5.79/2.35 YES 6.06/2.37 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 6.06/2.37 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.06/2.37 6.06/2.37 6.06/2.37 Left Termination of the query pattern 6.06/2.37 6.06/2.37 perm(g,a) 6.06/2.37 6.06/2.37 w.r.t. the given Prolog program could successfully be proven: 6.06/2.37 6.06/2.37 (0) Prolog 6.06/2.37 (1) PrologToPiTRSProof [SOUND, 0 ms] 6.06/2.37 (2) PiTRS 6.06/2.37 (3) DependencyPairsProof [EQUIVALENT, 20 ms] 6.06/2.37 (4) PiDP 6.06/2.37 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 6.06/2.37 (6) AND 6.06/2.37 (7) PiDP 6.06/2.37 (8) UsableRulesProof [EQUIVALENT, 0 ms] 6.06/2.37 (9) PiDP 6.06/2.37 (10) PiDPToQDPProof [SOUND, 0 ms] 6.06/2.37 (11) QDP 6.06/2.37 (12) UsableRulesReductionPairsProof [EQUIVALENT, 2 ms] 6.06/2.37 (13) QDP 6.06/2.37 (14) PisEmptyProof [EQUIVALENT, 0 ms] 6.06/2.37 (15) YES 6.06/2.37 (16) PiDP 6.06/2.37 (17) UsableRulesProof [EQUIVALENT, 0 ms] 6.06/2.37 (18) PiDP 6.06/2.37 (19) PiDPToQDPProof [SOUND, 0 ms] 6.06/2.37 (20) QDP 6.06/2.37 (21) UsableRulesReductionPairsProof [EQUIVALENT, 4 ms] 6.06/2.37 (22) QDP 6.06/2.37 (23) PisEmptyProof [EQUIVALENT, 0 ms] 6.06/2.37 (24) YES 6.06/2.37 (25) PiDP 6.06/2.37 (26) UsableRulesProof [EQUIVALENT, 0 ms] 6.06/2.37 (27) PiDP 6.06/2.37 (28) PiDPToQDPProof [SOUND, 0 ms] 6.06/2.37 (29) QDP 6.06/2.37 (30) MRRProof [EQUIVALENT, 0 ms] 6.06/2.37 (31) QDP 6.06/2.37 (32) PisEmptyProof [EQUIVALENT, 0 ms] 6.06/2.37 (33) YES 6.06/2.37 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (0) 6.06/2.37 Obligation: 6.06/2.37 Clauses: 6.06/2.37 6.06/2.37 append2(parts([], Y), is(sum(Y))). 6.06/2.37 append2(parts(.(H, X), Y), is(sum(.(H, Z)))) :- append2(parts(X, Y), is(sum(Z))). 6.06/2.37 append1(parts([], Y), is(sum(Y))). 6.06/2.37 append1(parts(.(H, X), Y), is(sum(.(H, Z)))) :- append1(parts(X, Y), is(sum(Z))). 6.06/2.37 perm([], []). 6.06/2.37 perm(L, .(H, T)) :- ','(append2(parts(V, .(H, U)), is(sum(L))), ','(append1(parts(V, U), is(sum(W))), perm(W, T))). 6.06/2.37 6.06/2.37 6.06/2.37 Query: perm(g,a) 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (1) PrologToPiTRSProof (SOUND) 6.06/2.37 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 6.06/2.37 6.06/2.37 perm_in_2: (b,f) 6.06/2.37 6.06/2.37 append2_in_2: (f,b) 6.06/2.37 6.06/2.37 append1_in_2: (b,f) 6.06/2.37 6.06/2.37 Transforming Prolog into the following Term Rewriting System: 6.06/2.37 6.06/2.37 Pi-finite rewrite system: 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 perm_in_ga([], []) -> perm_out_ga([], []) 6.06/2.37 perm_in_ga(L, .(H, T)) -> U3_ga(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 append2_in_ag(parts([], Y), is(sum(Y))) -> append2_out_ag(parts([], Y), is(sum(Y))) 6.06/2.37 append2_in_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_ag(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 U1_ag(H, X, Y, Z, append2_out_ag(parts(X, Y), is(sum(Z)))) -> append2_out_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U3_ga(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_ga(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 append1_in_ga(parts([], Y), is(sum(Y))) -> append1_out_ga(parts([], Y), is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_ga(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 U2_ga(H, X, Y, Z, append1_out_ga(parts(X, Y), is(sum(Z)))) -> append1_out_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U4_ga(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_ga(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U5_ga(L, H, T, perm_out_ga(W, T)) -> perm_out_ga(L, .