8.53/3.47 YES 8.77/3.50 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 8.77/3.50 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 8.77/3.50 8.77/3.50 8.77/3.50 Left Termination of the query pattern 8.77/3.50 8.77/3.50 qsort(g,a) 8.77/3.50 8.77/3.50 w.r.t. the given Prolog program could successfully be proven: 8.77/3.50 8.77/3.50 (0) Prolog 8.77/3.50 (1) PrologToPiTRSProof [SOUND, 0 ms] 8.77/3.50 (2) PiTRS 8.77/3.50 (3) DependencyPairsProof [EQUIVALENT, 1 ms] 8.77/3.50 (4) PiDP 8.77/3.50 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 8.77/3.50 (6) AND 8.77/3.50 (7) PiDP 8.77/3.50 (8) UsableRulesProof [EQUIVALENT, 0 ms] 8.77/3.50 (9) PiDP 8.77/3.50 (10) PiDPToQDPProof [SOUND, 0 ms] 8.77/3.50 (11) QDP 8.77/3.50 (12) QDPSizeChangeProof [EQUIVALENT, 1 ms] 8.77/3.50 (13) YES 8.77/3.50 (14) PiDP 8.77/3.50 (15) UsableRulesProof [EQUIVALENT, 0 ms] 8.77/3.50 (16) PiDP 8.77/3.50 (17) PiDPToQDPProof [EQUIVALENT, 0 ms] 8.77/3.50 (18) QDP 8.77/3.50 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 8.77/3.50 (20) YES 8.77/3.50 (21) PiDP 8.77/3.50 (22) UsableRulesProof [EQUIVALENT, 0 ms] 8.77/3.50 (23) PiDP 8.77/3.50 (24) PiDPToQDPProof [EQUIVALENT, 0 ms] 8.77/3.50 (25) QDP 8.77/3.50 (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] 8.77/3.50 (27) YES 8.77/3.50 (28) PiDP 8.77/3.50 (29) UsableRulesProof [EQUIVALENT, 0 ms] 8.77/3.50 (30) PiDP 8.77/3.50 (31) PiDPToQDPProof [SOUND, 0 ms] 8.77/3.50 (32) QDP 8.77/3.50 (33) QDPSizeChangeProof [EQUIVALENT, 0 ms] 8.77/3.50 (34) YES 8.77/3.50 (35) PiDP 8.77/3.50 (36) PiDPToQDPProof [SOUND, 0 ms] 8.77/3.50 (37) QDP 8.77/3.50 (38) QDPOrderProof [EQUIVALENT, 65 ms] 8.77/3.50 (39) QDP 8.77/3.50 (40) DependencyGraphProof [EQUIVALENT, 0 ms] 8.77/3.50 (41) TRUE 8.77/3.50 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (0) 8.77/3.50 Obligation: 8.77/3.50 Clauses: 8.77/3.50 8.77/3.50 qsort([], []). 8.77/3.50 qsort(.(H, L), S) :- ','(split(L, H, A, B), ','(qsort(A, A1), ','(qsort(B, B1), append(A1, .(H, B1), S)))). 8.77/3.50 split([], Y, [], []). 8.77/3.50 split(.(X, Xs), Y, .(X, Ls), Bs) :- ','(le(X, Y), split(Xs, Y, Ls, Bs)). 8.77/3.50 split(.(X, Xs), Y, Ls, .(X, Bs)) :- ','(gt(X, Y), split(Xs, Y, Ls, Bs)). 8.77/3.50 append([], L, L). 8.77/3.50 append(.(H, L1), L2, .(H, L3)) :- append(L1, L2, L3). 8.77/3.50 gt(s(X), s(Y)) :- gt(X, Y). 8.77/3.50 gt(s(X), 0). 8.77/3.50 le(s(X), s(Y)) :- le(X, Y). 8.77/3.50 le(0, s(Y)). 8.77/3.50 le(0, 0). 8.77/3.50 8.77/3.50 8.77/3.50 Query: qsort(g,a) 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (1) PrologToPiTRSProof (SOUND) 8.77/3.50 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 8.77/3.50 8.77/3.50 qsort_in_2: (b,f) 8.77/3.50 8.77/3.50 split_in_4: (b,b,f,f) 8.77/3.50 8.77/3.50 le_in_2: (b,b) 8.77/3.50 8.77/3.50 gt_in_2: (b,b) 8.77/3.50 8.77/3.50 append_in_3: (b,b,f) 8.77/3.50 8.77/3.50 Transforming Prolog into the following Term Rewriting System: 8.77/3.50 8.77/3.50 Pi-finite rewrite system: 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 8.77/3.50 8.77/3.50 8.77/3.50 8.77/3.50 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 8.77/3.50 8.77/3.50 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (2) 8.77/3.50 Obligation: 8.77/3.50 Pi-finite rewrite system: 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (3) DependencyPairsProof (EQUIVALENT) 8.77/3.50 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 QSORT_IN_GA(.(H, L), S) -> U1_GA(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 QSORT_IN_GA(.(H, L), S) -> SPLIT_IN_GGAA(L, H, A, B) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, .