7.86/3.85 YES 9.79/4.39 proof of /export/starexec/sandbox/benchmark/theBenchmark.hs 9.79/4.39 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 9.79/4.39 9.79/4.39 9.79/4.39 H-Termination with start terms of the given HASKELL could be proven: 9.79/4.39 9.79/4.39 (0) HASKELL 9.79/4.39 (1) BR [EQUIVALENT, 0 ms] 9.79/4.39 (2) HASKELL 9.79/4.39 (3) COR [EQUIVALENT, 0 ms] 9.79/4.39 (4) HASKELL 9.79/4.39 (5) Narrow [SOUND, 0 ms] 9.79/4.39 (6) QDP 9.79/4.39 (7) QDPSizeChangeProof [EQUIVALENT, 0 ms] 9.79/4.39 (8) YES 9.79/4.39 9.79/4.39 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (0) 9.79/4.39 Obligation: 9.79/4.39 mainModule Main 9.79/4.39 module Main where { 9.79/4.39 import qualified Prelude; 9.79/4.39 data List a = Cons a (List a) | Nil ; 9.79/4.39 9.79/4.39 data MyBool = MyTrue | MyFalse ; 9.79/4.39 9.79/4.39 data Ordering = LT | EQ | GT ; 9.79/4.39 9.79/4.39 data Tup0 = Tup0 ; 9.79/4.39 9.79/4.39 compareTup0 :: Tup0 -> Tup0 -> Ordering; 9.79/4.39 compareTup0 Tup0 Tup0 = EQ; 9.79/4.39 9.79/4.39 esEsOrdering :: Ordering -> Ordering -> MyBool; 9.79/4.39 esEsOrdering LT LT = MyTrue; 9.79/4.39 esEsOrdering LT EQ = MyFalse; 9.79/4.39 esEsOrdering LT GT = MyFalse; 9.79/4.39 esEsOrdering EQ LT = MyFalse; 9.79/4.39 esEsOrdering EQ EQ = MyTrue; 9.79/4.39 esEsOrdering EQ GT = MyFalse; 9.79/4.39 esEsOrdering GT LT = MyFalse; 9.79/4.39 esEsOrdering GT EQ = MyFalse; 9.79/4.39 esEsOrdering GT GT = MyTrue; 9.79/4.39 9.79/4.39 foldl :: (a -> b -> a) -> a -> List b -> a; 9.79/4.39 foldl f z Nil = z; 9.79/4.39 foldl f z (Cons x xs) = foldl f (f z x) xs; 9.79/4.39 9.79/4.39 foldl1 :: (a -> a -> a) -> List a -> a; 9.79/4.39 foldl1 f (Cons x xs) = foldl f x xs; 9.79/4.39 9.79/4.39 fsEsOrdering :: Ordering -> Ordering -> MyBool; 9.79/4.39 fsEsOrdering x y = not (esEsOrdering x y); 9.79/4.39 9.79/4.39 ltEsTup0 :: Tup0 -> Tup0 -> MyBool; 9.79/4.39 ltEsTup0 x y = fsEsOrdering (compareTup0 x y) GT; 9.79/4.39 9.79/4.39 max0 x y MyTrue = x; 9.79/4.39 9.79/4.39 max1 x y MyTrue = y; 9.79/4.39 max1 x y MyFalse = max0 x y otherwise; 9.79/4.39 9.79/4.39 max2 x y = max1 x y (ltEsTup0 x y); 9.79/4.39 9.79/4.39 maxTup0 :: Tup0 -> Tup0 -> Tup0; 9.79/4.39 maxTup0 x y = max2 x y; 9.79/4.39 9.79/4.39 maximumTup0 :: List Tup0 -> Tup0; 9.79/4.39 maximumTup0 = foldl1 maxTup0; 9.79/4.39 9.79/4.39 not :: MyBool -> MyBool; 9.79/4.39 not MyTrue = MyFalse; 9.79/4.39 not MyFalse = MyTrue; 9.79/4.39 9.79/4.39 otherwise :: MyBool; 9.79/4.39 otherwise = MyTrue; 9.79/4.39 9.79/4.39 } 9.79/4.39 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (1) BR (EQUIVALENT) 9.79/4.39 Replaced joker patterns by fresh variables and removed binding patterns. 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (2) 9.79/4.39 Obligation: 9.79/4.39 mainModule Main 9.79/4.39 module Main where { 9.79/4.39 import qualified Prelude; 9.79/4.39 data List a = Cons a (List a) | Nil ; 9.79/4.39 9.79/4.39 data MyBool = MyTrue | MyFalse ; 9.79/4.39 9.79/4.39 data Ordering = LT | EQ | GT ; 9.79/4.39 9.79/4.39 data Tup0 = Tup0 ; 9.79/4.39 9.79/4.39 compareTup0 :: Tup0 -> Tup0 -> Ordering; 9.79/4.39 compareTup0 Tup0 Tup0 = EQ; 9.79/4.39 9.79/4.39 