3.84/1.80 YES 3.84/1.82 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.84/1.82 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.84/1.82 3.84/1.82 3.84/1.82 Left Termination of the query pattern 3.84/1.82 3.84/1.82 mult(g,g,a) 3.84/1.82 3.84/1.82 w.r.t. the given Prolog program could successfully be proven: 3.84/1.82 3.84/1.82 (0) Prolog 3.84/1.82 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.84/1.82 (2) PiTRS 3.84/1.82 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.84/1.82 (4) PiDP 3.84/1.82 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.84/1.82 (6) AND 3.84/1.82 (7) PiDP 3.84/1.82 (8) UsableRulesProof [EQUIVALENT, 0 ms] 3.84/1.82 (9) PiDP 3.84/1.82 (10) PiDPToQDPProof [SOUND, 0 ms] 3.84/1.82 (11) QDP 3.84/1.82 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.84/1.82 (13) YES 3.84/1.82 (14) PiDP 3.84/1.82 (15) UsableRulesProof [EQUIVALENT, 0 ms] 3.84/1.82 (16) PiDP 3.84/1.82 (17) PiDPToQDPProof [SOUND, 0 ms] 3.84/1.82 (18) QDP 3.84/1.82 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.84/1.82 (20) YES 3.84/1.82 3.84/1.82 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (0) 3.84/1.82 Obligation: 3.84/1.82 Clauses: 3.84/1.82 3.84/1.82 mult(0, Y, 0). 3.84/1.82 mult(s(X), Y, Z) :- ','(mult(X, Y, Z1), add(Z1, Y, Z)). 3.84/1.82 add(0, Y, Y). 3.84/1.82 add(s(X), Y, s(Z)) :- add(X, Y, Z). 3.84/1.82 3.84/1.82 3.84/1.82 Query: mult(g,g,a) 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (1) PrologToPiTRSProof (SOUND) 3.84/1.82 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.84/1.82 3.84/1.82 mult_in_3: (b,b,f) 3.84/1.82 3.84/1.82 add_in_3: (b,b,f) 3.84/1.82 3.84/1.82 Transforming Prolog into the following Term Rewriting System: 3.84/1.82 3.84/1.82 Pi-finite rewrite system: 3.84/1.82 The TRS R consists of the following rules: 3.84/1.82 3.84/1.82 mult_in_gga(0, Y, 0) -> mult_out_gga(0, Y, 0) 3.84/1.82 mult_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, mult_in_gga(X, Y, Z1)) 3.84/1.82 U1_gga(X, Y, Z, mult_out_gga(X, Y, Z1)) -> U2_gga(X, Y, Z, add_in_gga(Z1, Y, Z)) 3.84/1.82 add_in_gga(0, Y, Y) -> add_out_gga(0, Y, Y) 3.84/1.82 add_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, add_in_gga(X, Y, Z)) 3.84/1.82 U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) -> add_out_gga(s(X), Y, s(Z)) 3.84/1.82 U2_gga(X, Y, Z, add_out_gga(Z1, Y, Z)) -> mult_out_gga(s(X), Y, Z) 3.84/1.82 3.84/1.82 The argument filtering Pi contains the following mapping: 3.84/1.82 mult_in_gga(x1, x2, x3) = mult_in_gga(x1, x2) 3.84/1.82 3.84/1.82 0 = 0 3.84/1.82 3.84/1.82 mult_out_gga(x1, x2, x3) = mult_out_gga(x3) 3.84/1.82 3.84/1.82 s(x1) = s(x1) 3.84/1.82 3.84/1.82 U1_gga(x1, x2, x3, x4) = U1_gga(x2, x4) 3.84/1.82 3.84/1.82 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 3.84/1.82 3.84/1.82 add_in_gga(x1, x2, x3) = add_in_gga(x1, x2) 3.84/1.82 3.84/1.82 add_out_gga(x1, x2, x3) = add_out_gga(x3) 3.84/1.82 3.84/1.82 U3_gga(x1, x2, x3, x4) = U3_gga(x4) 3.84/1.82 3.84/1.82 3.84/1.82 3.84/1.82 3.84/1.82 3.84/1.82 