(H, T)) 6.06/2.37 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 perm_in_ga(x1, x2) = perm_in_ga(x1) 6.06/2.37 6.06/2.37 [] = [] 6.06/2.37 6.06/2.37 perm_out_ga(x1, x2) = perm_out_ga(x2) 6.06/2.37 6.06/2.37 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 6.06/2.37 6.06/2.37 append2_in_ag(x1, x2) = append2_in_ag(x2) 6.06/2.37 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 append2_out_ag(x1, x2) = append2_out_ag(x1) 6.06/2.37 6.06/2.37 U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 U4_ga(x1, x2, x3, x4, x5, x6) = U4_ga(x6) 6.06/2.37 6.06/2.37 append1_in_ga(x1, x2) = append1_in_ga(x1) 6.06/2.37 6.06/2.37 append1_out_ga(x1, x2) = append1_out_ga(x2) 6.06/2.37 6.06/2.37 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.06/2.37 6.06/2.37 U5_ga(x1, x2, x3, x4) = U5_ga(x4) 6.06/2.37 6.06/2.37 6.06/2.37 6.06/2.37 6.06/2.37 6.06/2.37 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 6.06/2.37 6.06/2.37 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (2) 6.06/2.37 Obligation: 6.06/2.37 Pi-finite rewrite system: 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 perm_in_ga([], []) -> perm_out_ga([], []) 6.06/2.37 perm_in_ga(L, .(H, T)) -> U3_ga(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 append2_in_ag(parts([], Y), is(sum(Y))) -> append2_out_ag(parts([], Y), is(sum(Y))) 6.06/2.37 append2_in_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_ag(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 U1_ag(H, X, Y, Z, append2_out_ag(parts(X, Y), is(sum(Z)))) -> append2_out_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U3_ga(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_ga(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 append1_in_ga(parts([], Y), is(sum(Y))) -> append1_out_ga(parts([], Y), is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_ga(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 U2_ga(H, X, Y, Z, append1_out_ga(parts(X, Y), is(sum(Z)))) -> append1_out_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U4_ga(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_ga(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U5_ga(L, H, T, perm_out_ga(W, T)) -> perm_out_ga(L, .(H, T)) 6.06/2.37 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 perm_in_ga(x1, x2) = perm_in_ga(x1) 6.06/2.37 6.06/2.37 [] = [] 6.06/2.37 6.06/2.37 perm_out_ga(x1, x2) = perm_out_ga(x2) 6.06/2.37 6.06/2.37 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 6.06/2.37 6.06/2.37 append2_in_ag(x1, x2) = append2_in_ag(x2) 6.06/2.37 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 append2_out_ag(x1, x2) = append2_out_ag(x1) 6.06/2.37 6.06/2.37 U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 U4_ga(x1, x2, x3, x4, x5, x6) = U4_ga(x6) 6.06/2.37 6.06/2.37 append1_in_ga(x1, x2) = append1_in_ga(x1) 6.06/2.37 6.06/2.37 append1_out_ga(x1, x2) = append1_out_ga(x2) 6.06/2.37 6.06/2.37 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.06/2.37 6.06/2.37 U5_ga(x1, x2, x3, x4) = U5_ga(x4) 6.06/2.37 6.06/2.37 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (3) DependencyPairsProof (EQUIVALENT) 6.06/2.37 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 6.06/2.37 Pi DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 PERM_IN_GA(L, .(H, T)) -> U3_GA(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 PERM_IN_GA(L, .(H, T)) -> APPEND2_IN_AG(parts(V, .(H, U)), is(sum(L))) 6.06/2.37 APPEND2_IN_AG(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_AG(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 APPEND2_IN_AG(parts(.(H, X), Y), is(sum(.