(X, Ls), Bs) -> U5_GGAA(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, .(X, Ls), Bs) -> LE_IN_GG(X, Y) 8.77/3.50 LE_IN_GG(s(X), s(Y)) -> U11_GG(X, Y, le_in_gg(X, Y)) 8.77/3.50 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 8.77/3.50 U5_GGAA(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_GGAA(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U5_GGAA(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> SPLIT_IN_GGAA(Xs, Y, Ls, Bs) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_GGAA(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, Ls, .(X, Bs)) -> GT_IN_GG(X, Y) 8.77/3.50 GT_IN_GG(s(X), s(Y)) -> U10_GG(X, Y, gt_in_gg(X, Y)) 8.77/3.50 GT_IN_GG(s(X), s(Y)) -> GT_IN_GG(X, Y) 8.77/3.50 U7_GGAA(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_GGAA(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U7_GGAA(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> SPLIT_IN_GGAA(Xs, Y, Ls, Bs) 8.77/3.50 U1_GA(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_GA(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U1_GA(H, L, S, split_out_ggaa(L, H, A, B)) -> QSORT_IN_GA(A, A1) 8.77/3.50 U2_GA(H, L, S, B, qsort_out_ga(A, A1)) -> U3_GA(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U2_GA(H, L, S, B, qsort_out_ga(A, A1)) -> QSORT_IN_GA(B, B1) 8.77/3.50 U3_GA(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_GA(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 U3_GA(H, L, S, A1, qsort_out_ga(B, B1)) -> APPEND_IN_GGA(A1, .(H, B1), S) 8.77/3.50 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> U9_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 QSORT_IN_GA(x1, x2) = QSORT_IN_GA(x1) 8.77/3.50 8.77/3.50 U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4) 8.77/3.50 8.77/3.50 SPLIT_IN_GGAA(x1, x2, x3, x4) = SPLIT_IN_GGAA(x1, x2) 8.77/3.50 8.77/3.50 U5_GGAA(x1, x2, x3, x4, x5, x6) = U5_GGAA(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 LE_IN_GG(x1, x2) = LE_IN_GG(x1, x2) 8.77/3.50 8.77/3.50 U11_GG(x1, x2, x3) = U11_GG(x3) 8.77/3.50 8.77/3.50 U6_GGAA(x1, x2, x3, x4, x5, x6) = U6_GGAA(x1, x6) 8.77/3.50 8.77/3.50 U7_GGAA(x1, x2, x3, x4, x5, x6) = U7_GGAA(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 GT_IN_GG(x1, x2) = GT_IN_GG(x1, x2) 8.77/3.50 8.77/3.50 U10_GG(x1, x2, x3) = U10_GG(x3) 8.77/3.50 8.77/3.50 U8_GGAA(x1, x2, x3, x4, x5, x6) = U8_GGAA(x1, x6) 8.77/3.50 8.77/3.50 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_GA(x1, x2, x3, x4) = U4_GA(x4) 8.77/3.50 8.77/3.50 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 8.77/3.50 8.77/3.50 U9_GGA(x1, x2, x3, x4, x5) = U9_GGA(x1, x5) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (4) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 QSORT_IN_GA(.(H, L), S) -> U1_GA(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 QSORT_IN_GA(.(H, L), S) -> SPLIT_IN_GGAA(L, H, A, B) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, .(X, Ls), Bs) -> U5_GGAA(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, .(X, Ls), Bs) -> LE_IN_GG(X, Y) 8.77/3.50 LE_IN_GG(s(X), s(Y)) -> U11_GG(X, Y, le_in_gg(X, Y)) 8.77/3.50 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 8.77/3.50 U5_GGAA(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_GGAA(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U5_GGAA(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> SPLIT_IN_GGAA(Xs, Y, Ls, Bs) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_GGAA(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, Ls, .