esEsOrdering :: Ordering -> Ordering -> MyBool; 9.79/4.39 esEsOrdering LT LT = MyTrue; 9.79/4.39 esEsOrdering LT EQ = MyFalse; 9.79/4.39 esEsOrdering LT GT = MyFalse; 9.79/4.39 esEsOrdering EQ LT = MyFalse; 9.79/4.39 esEsOrdering EQ EQ = MyTrue; 9.79/4.39 esEsOrdering EQ GT = MyFalse; 9.79/4.39 esEsOrdering GT LT = MyFalse; 9.79/4.39 esEsOrdering GT EQ = MyFalse; 9.79/4.39 esEsOrdering GT GT = MyTrue; 9.79/4.39 9.79/4.39 foldl :: (b -> a -> b) -> b -> List a -> b; 9.79/4.39 foldl f z Nil = z; 9.79/4.39 foldl f z (Cons x xs) = foldl f (f z x) xs; 9.79/4.39 9.79/4.39 foldl1 :: (a -> a -> a) -> List a -> a; 9.79/4.39 foldl1 f (Cons x xs) = foldl f x xs; 9.79/4.39 9.79/4.39 fsEsOrdering :: Ordering -> Ordering -> MyBool; 9.79/4.39 fsEsOrdering x y = not (esEsOrdering x y); 9.79/4.39 9.79/4.39 ltEsTup0 :: Tup0 -> Tup0 -> MyBool; 9.79/4.39 ltEsTup0 x y = fsEsOrdering (compareTup0 x y) GT; 9.79/4.39 9.79/4.39 max0 x y MyTrue = x; 9.79/4.39 9.79/4.39 max1 x y MyTrue = y; 9.79/4.39 max1 x y MyFalse = max0 x y otherwise; 9.79/4.39 9.79/4.39 max2 x y = max1 x y (ltEsTup0 x y); 9.79/4.39 9.79/4.39 maxTup0 :: Tup0 -> Tup0 -> Tup0; 9.79/4.39 maxTup0 x y = max2 x y; 9.79/4.39 9.79/4.39 maximumTup0 :: List Tup0 -> Tup0; 9.79/4.39 maximumTup0 = foldl1 maxTup0; 9.79/4.39 9.79/4.39 not :: MyBool -> MyBool; 9.79/4.39 not MyTrue = MyFalse; 9.79/4.39 not MyFalse = MyTrue; 9.79/4.39 9.79/4.39 otherwise :: MyBool; 9.79/4.39 otherwise = MyTrue; 9.79/4.39 9.79/4.39 } 9.79/4.39 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (3) COR (EQUIVALENT) 9.79/4.39 Cond Reductions: 9.79/4.39 The following Function with conditions 9.79/4.39 "undefined |Falseundefined; 9.79/4.39 " 9.79/4.39 is transformed to 9.79/4.39 "undefined = undefined1; 9.79/4.39 " 9.79/4.39 "undefined0 True = undefined; 9.79/4.39 " 9.79/4.39 "undefined1 = undefined0 False; 9.79/4.39 " 9.79/4.39 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (4) 9.79/4.39 Obligation: 9.79/4.39 mainModule Main 9.79/4.39 module Main where { 9.79/4.39 import qualified Prelude; 9.79/4.39 data List a = Cons a (List a) | Nil ; 9.79/4.39 9.79/4.39 data MyBool = MyTrue | MyFalse ; 9.79/4.39 9.79/4.39 data Ordering = LT | EQ | GT ; 9.79/4.39 9.79/4.39 data Tup0 = Tup0 ; 9.79/4.39 9.79/4.39 compareTup0 :: Tup0 -> Tup0 -> Ordering; 9.79/4.39 compareTup0 Tup0 Tup0 = EQ; 9.79/4.39 9.79/4.39 esEsOrdering :: Ordering -> Ordering -> MyBool; 9.79/4.39 esEsOrdering LT LT = MyTrue; 9.79/4.39 esEsOrdering LT EQ = MyFalse; 9.79/4.39 esEsOrdering LT GT = MyFalse; 9.79/4.39 esEsOrdering EQ LT = MyFalse; 9.79/4.39 esEsOrdering EQ EQ = MyTrue; 9.79/4.39 esEsOrdering EQ GT = MyFalse; 9.79/4.39 esEsOrdering GT LT = MyFalse; 9.79/4.39 esEsOrdering GT EQ = MyFalse; 9.79/4.39 esEsOrdering GT GT = MyTrue; 9.79/4.39 9.79/4.39 foldl :: (a -> b -> a) -> a -> List b -> a; 9.79/4.39 foldl f z Nil = z; 9.79/4.39 foldl f z (Cons x xs) = foldl f (f z x) xs; 9.79/4.39 9.79/4.39 foldl1 :: (a -> a -> a) -> List a -> a; 9.79/4.39 foldl1 f (Cons x xs) = foldl f x xs; 9.79/4.39 9.79/4.39 fsEsOrdering :: Ordering -> Ordering -> MyBool; 9.79/4.39 fsEsOrdering x y = not (esEsOrdering x y); 