(H, Z)))) -> APPEND2_IN_AG(parts(X, Y), is(sum(Z))) 6.06/2.37 U3_GA(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_GA(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 U3_GA(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> APPEND1_IN_GA(parts(V, U), is(sum(W))) 6.06/2.37 APPEND1_IN_GA(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_GA(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 APPEND1_IN_GA(parts(.(H, X), Y), is(sum(.(H, Z)))) -> APPEND1_IN_GA(parts(X, Y), is(sum(Z))) 6.06/2.37 U4_GA(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_GA(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U4_GA(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> PERM_IN_GA(W, T) 6.06/2.37 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 perm_in_ga([], []) -> perm_out_ga([], []) 6.06/2.37 perm_in_ga(L, .(H, T)) -> U3_ga(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 append2_in_ag(parts([], Y), is(sum(Y))) -> append2_out_ag(parts([], Y), is(sum(Y))) 6.06/2.37 append2_in_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_ag(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 U1_ag(H, X, Y, Z, append2_out_ag(parts(X, Y), is(sum(Z)))) -> append2_out_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U3_ga(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_ga(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 append1_in_ga(parts([], Y), is(sum(Y))) -> append1_out_ga(parts([], Y), is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_ga(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 U2_ga(H, X, Y, Z, append1_out_ga(parts(X, Y), is(sum(Z)))) -> append1_out_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U4_ga(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_ga(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U5_ga(L, H, T, perm_out_ga(W, T)) -> perm_out_ga(L, .(H, T)) 6.06/2.37 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 perm_in_ga(x1, x2) = perm_in_ga(x1) 6.06/2.37 6.06/2.37 [] = [] 6.06/2.37 6.06/2.37 perm_out_ga(x1, x2) = perm_out_ga(x2) 6.06/2.37 6.06/2.37 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 6.06/2.37 6.06/2.37 append2_in_ag(x1, x2) = append2_in_ag(x2) 6.06/2.37 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 append2_out_ag(x1, x2) = append2_out_ag(x1) 6.06/2.37 6.06/2.37 U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 U4_ga(x1, x2, x3, x4, x5, x6) = U4_ga(x6) 6.06/2.37 6.06/2.37 append1_in_ga(x1, x2) = append1_in_ga(x1) 6.06/2.37 6.06/2.37 append1_out_ga(x1, x2) = append1_out_ga(x2) 6.06/2.37 6.06/2.37 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.06/2.37 6.06/2.37 U5_ga(x1, x2, x3, x4) = U5_ga(x4) 6.06/2.37 6.06/2.37 PERM_IN_GA(x1, x2) = PERM_IN_GA(x1) 6.06/2.37 6.06/2.37 U3_GA(x1, x2, x3, x4) = U3_GA(x4) 6.06/2.37 6.06/2.37 APPEND2_IN_AG(x1, x2) = APPEND2_IN_AG(x2) 6.06/2.37 6.06/2.37 U1_AG(x1, x2, x3, x4, x5) = U1_AG(x5) 6.06/2.37 6.06/2.37 U4_GA(x1, x2, x3, x4, x5, x6) = U4_GA(x6) 6.06/2.37 6.06/2.37 APPEND1_IN_GA(x1, x2) = APPEND1_IN_GA(x1) 6.06/2.37 6.06/2.37 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) 6.06/2.37 6.06/2.37 U5_GA(x1, x2, x3, x4) = U5_GA(x4) 6.06/2.37 6.06/2.37 6.06/2.37 We have to consider all (P,R,Pi)-chains 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (4) 6.06/2.37 Obligation: 6.06/2.37 Pi DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 PERM_IN_GA(L, .(H, T)) -> U3_GA(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 PERM_IN_GA(L, .(H, T)) -> APPEND2_IN_AG(parts(V, .(H, U)), is(sum(L))) 6.06/2.37 APPEND2_IN_AG(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_AG(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 APPEND2_IN_AG(parts(.(H, X), Y), is(sum(.