(X, Bs)) -> GT_IN_GG(X, Y) 8.77/3.50 GT_IN_GG(s(X), s(Y)) -> U10_GG(X, Y, gt_in_gg(X, Y)) 8.77/3.50 GT_IN_GG(s(X), s(Y)) -> GT_IN_GG(X, Y) 8.77/3.50 U7_GGAA(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_GGAA(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U7_GGAA(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> SPLIT_IN_GGAA(Xs, Y, Ls, Bs) 8.77/3.50 U1_GA(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_GA(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U1_GA(H, L, S, split_out_ggaa(L, H, A, B)) -> QSORT_IN_GA(A, A1) 8.77/3.50 U2_GA(H, L, S, B, qsort_out_ga(A, A1)) -> U3_GA(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U2_GA(H, L, S, B, qsort_out_ga(A, A1)) -> QSORT_IN_GA(B, B1) 8.77/3.50 U3_GA(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_GA(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 U3_GA(H, L, S, A1, qsort_out_ga(B, B1)) -> APPEND_IN_GGA(A1, .(H, B1), S) 8.77/3.50 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> U9_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 QSORT_IN_GA(x1, x2) = QSORT_IN_GA(x1) 8.77/3.50 8.77/3.50 U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4) 8.77/3.50 8.77/3.50 SPLIT_IN_GGAA(x1, x2, x3, x4) = SPLIT_IN_GGAA(x1, x2) 8.77/3.50 8.77/3.50 U5_GGAA(x1, x2, x3, x4, x5, x6) = U5_GGAA(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 LE_IN_GG(x1, x2) = LE_IN_GG(x1, x2) 8.77/3.50 8.77/3.50 U11_GG(x1, x2, x3) = U11_GG(x3) 8.77/3.50 8.77/3.50 U6_GGAA(x1, x2, x3, x4, x5, x6) = U6_GGAA(x1, x6) 8.77/3.50 8.77/3.50 U7_GGAA(x1, x2, x3, x4, x5, x6) = U7_GGAA(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 GT_IN_GG(x1, x2) = GT_IN_GG(x1, x2) 8.77/3.50 8.77/3.50 U10_GG(x1, x2, x3) = U10_GG(x3) 8.77/3.50 8.77/3.50 U8_GGAA(x1, x2, x3, x4, x5, x6) = U8_GGAA(x1, x6) 8.77/3.50 8.77/3.50 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_GA(x1, x2, x3, x4, x5) = U3_GA(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_GA(x1, x2, x3, x4) = U4_GA(x4) 8.77/3.50 8.77/3.50 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 8.77/3.50 8.77/3.50 U9_GGA(x1, x2, x3, x4, x5) = U9_GGA(x1, x5) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (5) DependencyGraphProof (EQUIVALENT) 8.77/3.50 The approximation of the Dependency Graph [LOPSTR] contains 5 SCCs with 11 less nodes. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (6) 8.77/3.50 Complex Obligation (AND) 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (7) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (8) UsableRulesProof (EQUIVALENT) 8.77/3.50 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (9) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) 8.77/3.50 8.77/3.50 R is empty. 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (10) PiDPToQDPProof (SOUND) 8.77/3.50 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (11) 8.77/3.50 Obligation: 8.77/3.50 Q DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 APPEND_IN_GGA(.(H, L1), L2) -> APPEND_IN_GGA(L1, L2) 8.77/3.50 8.77/3.50 R is empty. 8.77/3.50 Q is empty. 8.77/3.50 We have to consider all (P,Q,R)-chains. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (12) QDPSizeChangeProof (EQUIVALENT) 8.77/3.50 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 8.77/3.50 8.77/3.50 From the DPs we obtained the following set of size-change graphs: 8.77/3.50 *APPEND_IN_GGA(.