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.84/1.82 3.84/1.82 3.84/1.82 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (2) 3.84/1.82 Obligation: 3.84/1.82 Pi-finite rewrite system: 3.84/1.82 The TRS R consists of the following rules: 3.84/1.82 3.84/1.82 mult_in_gga(0, Y, 0) -> mult_out_gga(0, Y, 0) 3.84/1.82 mult_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, mult_in_gga(X, Y, Z1)) 3.84/1.82 U1_gga(X, Y, Z, mult_out_gga(X, Y, Z1)) -> U2_gga(X, Y, Z, add_in_gga(Z1, Y, Z)) 3.84/1.82 add_in_gga(0, Y, Y) -> add_out_gga(0, Y, Y) 3.84/1.82 add_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, add_in_gga(X, Y, Z)) 3.84/1.82 U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) -> add_out_gga(s(X), Y, s(Z)) 3.84/1.82 U2_gga(X, Y, Z, add_out_gga(Z1, Y, Z)) -> mult_out_gga(s(X), Y, Z) 3.84/1.82 3.84/1.82 The argument filtering Pi contains the following mapping: 3.84/1.82 mult_in_gga(x1, x2, x3) = mult_in_gga(x1, x2) 3.84/1.82 3.84/1.82 0 = 0 3.84/1.82 3.84/1.82 mult_out_gga(x1, x2, x3) = mult_out_gga(x3) 3.84/1.82 3.84/1.82 s(x1) = s(x1) 3.84/1.82 3.84/1.82 U1_gga(x1, x2, x3, x4) = U1_gga(x2, x4) 3.84/1.82 3.84/1.82 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 3.84/1.82 3.84/1.82 add_in_gga(x1, x2, x3) = add_in_gga(x1, x2) 3.84/1.82 3.84/1.82 add_out_gga(x1, x2, x3) = add_out_gga(x3) 3.84/1.82 3.84/1.82 U3_gga(x1, x2, x3, x4) = U3_gga(x4) 3.84/1.82 3.84/1.82 3.84/1.82 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (3) DependencyPairsProof (EQUIVALENT) 3.84/1.82 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.84/1.82 Pi DP problem: 3.84/1.82 The TRS P consists of the following rules: 3.84/1.82 3.84/1.82 MULT_IN_GGA(s(X), Y, Z) -> U1_GGA(X, Y, Z, mult_in_gga(X, Y, Z1)) 3.84/1.82 MULT_IN_GGA(s(X), Y, Z) -> MULT_IN_GGA(X, Y, Z1) 3.84/1.82 U1_GGA(X, Y, Z, mult_out_gga(X, Y, Z1)) -> U2_GGA(X, Y, Z, add_in_gga(Z1, Y, Z)) 3.84/1.82 U1_GGA(X, Y, Z, mult_out_gga(X, Y, Z1)) -> ADD_IN_GGA(Z1, Y, Z) 3.84/1.82 ADD_IN_GGA(s(X), Y, s(Z)) -> U3_GGA(X, Y, Z, add_in_gga(X, Y, Z)) 3.84/1.82 ADD_IN_GGA(s(X), Y, s(Z)) -> ADD_IN_GGA(X, Y, Z) 3.84/1.82 3.84/1.82 The TRS R consists of the following rules: 3.84/1.82 3.84/1.82 mult_in_gga(0, Y, 0) -> mult_out_gga(0, Y, 0) 3.84/1.82 mult_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, mult_in_gga(X, Y, Z1)) 3.84/1.82 U1_gga(X, Y, Z, mult_out_gga(X, Y, Z1)) -> U2_gga(X, Y, Z, add_in_gga(Z1, Y, Z)) 3.84/1.82 add_in_gga(0, Y, Y) -> add_out_gga(0, Y, Y) 3.84/1.82 add_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, add_in_gga(X, Y, Z)) 3.84/1.82 U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) -> add_out_gga(s(X), Y, s(Z)) 3.84/1.82 U2_gga(X, Y, Z, add_out_gga(Z1, Y, Z)) -> mult_out_gga(s(X), Y, Z) 3.84/1.82 3.84/1.82 The argument filtering Pi contains the following mapping: 3.84/1.82 mult_in_gga(x1, x2, x3) = mult_in_gga(x1, x2) 3.84/1.82 3.84/1.82 0 = 0 3.84/1.82 3.84/1.82 mult_out_gga(x1, x2, x3) = mult_out_gga(x3) 3.84/1.82 3.84/1.82 s(x1) = s(x1) 3.84/1.82 3.84/1.82 U1_gga(x1, x2, x3, x4) = U1_gga(x2, x4) 3.84/1.82 