9.79/4.39 9.79/4.39 ltEsTup0 :: Tup0 -> Tup0 -> MyBool; 9.79/4.39 ltEsTup0 x y = fsEsOrdering (compareTup0 x y) GT; 9.79/4.39 9.79/4.39 max0 x y MyTrue = x; 9.79/4.39 9.79/4.39 max1 x y MyTrue = y; 9.79/4.39 max1 x y MyFalse = max0 x y otherwise; 9.79/4.39 9.79/4.39 max2 x y = max1 x y (ltEsTup0 x y); 9.79/4.39 9.79/4.39 maxTup0 :: Tup0 -> Tup0 -> Tup0; 9.79/4.39 maxTup0 x y = max2 x y; 9.79/4.39 9.79/4.39 maximumTup0 :: List Tup0 -> Tup0; 9.79/4.39 maximumTup0 = foldl1 maxTup0; 9.79/4.39 9.79/4.39 not :: MyBool -> MyBool; 9.79/4.39 not MyTrue = MyFalse; 9.79/4.39 not MyFalse = MyTrue; 9.79/4.39 9.79/4.39 otherwise :: MyBool; 9.79/4.39 otherwise = MyTrue; 9.79/4.39 9.79/4.39 } 9.79/4.39 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (5) Narrow (SOUND) 9.79/4.39 Haskell To QDPs 9.79/4.39 9.79/4.39 digraph dp_graph { 9.79/4.39 node [outthreshold=100, inthreshold=100];1[label="maximumTup0",fontsize=16,color="grey",shape="box"];1 -> 3[label="",style="dashed", color="grey", weight=3]; 9.79/4.39 3[label="maximumTup0 vx3",fontsize=16,color="black",shape="triangle"];3 -> 4[label="",style="solid", color="black", weight=3]; 9.79/4.39 4[label="foldl1 maxTup0 vx3",fontsize=16,color="burlywood",shape="box"];25[label="vx3/Cons vx30 vx31",fontsize=10,color="white",style="solid",shape="box"];4 -> 25[label="",style="solid", color="burlywood", weight=9]; 9.79/4.39 25 -> 5[label="",style="solid", color="burlywood", weight=3]; 9.79/4.39 26[label="vx3/Nil",fontsize=10,color="white",style="solid",shape="box"];4 -> 26[label="",style="solid", color="burlywood", weight=9]; 9.79/4.39 26 -> 6[label="",style="solid", color="burlywood", weight=3]; 9.79/4.39 5[label="foldl1 maxTup0 (Cons vx30 vx31)",fontsize=16,color="black",shape="box"];5 -> 7[label="",style="solid", color="black", weight=3]; 9.79/4.39 6[label="foldl1 maxTup0 Nil",fontsize=16,color="black",shape="box"];6 -> 8[label="",style="solid", color="black", weight=3]; 9.79/4.39 7[label="foldl maxTup0 vx30 vx31",fontsize=16,color="burlywood",shape="triangle"];27[label="vx31/Cons vx310 vx311",fontsize=10,color="white",style="solid",shape="box"];7 -> 27[label="",style="solid", color="burlywood", weight=9]; 9.79/4.39 27 -> 9[label="",style="solid", color="burlywood", weight=3]; 9.79/4.39 28[label="vx31/Nil",fontsize=10,color="white",style="solid",shape="box"];7 -> 28[label="",style="solid", color="burlywood", weight=9]; 9.79/4.39 28 -> 10[label="",style="solid", color="burlywood", weight=3]; 9.79/4.39 8[label="error []",fontsize=16,color="red",shape="box"];9[label="foldl maxTup0 vx30 (Cons vx310 vx311)",fontsize=16,color="black",shape="box"];9 -> 11[label="",style="solid", color="black", weight=3]; 9.79/4.39 10[label="foldl maxTup0 vx30 Nil",fontsize=16,color="black",shape="box"];10 -> 12[label="",style="solid", color="black", weight=3]; 9.79/4.39 11 -> 7[label="",style="dashed", color="red", weight=0]; 9.79/4.39 11[label="foldl maxTup0 (maxTup0 vx30 vx310) vx311",fontsize=16,color="magenta"];11 -> 13[label="",style="dashed", color="magenta", weight=3]; 9.79/4.39 11 -> 14[label="",style="dashed", color="magenta", weight=3]; 9.79/4.39 