(H, L1), L2) -> APPEND_IN_GGA(L1, L2) 8.77/3.50 The graph contains the following edges 1 > 1, 2 >= 2 8.77/3.50 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (13) 8.77/3.50 YES 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (14) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 GT_IN_GG(s(X), s(Y)) -> GT_IN_GG(X, Y) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 GT_IN_GG(x1, x2) = GT_IN_GG(x1, x2) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (15) UsableRulesProof (EQUIVALENT) 8.77/3.50 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (16) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 GT_IN_GG(s(X), s(Y)) -> GT_IN_GG(X, Y) 8.77/3.50 8.77/3.50 R is empty. 8.77/3.50 Pi is empty. 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (17) PiDPToQDPProof (EQUIVALENT) 8.77/3.50 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (18) 8.77/3.50 Obligation: 8.77/3.50 Q DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 GT_IN_GG(s(X), s(Y)) -> GT_IN_GG(X, Y) 8.77/3.50 8.77/3.50 R is empty. 8.77/3.50 Q is empty. 8.77/3.50 We have to consider all (P,Q,R)-chains. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (19) QDPSizeChangeProof (EQUIVALENT) 8.77/3.50 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 8.77/3.50 8.77/3.50 From the DPs we obtained the following set of size-change graphs: 8.77/3.50 *GT_IN_GG(s(X), s(Y)) -> GT_IN_GG(X, Y) 8.77/3.50 The graph contains the following edges 1 > 1, 2 > 2 8.77/3.50 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (20) 8.77/3.50 YES 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (21) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 LE_IN_GG(x1, x2) = LE_IN_GG(x1, x2) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (22) UsableRulesProof (EQUIVALENT) 8.77/3.50 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (23) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 8.77/3.50 8.77/3.50 R is empty. 8.77/3.50 Pi is empty. 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (24) PiDPToQDPProof (EQUIVALENT) 8.77/3.50 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (25) 8.77/3.50 Obligation: 8.77/3.50 Q DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 8.77/3.50 8.77/3.50 R is empty. 8.77/3.50 Q is empty. 8.77/3.50 We have to consider all (P,Q,R)-chains. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (26) QDPSizeChangeProof (EQUIVALENT) 8.77/3.50 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 8.77/3.50 8.77/3.50 From the DPs we obtained the following set of size-change graphs: 8.77/3.50 *LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 8.77/3.50 The graph contains the following edges 1 > 1, 2 > 2 8.77/3.50 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (27) 8.77/3.50 YES 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (28) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 U5_GGAA(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> SPLIT_IN_GGAA(Xs, Y, Ls, Bs) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, .(X, Ls), Bs) -> U5_GGAA(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_GGAA(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 U7_GGAA(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> SPLIT_IN_GGAA(Xs, Y, Ls, Bs) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 SPLIT_IN_GGAA(x1, x2, x3, x4) = SPLIT_IN_GGAA(x1, x2) 8.77/3.50 8.77/3.50 U5_GGAA(x1, x2, x3, x4, x5, x6) = U5_GGAA(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 U7_GGAA(x1, x2, x3, x4, x5, x6) = U7_GGAA(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (29) UsableRulesProof (EQUIVALENT) 8.77/3.50 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (30) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 U5_GGAA(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> SPLIT_IN_GGAA(Xs, Y, Ls, Bs) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, .