3.84/1.82 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 3.84/1.82 3.84/1.82 add_in_gga(x1, x2, x3) = add_in_gga(x1, x2) 3.84/1.82 3.84/1.82 add_out_gga(x1, x2, x3) = add_out_gga(x3) 3.84/1.82 3.84/1.82 U3_gga(x1, x2, x3, x4) = U3_gga(x4) 3.84/1.82 3.84/1.82 MULT_IN_GGA(x1, x2, x3) = MULT_IN_GGA(x1, x2) 3.84/1.82 3.84/1.82 U1_GGA(x1, x2, x3, x4) = U1_GGA(x2, x4) 3.84/1.82 3.84/1.82 U2_GGA(x1, x2, x3, x4) = U2_GGA(x4) 3.84/1.82 3.84/1.82 ADD_IN_GGA(x1, x2, x3) = ADD_IN_GGA(x1, x2) 3.84/1.82 3.84/1.82 U3_GGA(x1, x2, x3, x4) = U3_GGA(x4) 3.84/1.82 3.84/1.82 3.84/1.82 We have to consider all (P,R,Pi)-chains 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (4) 3.84/1.82 Obligation: 3.84/1.82 Pi DP problem: 3.84/1.82 The TRS P consists of the following rules: 3.84/1.82 3.84/1.82 MULT_IN_GGA(s(X), Y, Z) -> U1_GGA(X, Y, Z, mult_in_gga(X, Y, Z1)) 3.84/1.82 MULT_IN_GGA(s(X), Y, Z) -> MULT_IN_GGA(X, Y, Z1) 3.84/1.82 U1_GGA(X, Y, Z, mult_out_gga(X, Y, Z1)) -> U2_GGA(X, Y, Z, add_in_gga(Z1, Y, Z)) 3.84/1.82 U1_GGA(X, Y, Z, mult_out_gga(X, Y, Z1)) -> ADD_IN_GGA(Z1, Y, Z) 3.84/1.82 ADD_IN_GGA(s(X), Y, s(Z)) -> U3_GGA(X, Y, Z, add_in_gga(X, Y, Z)) 3.84/1.82 ADD_IN_GGA(s(X), Y, s(Z)) -> ADD_IN_GGA(X, Y, Z) 3.84/1.82 3.84/1.82 The TRS R consists of the following rules: 3.84/1.82 3.84/1.82 mult_in_gga(0, Y, 0) -> mult_out_gga(0, Y, 0) 3.84/1.82 mult_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, mult_in_gga(X, Y, Z1)) 3.84/1.82 U1_gga(X, Y, Z, mult_out_gga(X, Y, Z1)) -> U2_gga(X, Y, Z, add_in_gga(Z1, Y, Z)) 3.84/1.82 add_in_gga(0, Y, Y) -> add_out_gga(0, Y, Y) 3.84/1.82 add_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, add_in_gga(X, Y, Z)) 3.84/1.82 U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) -> add_out_gga(s(X), Y, s(Z)) 3.84/1.82 U2_gga(X, Y, Z, add_out_gga(Z1, Y, Z)) -> mult_out_gga(s(X), Y, Z) 3.84/1.82 3.84/1.82 The argument filtering Pi contains the following mapping: 3.84/1.82 mult_in_gga(x1, x2, x3) = mult_in_gga(x1, x2) 3.84/1.82 3.84/1.82 0 = 0 3.84/1.82 3.84/1.82 mult_out_gga(x1, x2, x3) = mult_out_gga(x3) 3.84/1.82 3.84/1.82 s(x1) = s(x1) 3.84/1.82 3.84/1.82 U1_gga(x1, x2, x3, x4) = U1_gga(x2, x4) 3.84/1.82 3.84/1.82 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 3.84/1.82 3.84/1.82 add_in_gga(x1, x2, x3) = add_in_gga(x1, x2) 3.84/1.82 3.84/1.82 add_out_gga(x1, x2, x3) = add_out_gga(x3) 3.84/1.82 3.84/1.82 U3_gga(x1, x2, x3, x4) = U3_gga(x4) 3.84/1.82 3.84/1.82 MULT_IN_GGA(x1, x2, x3) = MULT_IN_GGA(x1, x2) 3.84/1.82 3.84/1.82 U1_GGA(x1, x2, x3, x4) = U1_GGA(x2, x4) 3.84/1.82 3.84/1.82 U2_GGA(x1, x2, x3, x4) = U2_GGA(x4) 3.84/1.82 3.84/1.82 ADD_IN_GGA(x1, x2, x3) = ADD_IN_GGA(x1, x2) 3.84/1.82 3.84/1.82 U3_GGA(x1, x2, x3, x4) = U3_GGA(x4) 3.84/1.82 3.84/1.82 3.84/1.82 We have to consider all (P,R,Pi)-chains 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (5) DependencyGraphProof (EQUIVALENT) 3.84/1.82 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes. 