12[label="vx30",fontsize=16,color="green",shape="box"];13[label="vx311",fontsize=16,color="green",shape="box"];14[label="maxTup0 vx30 vx310",fontsize=16,color="black",shape="box"];14 -> 15[label="",style="solid", color="black", weight=3]; 9.79/4.39 15[label="max2 vx30 vx310",fontsize=16,color="black",shape="box"];15 -> 16[label="",style="solid", color="black", weight=3]; 9.79/4.39 16[label="max1 vx30 vx310 (ltEsTup0 vx30 vx310)",fontsize=16,color="black",shape="box"];16 -> 17[label="",style="solid", color="black", weight=3]; 9.79/4.39 17[label="max1 vx30 vx310 (fsEsOrdering (compareTup0 vx30 vx310) GT)",fontsize=16,color="black",shape="box"];17 -> 18[label="",style="solid", color="black", weight=3]; 9.79/4.39 18[label="max1 vx30 vx310 (not (esEsOrdering (compareTup0 vx30 vx310) GT))",fontsize=16,color="burlywood",shape="box"];29[label="vx30/Tup0",fontsize=10,color="white",style="solid",shape="box"];18 -> 29[label="",style="solid", color="burlywood", weight=9]; 9.79/4.39 29 -> 19[label="",style="solid", color="burlywood", weight=3]; 9.79/4.39 19[label="max1 Tup0 vx310 (not (esEsOrdering (compareTup0 Tup0 vx310) GT))",fontsize=16,color="burlywood",shape="box"];30[label="vx310/Tup0",fontsize=10,color="white",style="solid",shape="box"];19 -> 30[label="",style="solid", color="burlywood", weight=9]; 9.79/4.39 30 -> 20[label="",style="solid", color="burlywood", weight=3]; 9.79/4.39 20[label="max1 Tup0 Tup0 (not (esEsOrdering (compareTup0 Tup0 Tup0) GT))",fontsize=16,color="black",shape="box"];20 -> 21[label="",style="solid", color="black", weight=3]; 9.79/4.39 21[label="max1 Tup0 Tup0 (not (esEsOrdering EQ GT))",fontsize=16,color="black",shape="box"];21 -> 22[label="",style="solid", color="black", weight=3]; 9.79/4.39 22[label="max1 Tup0 Tup0 (not MyFalse)",fontsize=16,color="black",shape="box"];22 -> 23[label="",style="solid", color="black", weight=3]; 9.79/4.39 23[label="max1 Tup0 Tup0 MyTrue",fontsize=16,color="black",shape="box"];23 -> 24[label="",style="solid", color="black", weight=3]; 9.79/4.39 24[label="Tup0",fontsize=16,color="green",shape="box"];} 9.79/4.39 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (6) 9.79/4.39 Obligation: 9.79/4.39 Q DP problem: 9.79/4.39 The TRS P consists of the following rules: 9.79/4.39 9.79/4.39 new_foldl(vx30, Cons(vx310, vx311)) -> new_foldl(new_max1(vx30, vx310), vx311) 9.79/4.39 9.79/4.39 The TRS R consists of the following rules: 9.79/4.39 9.79/4.39 new_max1(Tup0, Tup0) -> Tup0 9.79/4.39 9.79/4.39 The set Q consists of the following terms: 9.79/4.39 9.79/4.39 new_max1(Tup0, Tup0) 9.79/4.39 9.79/4.39 We have to consider all minimal (P,Q,R)-chains. 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (7) QDPSizeChangeProof (EQUIVALENT) 9.79/4.39 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 9.79/4.39 9.79/4.39 From the DPs we obtained the following set of size-change graphs: 9.79/4.39 *new_foldl(vx30, Cons(vx310, vx311)) -> new_foldl(new_max1(vx30, vx310), vx311) 9.79/4.39 The graph contains the following edges 2 > 2 9.79/4.39 9.79/4.39 9.79/4.39 ---------------------------------------- 9.79/4.39 9.79/4.39 (8) 9.79/4.39 YES 9.89/4.49 EOF