(H, Z)))) -> APPEND2_IN_AG(parts(X, Y), is(sum(Z))) 6.06/2.37 U3_GA(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_GA(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 U3_GA(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> APPEND1_IN_GA(parts(V, U), is(sum(W))) 6.06/2.37 APPEND1_IN_GA(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_GA(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 APPEND1_IN_GA(parts(.(H, X), Y), is(sum(.(H, Z)))) -> APPEND1_IN_GA(parts(X, Y), is(sum(Z))) 6.06/2.37 U4_GA(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_GA(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U4_GA(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> PERM_IN_GA(W, T) 6.06/2.37 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 perm_in_ga([], []) -> perm_out_ga([], []) 6.06/2.37 perm_in_ga(L, .(H, T)) -> U3_ga(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 append2_in_ag(parts([], Y), is(sum(Y))) -> append2_out_ag(parts([], Y), is(sum(Y))) 6.06/2.37 append2_in_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_ag(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 U1_ag(H, X, Y, Z, append2_out_ag(parts(X, Y), is(sum(Z)))) -> append2_out_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U3_ga(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_ga(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 append1_in_ga(parts([], Y), is(sum(Y))) -> append1_out_ga(parts([], Y), is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_ga(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 U2_ga(H, X, Y, Z, append1_out_ga(parts(X, Y), is(sum(Z)))) -> append1_out_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U4_ga(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_ga(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U5_ga(L, H, T, perm_out_ga(W, T)) -> perm_out_ga(L, .(H, T)) 6.06/2.37 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 perm_in_ga(x1, x2) = perm_in_ga(x1) 6.06/2.37 6.06/2.37 [] = [] 6.06/2.37 6.06/2.37 perm_out_ga(x1, x2) = perm_out_ga(x2) 6.06/2.37 6.06/2.37 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 6.06/2.37 6.06/2.37 append2_in_ag(x1, x2) = append2_in_ag(x2) 6.06/2.37 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 append2_out_ag(x1, x2) = append2_out_ag(x1) 6.06/2.37 6.06/2.37 U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 U4_ga(x1, x2, x3, x4, x5, x6) = U4_ga(x6) 6.06/2.37 6.06/2.37 append1_in_ga(x1, x2) = append1_in_ga(x1) 6.06/2.37 6.06/2.37 append1_out_ga(x1, x2) = append1_out_ga(x2) 6.06/2.37 6.06/2.37 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.06/2.37 6.06/2.37 U5_ga(x1, x2, x3, x4) = U5_ga(x4) 6.06/2.37 6.06/2.37 PERM_IN_GA(x1, x2) = PERM_IN_GA(x1) 6.06/2.37 6.06/2.37 U3_GA(x1, x2, x3, x4) = U3_GA(x4) 6.06/2.37 6.06/2.37 APPEND2_IN_AG(x1, x2) = APPEND2_IN_AG(x2) 6.06/2.37 6.06/2.37 U1_AG(x1, x2, x3, x4, x5) = U1_AG(x5) 6.06/2.37 6.06/2.37 U4_GA(x1, x2, x3, x4, x5, x6) = U4_GA(x6) 6.06/2.37 6.06/2.37 APPEND1_IN_GA(x1, x2) = APPEND1_IN_GA(x1) 6.06/2.37 6.06/2.37 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) 6.06/2.37 6.06/2.37 U5_GA(x1, x2, x3, x4) = U5_GA(x4) 6.06/2.37 6.06/2.37 6.06/2.37 We have to consider all (P,R,Pi)-chains 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (5) DependencyGraphProof (EQUIVALENT) 6.06/2.37 The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 5 less nodes. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (6) 6.06/2.37 Complex Obligation (AND) 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (7) 6.06/2.37 Obligation: 6.06/2.37 Pi DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 APPEND1_IN_GA(parts(.(H, X), Y), is(sum(.(H, Z)))) -> APPEND1_IN_GA(parts(X, Y), is(sum(Z))) 6.06/2.37 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 perm_in_ga([], []) -> perm_out_ga([], []) 6.06/2.37 perm_in_ga(L, .