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (6) 3.84/1.82 Complex Obligation (AND) 3.84/1.82 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (7) 3.84/1.82 Obligation: 3.84/1.82 Pi DP problem: 3.84/1.82 The TRS P consists of the following rules: 3.84/1.82 3.84/1.82 ADD_IN_GGA(s(X), Y, s(Z)) -> ADD_IN_GGA(X, Y, Z) 3.84/1.82 3.84/1.82 The TRS R consists of the following rules: 3.84/1.82 3.84/1.82 mult_in_gga(0, Y, 0) -> mult_out_gga(0, Y, 0) 3.84/1.82 mult_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, mult_in_gga(X, Y, Z1)) 3.84/1.82 U1_gga(X, Y, Z, mult_out_gga(X, Y, Z1)) -> U2_gga(X, Y, Z, add_in_gga(Z1, Y, Z)) 3.84/1.82 add_in_gga(0, Y, Y) -> add_out_gga(0, Y, Y) 3.84/1.82 add_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, add_in_gga(X, Y, Z)) 3.84/1.82 U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) -> add_out_gga(s(X), Y, s(Z)) 3.84/1.82 U2_gga(X, Y, Z, add_out_gga(Z1, Y, Z)) -> mult_out_gga(s(X), Y, Z) 3.84/1.82 3.84/1.82 The argument filtering Pi contains the following mapping: 3.84/1.82 mult_in_gga(x1, x2, x3) = mult_in_gga(x1, x2) 3.84/1.82 3.84/1.82 0 = 0 3.84/1.82 3.84/1.82 mult_out_gga(x1, x2, x3) = mult_out_gga(x3) 3.84/1.82 3.84/1.82 s(x1) = s(x1) 3.84/1.82 3.84/1.82 U1_gga(x1, x2, x3, x4) = U1_gga(x2, x4) 3.84/1.82 3.84/1.82 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 3.84/1.82 3.84/1.82 add_in_gga(x1, x2, x3) = add_in_gga(x1, x2) 3.84/1.82 3.84/1.82 add_out_gga(x1, x2, x3) = add_out_gga(x3) 3.84/1.82 3.84/1.82 U3_gga(x1, x2, x3, x4) = U3_gga(x4) 3.84/1.82 3.84/1.82 ADD_IN_GGA(x1, x2, x3) = ADD_IN_GGA(x1, x2) 3.84/1.82 3.84/1.82 3.84/1.82 We have to consider all (P,R,Pi)-chains 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (8) UsableRulesProof (EQUIVALENT) 3.84/1.82 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (9) 3.84/1.82 Obligation: 3.84/1.82 Pi DP problem: 3.84/1.82 The TRS P consists of the following rules: 3.84/1.82 3.84/1.82 ADD_IN_GGA(s(X), Y, s(Z)) -> ADD_IN_GGA(X, Y, Z) 3.84/1.82 3.84/1.82 R is empty. 3.84/1.82 The argument filtering Pi contains the following mapping: 3.84/1.82 s(x1) = s(x1) 3.84/1.82 3.84/1.82 ADD_IN_GGA(x1, x2, x3) = ADD_IN_GGA(x1, x2) 3.84/1.82 3.84/1.82 3.84/1.82 We have to consider all (P,R,Pi)-chains 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (10) PiDPToQDPProof (SOUND) 3.84/1.82 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (11) 3.84/1.82 Obligation: 3.84/1.82 Q DP problem: 3.84/1.82 The TRS P consists of the following rules: 3.84/1.82 3.84/1.82 ADD_IN_GGA(s(X), Y) -> ADD_IN_GGA(X, Y) 3.84/1.82 3.84/1.82 R is empty. 3.84/1.82 Q is empty. 3.84/1.82 We have to consider all (P,Q,R)-chains. 