(X, Ls), Bs) -> U5_GGAA(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_GGAA(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 U7_GGAA(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> SPLIT_IN_GGAA(Xs, Y, Ls, Bs) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 SPLIT_IN_GGAA(x1, x2, x3, x4) = SPLIT_IN_GGAA(x1, x2) 8.77/3.50 8.77/3.50 U5_GGAA(x1, x2, x3, x4, x5, x6) = U5_GGAA(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 U7_GGAA(x1, x2, x3, x4, x5, x6) = U7_GGAA(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (31) PiDPToQDPProof (SOUND) 8.77/3.50 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (32) 8.77/3.50 Obligation: 8.77/3.50 Q DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 U5_GGAA(X, Xs, Y, le_out_gg) -> SPLIT_IN_GGAA(Xs, Y) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y) -> U5_GGAA(X, Xs, Y, le_in_gg(X, Y)) 8.77/3.50 SPLIT_IN_GGAA(.(X, Xs), Y) -> U7_GGAA(X, Xs, Y, gt_in_gg(X, Y)) 8.77/3.50 U7_GGAA(X, Xs, Y, gt_out_gg) -> SPLIT_IN_GGAA(Xs, Y) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg 8.77/3.50 le_in_gg(0, 0) -> le_out_gg 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg 8.77/3.50 U11_gg(le_out_gg) -> le_out_gg 8.77/3.50 U10_gg(gt_out_gg) -> gt_out_gg 8.77/3.50 8.77/3.50 The set Q consists of the following terms: 8.77/3.50 8.77/3.50 le_in_gg(x0, x1) 8.77/3.50 gt_in_gg(x0, x1) 8.77/3.50 U11_gg(x0) 8.77/3.50 U10_gg(x0) 8.77/3.50 8.77/3.50 We have to consider all (P,Q,R)-chains. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (33) QDPSizeChangeProof (EQUIVALENT) 8.77/3.50 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 8.77/3.50 8.77/3.50 From the DPs we obtained the following set of size-change graphs: 8.77/3.50 *SPLIT_IN_GGAA(.(X, Xs), Y) -> U5_GGAA(X, Xs, Y, le_in_gg(X, Y)) 8.77/3.50 The graph contains the following edges 1 > 1, 1 > 2, 2 >= 3 8.77/3.50 8.77/3.50 8.77/3.50 *SPLIT_IN_GGAA(.(X, Xs), Y) -> U7_GGAA(X, Xs, Y, gt_in_gg(X, Y)) 8.77/3.50 The graph contains the following edges 1 > 1, 1 > 2, 2 >= 3 8.77/3.50 8.77/3.50 8.77/3.50 *U5_GGAA(X, Xs, Y, le_out_gg) -> SPLIT_IN_GGAA(Xs, Y) 8.77/3.50 The graph contains the following edges 2 >= 1, 3 >= 2 8.77/3.50 8.77/3.50 8.77/3.50 *U7_GGAA(X, Xs, Y, gt_out_gg) -> SPLIT_IN_GGAA(Xs, Y) 8.77/3.50 The graph contains the following edges 2 >= 1, 3 >= 2 8.77/3.50 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (34) 8.77/3.50 YES 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (35) 8.77/3.50 Obligation: 8.77/3.50 Pi DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 U1_GA(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_GA(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_GA(H, L, S, B, qsort_out_ga(A, A1)) -> QSORT_IN_GA(B, B1) 8.77/3.50 QSORT_IN_GA(.(H, L), S) -> U1_GA(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 U1_GA(H, L, S, split_out_ggaa(L, H, A, B)) -> QSORT_IN_GA(A, A1) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([], []) -> qsort_out_ga([], []) 8.77/3.50 qsort_in_ga(.(H, L), S) -> U1_ga(H, L, S, split_in_ggaa(L, H, A, B)) 8.77/3.50 split_in_ggaa([], Y, [], []) -> split_out_ggaa([], Y, [], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, .