize=16,color="green",shape="box"];} 9.63/4.02 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (6) 9.63/4.02 Obligation: 9.63/4.02 Q DP problem: 9.63/4.02 The TRS P consists of the following rules: 9.63/4.02 9.63/4.02 new_until(vx3, vx4, h) -> new_until0(vx3, vx4, h) 9.63/4.02 new_until0(vx3, vx4, h) -> new_until(vx3, vx4, h) 9.63/4.02 9.63/4.02 R is empty. 9.63/4.02 Q is empty. 9.63/4.02 We have to consider all minimal (P,Q,R)-chains. 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (7) NonTerminationLoopProof (COMPLETE) 9.63/4.02 We used the non-termination processor [FROCOS05] to show that the DP problem is infinite. 9.63/4.02 Found a loop by narrowing to the left: 9.63/4.02 9.63/4.02 s = new_until0(vx3', vx4', h') evaluates to t =new_until0(vx3', vx4', h') 9.63/4.02 9.63/4.02 Thus s starts an infinite chain as s semiunifies with t with the following substitutions: 9.63/4.02 * Matcher: [ ] 9.63/4.02 * Semiunifier: [ ] 9.63/4.02 9.63/4.02 -------------------------------------------------------------------------------- 9.63/4.02 Rewriting sequence 9.63/4.02 9.63/4.02 new_until0(vx3', vx4', h') -> new_until(vx3', vx4', h') 9.63/4.02 with rule new_until0(vx3'', vx4'', h'') -> new_until(vx3'', vx4'', h'') at position [] and matcher [vx3'' / vx3', vx4'' / vx4', h'' / h'] 9.63/4.02 9.63/4.02 new_until(vx3', vx4', h') -> new_until0(vx3', vx4', h') 9.63/4.02 with rule new_until(vx3, vx4, h) -> new_until0(vx3, vx4, h) 9.63/4.02 9.63/4.02 Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence 9.63/4.02 9.63/4.02 9.63/4.02 All these steps are and every following step will be a correct step w.r.t to Q. 9.63/4.02 9.63/4.02 9.63/4.02 9.63/4.02 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (8) 9.63/4.02 NO 9.63/4.02 9.63/4.02 ---------------------------------------- 9.63/4.02 9.63/4.02 (9) Narrow (COMPLETE) 9.63/4.02 Haskell To QDPs 9.63/4.02 9.63/4.02 digraph dp_graph { 9.63/4.02 node [outthreshold=100, inthreshold=100];1[label="until",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 9.63/4.02 3[label="until vx3",fontsize=16,color="grey",shape="box"];3 -> 4[label="",style="dashed", color="grey", weight=3]; 9.63/4.02 4[label="until vx3 vx4",fontsize=16,color="grey",shape="box"];4 -> 5[label="",style="dashed", color="grey", weight=3]; 9.63/4.02 5[label="until vx3 vx4 vx5",fontsize=16,color="black",shape="triangle"];5 -> 6[label="",style="solid", color="black", weight=3]; 9.63/4.02 6 -> 7[label="",style="dashed", color="red", weight=0]; 9.63/4.02 6[label="until0 vx5 vx3 vx4 (vx3 vx5)",fontsize=16,color="magenta"];6 -> 8[label="",style="dashed", color="magenta", weight=3]; 9.63/4.03 8[label="vx3 vx5",fontsize=16,color="green",shape="box"];8 -> 12[label="",style="dashed", color="green", weight=3]; 9.63/4.03 7[label="until0 vx5 vx3 vx4 vx6",fontsize=16,color="burlywood",shape="triangle"];17[label="vx6/MyTrue",fontsize=10,color="white",style="solid",shape="box"];7 -> 17[label="",style="solid", color="burlywood", weight=9]; 9.63/4.03 17 -> 10[label="",style="solid", color="burlywood", weight=3]; 9.63/4.03 18[label="vx6/MyFalse",fontsize=10,color="white",style="solid",shape="box"];7 -> 18[label="",style="solid", color="burlywood", weight=9]; 9.63/4.03 18 -> 11[label="",style="solid", color="burlywood", weight=3]; 9.63/4.03 12[label="vx5",fontsize=16,color="green",shape="box"];10[label="until0 vx5 vx3 vx4 MyTrue",fontsize=16,color="black",shape="box"];10 -> 13[label="",style="solid", color="black", weight=3]; 9.63/4.03 11[label="until0 vx5 vx3 vx4 MyFalse",fontsize=16,color="black",shape="box"];11 -> 14[label="",style="solid", color="black", weight=3]; 9.63/4.03 13[label="vx5",fontsize=16,color="green",shape="box"];14 -> 5[label="",style="dashed", color="red", weight=0]; 9.63/4.03 14[label="until vx3 vx4 (vx4 vx5)",fontsize=16,color="magenta"];14 -> 15[label="",style="dashed", color="magenta", weight=3]; 9.63/4.03 15[label="vx4 vx5",fontsize=16,color="green",shape="box"];15 -> 16[label="",style="dashed", color="green", weight=3]; 9.63/4.03 16[label="vx5",fontsize=16,color="green",shape="box"];} 9.63/4.03 9.63/4.03 ---------------------------------------- 9.63/4.03 9.63/4.03 (10) 9.63/4.03 Obligation: 9.63/4.03 Q DP problem: 9.63/4.03 P is empty. 9.63/4.03 R is empty. 9.63/4.03 Q is empty. 9.63/4.03 We have to consider all (P,Q,R)-chains. 9.63/4.03 ---------------------------------------- 9.63/4.03 9.63/4.03 (11) PisEmptyProof (EQUIVALENT) 9.63/4.03 The TRS P is empty. Hence, there is no (P,Q,R) chain. 9.63/4.03 ---------------------------------------- 9.63/4.03 9.63/4.03 (12) 9.63/4.03 YES 9.63/4.07 EOF