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (12) QDPSizeChangeProof (EQUIVALENT) 3.84/1.82 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.84/1.82 3.84/1.82 From the DPs we obtained the following set of size-change graphs: 3.84/1.82 *ADD_IN_GGA(s(X), Y) -> ADD_IN_GGA(X, Y) 3.84/1.82 The graph contains the following edges 1 > 1, 2 >= 2 3.84/1.82 3.84/1.82 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (13) 3.84/1.82 YES 3.84/1.82 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (14) 3.84/1.82 Obligation: 3.84/1.82 Pi DP problem: 3.84/1.82 The TRS P consists of the following rules: 3.84/1.82 3.84/1.82 MULT_IN_GGA(s(X), Y, Z) -> MULT_IN_GGA(X, Y, Z1) 3.84/1.82 3.84/1.82 The TRS R consists of the following rules: 3.84/1.82 3.84/1.82 mult_in_gga(0, Y, 0) -> mult_out_gga(0, Y, 0) 3.84/1.82 mult_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, mult_in_gga(X, Y, Z1)) 3.84/1.82 U1_gga(X, Y, Z, mult_out_gga(X, Y, Z1)) -> U2_gga(X, Y, Z, add_in_gga(Z1, Y, Z)) 3.84/1.82 add_in_gga(0, Y, Y) -> add_out_gga(0, Y, Y) 3.84/1.82 add_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, add_in_gga(X, Y, Z)) 3.84/1.82 U3_gga(X, Y, Z, add_out_gga(X, Y, Z)) -> add_out_gga(s(X), Y, s(Z)) 3.84/1.82 U2_gga(X, Y, Z, add_out_gga(Z1, Y, Z)) -> mult_out_gga(s(X), Y, Z) 3.84/1.82 3.84/1.82 The argument filtering Pi contains the following mapping: 3.84/1.82 mult_in_gga(x1, x2, x3) = mult_in_gga(x1, x2) 3.84/1.82 3.84/1.82 0 = 0 3.84/1.82 3.84/1.82 mult_out_gga(x1, x2, x3) = mult_out_gga(x3) 3.84/1.82 3.84/1.82 s(x1) = s(x1) 3.84/1.82 3.84/1.82 U1_gga(x1, x2, x3, x4) = U1_gga(x2, x4) 3.84/1.82 3.84/1.82 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 3.84/1.82 3.84/1.82 add_in_gga(x1, x2, x3) = add_in_gga(x1, x2) 3.84/1.82 3.84/1.82 add_out_gga(x1, x2, x3) = add_out_gga(x3) 3.84/1.82 3.84/1.82 U3_gga(x1, x2, x3, x4) = U3_gga(x4) 3.84/1.82 3.84/1.82 MULT_IN_GGA(x1, x2, x3) = MULT_IN_GGA(x1, x2) 3.84/1.82 3.84/1.82 3.84/1.82 We have to consider all (P,R,Pi)-chains 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (15) UsableRulesProof (EQUIVALENT) 3.84/1.82 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (16) 3.84/1.82 Obligation: 3.84/1.82 Pi DP problem: 3.84/1.82 The TRS P consists of the following rules: 3.84/1.82 3.84/1.82 MULT_IN_GGA(s(X), Y, Z) -> MULT_IN_GGA(X, Y, Z1) 3.84/1.82 3.84/1.82 R is empty. 3.84/1.82 The argument filtering Pi contains the following mapping: 3.84/1.82 s(x1) = s(x1) 3.84/1.82 3.84/1.82 MULT_IN_GGA(x1, x2, x3) = MULT_IN_GGA(x1, x2) 3.84/1.82 3.84/1.82 3.84/1.82 We have to consider all (P,R,Pi)-chains 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (17) PiDPToQDPProof (SOUND) 3.84/1.82 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (18) 3.84/1.82 Obligation: 3.84/1.82 Q DP problem: 3.84/1.82 The TRS P consists of the following rules: 3.84/1.82 3.84/1.82 MULT_IN_GGA(s(X), Y) -> MULT_IN_GGA(X, Y) 3.84/1.82 3.84/1.82 R is empty. 3.84/1.82 Q is empty. 3.84/1.82 We have to consider all (P,Q,R)-chains. 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (19) QDPSizeChangeProof (EQUIVALENT) 3.84/1.82 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.84/1.82 3.84/1.82 From the DPs we obtained the following set of size-change graphs: 3.84/1.82 *MULT_IN_GGA(s(X), Y) -> MULT_IN_GGA(X, Y) 3.84/1.82 The graph contains the following edges 1 > 1, 2 >= 2 3.84/1.82 3.84/1.82 3.84/1.82 ---------------------------------------- 3.84/1.82 3.84/1.82 (20) 3.84/1.82 YES 3.84/1.85 EOF