(X, Ls), Bs) -> U5_ggaa(X, Xs, Y, Ls, Bs, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(X, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg(0, s(Y)) 8.77/3.50 le_in_gg(0, 0) -> le_out_gg(0, 0) 8.77/3.50 U11_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 8.77/3.50 U5_ggaa(X, Xs, Y, Ls, Bs, le_out_gg(X, Y)) -> U6_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) -> U7_ggaa(X, Xs, Y, Ls, Bs, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(X, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg(s(X), 0) 8.77/3.50 U10_gg(X, Y, gt_out_gg(X, Y)) -> gt_out_gg(s(X), s(Y)) 8.77/3.50 U7_ggaa(X, Xs, Y, Ls, Bs, gt_out_gg(X, Y)) -> U8_ggaa(X, Xs, Y, Ls, Bs, split_in_ggaa(Xs, Y, Ls, Bs)) 8.77/3.50 U8_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, Xs, Y, Ls, Bs, split_out_ggaa(Xs, Y, Ls, Bs)) -> split_out_ggaa(.(X, Xs), Y, .(X, Ls), Bs) 8.77/3.50 U1_ga(H, L, S, split_out_ggaa(L, H, A, B)) -> U2_ga(H, L, S, B, qsort_in_ga(A, A1)) 8.77/3.50 U2_ga(H, L, S, B, qsort_out_ga(A, A1)) -> U3_ga(H, L, S, A1, qsort_in_ga(B, B1)) 8.77/3.50 U3_ga(H, L, S, A1, qsort_out_ga(B, B1)) -> U4_ga(H, L, S, append_in_gga(A1, .(H, B1), S)) 8.77/3.50 append_in_gga([], L, L) -> append_out_gga([], L, L) 8.77/3.50 append_in_gga(.(H, L1), L2, .(H, L3)) -> U9_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 8.77/3.50 U9_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 8.77/3.50 U4_ga(H, L, S, append_out_gga(A1, .(H, B1), S)) -> qsort_out_ga(.(H, L), S) 8.77/3.50 8.77/3.50 The argument filtering Pi contains the following mapping: 8.77/3.50 qsort_in_ga(x1, x2) = qsort_in_ga(x1) 8.77/3.50 8.77/3.50 [] = [] 8.77/3.50 8.77/3.50 qsort_out_ga(x1, x2) = qsort_out_ga(x2) 8.77/3.50 8.77/3.50 .(x1, x2) = .(x1, x2) 8.77/3.50 8.77/3.50 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 8.77/3.50 8.77/3.50 split_in_ggaa(x1, x2, x3, x4) = split_in_ggaa(x1, x2) 8.77/3.50 8.77/3.50 split_out_ggaa(x1, x2, x3, x4) = split_out_ggaa(x3, x4) 8.77/3.50 8.77/3.50 U5_ggaa(x1, x2, x3, x4, x5, x6) = U5_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 le_in_gg(x1, x2) = le_in_gg(x1, x2) 8.77/3.50 8.77/3.50 s(x1) = s(x1) 8.77/3.50 8.77/3.50 U11_gg(x1, x2, x3) = U11_gg(x3) 8.77/3.50 8.77/3.50 0 = 0 8.77/3.50 8.77/3.50 le_out_gg(x1, x2) = le_out_gg 8.77/3.50 8.77/3.50 U6_ggaa(x1, x2, x3, x4, x5, x6) = U6_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U7_ggaa(x1, x2, x3, x4, x5, x6) = U7_ggaa(x1, x2, x3, x6) 8.77/3.50 8.77/3.50 gt_in_gg(x1, x2) = gt_in_gg(x1, x2) 8.77/3.50 8.77/3.50 U10_gg(x1, x2, x3) = U10_gg(x3) 8.77/3.50 8.77/3.50 gt_out_gg(x1, x2) = gt_out_gg 8.77/3.50 8.77/3.50 U8_ggaa(x1, x2, x3, x4, x5, x6) = U8_ggaa(x1, x6) 8.77/3.50 8.77/3.50 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U3_ga(x1, x2, x3, x4, x5) = U3_ga(x1, x4, x5) 8.77/3.50 8.77/3.50 U4_ga(x1, x2, x3, x4) = U4_ga(x4) 8.77/3.50 8.77/3.50 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 8.77/3.50 8.77/3.50 append_out_gga(x1, x2, x3) = append_out_gga(x3) 8.77/3.50 8.77/3.50 U9_gga(x1, x2, x3, x4, x5) = U9_gga(x1, x5) 8.77/3.50 8.77/3.50 QSORT_IN_GA(x1, x2) = QSORT_IN_GA(x1) 8.77/3.50 8.77/3.50 U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4) 8.77/3.50 8.77/3.50 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x1, x4, x5) 8.77/3.50 8.77/3.50 8.77/3.50 We have to consider all (P,R,Pi)-chains 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (36) PiDPToQDPProof (SOUND) 8.77/3.50 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (37) 8.77/3.50 Obligation: 8.77/3.50 Q DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 U1_GA(H, split_out_ggaa(A, B)) -> U2_GA(H, B, qsort_in_ga(A)) 8.77/3.50 U2_GA(H, B, qsort_out_ga(A1)) -> QSORT_IN_GA(B) 8.77/3.50 QSORT_IN_GA(.(H, L)) -> U1_GA(H, split_in_ggaa(L, H)) 8.77/3.50 U1_GA(H, split_out_ggaa(A, B)) -> QSORT_IN_GA(A) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([]) -> qsort_out_ga([]) 8.77/3.50 qsort_in_ga(.