(H, T)) -> U3_ga(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 append2_in_ag(parts([], Y), is(sum(Y))) -> append2_out_ag(parts([], Y), is(sum(Y))) 6.06/2.37 append2_in_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_ag(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 U1_ag(H, X, Y, Z, append2_out_ag(parts(X, Y), is(sum(Z)))) -> append2_out_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U3_ga(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_ga(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 append1_in_ga(parts([], Y), is(sum(Y))) -> append1_out_ga(parts([], Y), is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_ga(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 U2_ga(H, X, Y, Z, append1_out_ga(parts(X, Y), is(sum(Z)))) -> append1_out_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U4_ga(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_ga(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U5_ga(L, H, T, perm_out_ga(W, T)) -> perm_out_ga(L, .(H, T)) 6.06/2.37 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 perm_in_ga(x1, x2) = perm_in_ga(x1) 6.06/2.37 6.06/2.37 [] = [] 6.06/2.37 6.06/2.37 perm_out_ga(x1, x2) = perm_out_ga(x2) 6.06/2.37 6.06/2.37 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 6.06/2.37 6.06/2.37 append2_in_ag(x1, x2) = append2_in_ag(x2) 6.06/2.37 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 append2_out_ag(x1, x2) = append2_out_ag(x1) 6.06/2.37 6.06/2.37 U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 U4_ga(x1, x2, x3, x4, x5, x6) = U4_ga(x6) 6.06/2.37 6.06/2.37 append1_in_ga(x1, x2) = append1_in_ga(x1) 6.06/2.37 6.06/2.37 append1_out_ga(x1, x2) = append1_out_ga(x2) 6.06/2.37 6.06/2.37 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.06/2.37 6.06/2.37 U5_ga(x1, x2, x3, x4) = U5_ga(x4) 6.06/2.37 6.06/2.37 APPEND1_IN_GA(x1, x2) = APPEND1_IN_GA(x1) 6.06/2.37 6.06/2.37 6.06/2.37 We have to consider all (P,R,Pi)-chains 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (8) UsableRulesProof (EQUIVALENT) 6.06/2.37 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (9) 6.06/2.37 Obligation: 6.06/2.37 Pi DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 APPEND1_IN_GA(parts(.(H, X), Y), is(sum(.(H, Z)))) -> APPEND1_IN_GA(parts(X, Y), is(sum(Z))) 6.06/2.37 6.06/2.37 R is empty. 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 APPEND1_IN_GA(x1, x2) = APPEND1_IN_GA(x1) 6.06/2.37 6.06/2.37 6.06/2.37 We have to consider all (P,R,Pi)-chains 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (10) PiDPToQDPProof (SOUND) 6.06/2.37 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (11) 6.06/2.37 Obligation: 6.06/2.37 Q DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 APPEND1_IN_GA(parts(.(X), Y)) -> APPEND1_IN_GA(parts(X, Y)) 6.06/2.37 6.06/2.37 R is empty. 6.06/2.37 Q is empty. 6.06/2.37 We have to consider all (P,Q,R)-chains. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (12) UsableRulesReductionPairsProof (EQUIVALENT) 6.06/2.37 By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. 6.06/2.37 6.06/2.37 The following dependency pairs can be deleted: 6.06/2.37 6.06/2.37 APPEND1_IN_GA(parts(.(X), Y)) -> APPEND1_IN_GA(parts(X, Y)) 6.06/2.37 No rules are removed from R. 6.06/2.37 6.06/2.37 Used ordering: POLO with Polynomial interpretation [POLO]: 6.06/2.37 6.06/2.37 POL(.(x_1)) = x_1 6.06/2.37 POL(APPEND1_IN_GA(x_1)) = 2*x_1 6.06/2.37 POL(parts(x_1, x_2)) = 2*x_1 + x_2 6.06/2.37 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (13) 6.06/2.37 Obligation: 6.06/2.37 Q DP problem: 6.06/2.37 P is empty. 6.06/2.37 R is empty. 