(H, L)) -> U1_ga(H, split_in_ggaa(L, H)) 8.77/3.50 split_in_ggaa([], Y) -> split_out_ggaa([], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y) -> U5_ggaa(X, Xs, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg 8.77/3.50 le_in_gg(0, 0) -> le_out_gg 8.77/3.50 U11_gg(le_out_gg) -> le_out_gg 8.77/3.50 U5_ggaa(X, Xs, Y, le_out_gg) -> U6_ggaa(X, split_in_ggaa(Xs, Y)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y) -> U7_ggaa(X, Xs, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg 8.77/3.50 U10_gg(gt_out_gg) -> gt_out_gg 8.77/3.50 U7_ggaa(X, Xs, Y, gt_out_gg) -> U8_ggaa(X, split_in_ggaa(Xs, Y)) 8.77/3.50 U8_ggaa(X, split_out_ggaa(Ls, Bs)) -> split_out_ggaa(Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, split_out_ggaa(Ls, Bs)) -> split_out_ggaa(.(X, Ls), Bs) 8.77/3.50 U1_ga(H, split_out_ggaa(A, B)) -> U2_ga(H, B, qsort_in_ga(A)) 8.77/3.50 U2_ga(H, B, qsort_out_ga(A1)) -> U3_ga(H, A1, qsort_in_ga(B)) 8.77/3.50 U3_ga(H, A1, qsort_out_ga(B1)) -> U4_ga(append_in_gga(A1, .(H, B1))) 8.77/3.50 append_in_gga([], L) -> append_out_gga(L) 8.77/3.50 append_in_gga(.(H, L1), L2) -> U9_gga(H, append_in_gga(L1, L2)) 8.77/3.50 U9_gga(H, append_out_gga(L3)) -> append_out_gga(.(H, L3)) 8.77/3.50 U4_ga(append_out_gga(S)) -> qsort_out_ga(S) 8.77/3.50 8.77/3.50 The set Q consists of the following terms: 8.77/3.50 8.77/3.50 qsort_in_ga(x0) 8.77/3.50 split_in_ggaa(x0, x1) 8.77/3.50 le_in_gg(x0, x1) 8.77/3.50 U11_gg(x0) 8.77/3.50 U5_ggaa(x0, x1, x2, x3) 8.77/3.50 gt_in_gg(x0, x1) 8.77/3.50 U10_gg(x0) 8.77/3.50 U7_ggaa(x0, x1, x2, x3) 8.77/3.50 U8_ggaa(x0, x1) 8.77/3.50 U6_ggaa(x0, x1) 8.77/3.50 U1_ga(x0, x1) 8.77/3.50 U2_ga(x0, x1, x2) 8.77/3.50 U3_ga(x0, x1, x2) 8.77/3.50 append_in_gga(x0, x1) 8.77/3.50 U9_gga(x0, x1) 8.77/3.50 U4_ga(x0) 8.77/3.50 8.77/3.50 We have to consider all (P,Q,R)-chains. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (38) QDPOrderProof (EQUIVALENT) 8.77/3.50 We use the reduction pair processor [LPAR04,JAR06]. 8.77/3.50 8.77/3.50 8.77/3.50 The following pairs can be oriented strictly and are deleted. 8.77/3.50 8.77/3.50 U1_GA(H, split_out_ggaa(A, B)) -> U2_GA(H, B, qsort_in_ga(A)) 8.77/3.50 QSORT_IN_GA(.(H, L)) -> U1_GA(H, split_in_ggaa(L, H)) 8.77/3.50 U1_GA(H, split_out_ggaa(A, B)) -> QSORT_IN_GA(A) 8.77/3.50 The remaining pairs can at least be oriented weakly. 8.77/3.50 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 8.77/3.50 8.77/3.50 POL( U2_GA_3(x_1, ..., x_3) ) = 2x_2 8.77/3.50 POL( qsort_in_ga_1(x_1) ) = 2 8.77/3.50 POL( [] ) = 1 8.77/3.50 POL( qsort_out_ga_1(x_1) ) = max{0, x_1 - 2} 8.77/3.50 POL( ._2(x_1, x_2) ) = x_2 + 2 8.77/3.50 POL( U1_ga_2(x_1, x_2) ) = max{0, x_1 - 2} 8.77/3.50 POL( split_in_ggaa_2(x_1, x_2) ) = x_1 + 2 8.77/3.50 POL( U1_GA_2(x_1, x_2) ) = max{0, 2x_2 - 1} 8.77/3.50 POL( split_out_ggaa_2(x_1, x_2) ) = x_1 + x_2 + 1 8.77/3.50 POL( U5_ggaa_4(x_1, ..., x_4) ) = x_2 + 2x_4 8.77/3.50 POL( le_in_gg_2(x_1, x_2) ) = 2 8.77/3.50 POL( U7_ggaa_4(x_1, ..., x_4) ) = x_2 + 2x_4 + 2 8.77/3.50 POL( gt_in_gg_2(x_1, x_2) ) = 1 8.77/3.50 POL( U2_ga_3(x_1, ..., x_3) ) = 2x_1 + 2x_2 + 2x_3 8.77/3.50 POL( U3_ga_3(x_1, ..., x_3) ) = 2x_2 + 1 8.77/3.50 POL( U4_ga_1(x_1) ) = 2 8.77/3.50 POL( append_in_gga_2(x_1, x_2) ) = max{0, 2x_1 - 2} 8.77/3.50 POL( s_1(x_1) ) = 0 8.77/3.50 POL( U11_gg_1(x_1) ) = x_1 8.77/3.50 POL( 0 ) = 0 8.77/3.50 POL( le_out_gg ) = 2 8.77/3.50 POL( U6_ggaa_2(x_1, x_2) ) = x_2 + 2 8.77/3.50 POL( U10_gg_1(x_1) ) = x_1 8.77/3.50 POL( gt_out_gg ) = 1 8.77/3.50 POL( U8_ggaa_2(x_1, x_2) ) = x_2 + 2 8.77/3.50 POL( append_out_gga_1(x_1) ) = max{0, 2x_1 - 2} 8.77/3.50 POL( U9_gga_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 2} 8.77/3.50 POL( QSORT_IN_GA_1(x_1) ) = 2x_1 8.77/3.50 8.77/3.50 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 8.77/3.50 8.77/3.50 split_in_ggaa([], Y) -> split_out_ggaa([], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y) -> U5_ggaa(X, Xs, Y, le_in_gg(X, Y)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y) -> U7_ggaa(X, Xs, Y, gt_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg 8.77/3.50 le_in_gg(0, 0) -> le_out_gg 8.77/3.50 U5_ggaa(X, Xs, Y, le_out_gg) -> U6_ggaa(X, split_in_ggaa(Xs, Y)) 8.77/3.50 U6_ggaa(X, split_out_ggaa(Ls, Bs)) -> split_out_ggaa(.(X, Ls), Bs) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg 8.77/3.50 U7_ggaa(X, Xs, Y, gt_out_gg) -> U8_ggaa(X, split_in_ggaa(Xs, Y)) 8.77/3.50 U8_ggaa(X, split_out_ggaa(Ls, Bs)) -> split_out_ggaa(Ls, .(X, Bs)) 8.77/3.50 U11_gg(le_out_gg) -> le_out_gg 8.77/3.50 U10_gg(gt_out_gg) -> gt_out_gg 8.77/3.50 8.77/3.50 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (39) 8.77/3.50 Obligation: 8.77/3.50 Q DP problem: 8.77/3.50 The TRS P consists of the following rules: 8.77/3.50 8.77/3.50 U2_GA(H, B, qsort_out_ga(A1)) -> QSORT_IN_GA(B) 8.77/3.50 8.77/3.50 The TRS R consists of the following rules: 8.77/3.50 8.77/3.50 qsort_in_ga([]) -> qsort_out_ga([]) 8.77/3.50 qsort_in_ga(.(H, L)) -> U1_ga(H, split_in_ggaa(L, H)) 8.77/3.50 split_in_ggaa([], Y) -> split_out_ggaa([], []) 8.77/3.50 split_in_ggaa(.(X, Xs), Y) -> U5_ggaa(X, Xs, Y, le_in_gg(X, Y)) 8.77/3.50 le_in_gg(s(X), s(Y)) -> U11_gg(le_in_gg(X, Y)) 8.77/3.50 le_in_gg(0, s(Y)) -> le_out_gg 8.77/3.50 le_in_gg(0, 0) -> le_out_gg 8.77/3.50 U11_gg(le_out_gg) -> le_out_gg 8.77/3.50 U5_ggaa(X, Xs, Y, le_out_gg) -> U6_ggaa(X, split_in_ggaa(Xs, Y)) 8.77/3.50 split_in_ggaa(.(X, Xs), Y) -> U7_ggaa(X, Xs, Y, gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), s(Y)) -> U10_gg(gt_in_gg(X, Y)) 8.77/3.50 gt_in_gg(s(X), 0) -> gt_out_gg 8.77/3.50 U10_gg(gt_out_gg) -> gt_out_gg 8.77/3.50 U7_ggaa(X, Xs, Y, gt_out_gg) -> U8_ggaa(X, split_in_ggaa(Xs, Y)) 8.77/3.50 U8_ggaa(X, split_out_ggaa(Ls, Bs)) -> split_out_ggaa(Ls, .(X, Bs)) 8.77/3.50 U6_ggaa(X, split_out_ggaa(Ls, Bs)) -> split_out_ggaa(.(X, Ls), Bs) 8.77/3.50 U1_ga(H, split_out_ggaa(A, B)) -> U2_ga(H, B, qsort_in_ga(A)) 8.77/3.50 U2_ga(H, B, qsort_out_ga(A1)) -> U3_ga(H, A1, qsort_in_ga(B)) 8.77/3.50 U3_ga(H, A1, qsort_out_ga(B1)) -> U4_ga(append_in_gga(A1, .(H, B1))) 8.77/3.50 append_in_gga([], L) -> append_out_gga(L) 8.77/3.50 append_in_gga(.(H, L1), L2) -> U9_gga(H, append_in_gga(L1, L2)) 8.77/3.50 U9_gga(H, append_out_gga(L3)) -> append_out_gga(.(H, L3)) 8.77/3.50 U4_ga(append_out_gga(S)) -> qsort_out_ga(S) 8.77/3.50 8.77/3.50 The set Q consists of the following terms: 8.77/3.50 8.77/3.50 qsort_in_ga(x0) 8.77/3.50 split_in_ggaa(x0, x1) 8.77/3.50 le_in_gg(x0, x1) 8.77/3.50 U11_gg(x0) 8.77/3.50 U5_ggaa(x0, x1, x2, x3) 8.77/3.50 gt_in_gg(x0, x1) 8.77/3.50 U10_gg(x0) 8.77/3.50 U7_ggaa(x0, x1, x2, x3) 8.77/3.50 U8_ggaa(x0, x1) 8.77/3.50 U6_ggaa(x0, x1) 8.77/3.50 U1_ga(x0, x1) 8.77/3.50 U2_ga(x0, x1, x2) 8.77/3.50 U3_ga(x0, x1, x2) 8.77/3.50 append_in_gga(x0, x1) 8.77/3.50 U9_gga(x0, x1) 8.77/3.50 U4_ga(x0) 8.77/3.50 8.77/3.50 We have to consider all (P,Q,R)-chains. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (40) DependencyGraphProof (EQUIVALENT) 8.77/3.50 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 8.77/3.50 ---------------------------------------- 8.77/3.50 8.77/3.50 (41) 8.77/3.50 TRUE 8.89/3.60 EOF