6.06/2.37 Q is empty. 6.06/2.37 We have to consider all (P,Q,R)-chains. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (14) PisEmptyProof (EQUIVALENT) 6.06/2.37 The TRS P is empty. Hence, there is no (P,Q,R) chain. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (15) 6.06/2.37 YES 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (16) 6.06/2.37 Obligation: 6.06/2.37 Pi DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 APPEND2_IN_AG(parts(.(H, X), Y), is(sum(.(H, Z)))) -> APPEND2_IN_AG(parts(X, Y), is(sum(Z))) 6.06/2.37 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 perm_in_ga([], []) -> perm_out_ga([], []) 6.06/2.37 perm_in_ga(L, .(H, T)) -> U3_ga(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 append2_in_ag(parts([], Y), is(sum(Y))) -> append2_out_ag(parts([], Y), is(sum(Y))) 6.06/2.37 append2_in_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_ag(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 U1_ag(H, X, Y, Z, append2_out_ag(parts(X, Y), is(sum(Z)))) -> append2_out_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U3_ga(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_ga(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 append1_in_ga(parts([], Y), is(sum(Y))) -> append1_out_ga(parts([], Y), is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_ga(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 U2_ga(H, X, Y, Z, append1_out_ga(parts(X, Y), is(sum(Z)))) -> append1_out_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U4_ga(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_ga(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U5_ga(L, H, T, perm_out_ga(W, T)) -> perm_out_ga(L, .(H, T)) 6.06/2.37 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 perm_in_ga(x1, x2) = perm_in_ga(x1) 6.06/2.37 6.06/2.37 [] = [] 6.06/2.37 6.06/2.37 perm_out_ga(x1, x2) = perm_out_ga(x2) 6.06/2.37 6.06/2.37 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 6.06/2.37 6.06/2.37 append2_in_ag(x1, x2) = append2_in_ag(x2) 6.06/2.37 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 append2_out_ag(x1, x2) = append2_out_ag(x1) 6.06/2.37 6.06/2.37 U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 U4_ga(x1, x2, x3, x4, x5, x6) = U4_ga(x6) 6.06/2.37 6.06/2.37 append1_in_ga(x1, x2) = append1_in_ga(x1) 6.06/2.37 6.06/2.37 append1_out_ga(x1, x2) = append1_out_ga(x2) 6.06/2.37 6.06/2.37 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.06/2.37 6.06/2.37 U5_ga(x1, x2, x3, x4) = U5_ga(x4) 6.06/2.37 6.06/2.37 APPEND2_IN_AG(x1, x2) = APPEND2_IN_AG(x2) 6.06/2.37 6.06/2.37 6.06/2.37 We have to consider all (P,R,Pi)-chains 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (17) UsableRulesProof (EQUIVALENT) 6.06/2.37 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (18) 6.06/2.37 Obligation: 6.06/2.37 Pi DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 APPEND2_IN_AG(parts(.(H, X), Y), is(sum(.(H, Z)))) -> APPEND2_IN_AG(parts(X, Y), is(sum(Z))) 6.06/2.37 6.06/2.37 R is empty. 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 APPEND2_IN_AG(x1, x2) = APPEND2_IN_AG(x2) 6.06/2.37 6.06/2.37 6.06/2.37 We have to consider all (P,R,Pi)-chains 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (19) PiDPToQDPProof (SOUND) 6.06/2.37 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (20) 6.06/2.37 Obligation: 6.06/2.37 Q DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 APPEND2_IN_AG(is(sum(.(Z)))) -> APPEND2_IN_AG(is(sum(Z))) 6.06/2.37 6.06/2.37 R is empty. 6.06/2.37 Q is empty. 6.06/2.37 We have to consider all (P,Q,R)-chains. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (21) UsableRulesReductionPairsProof (EQUIVALENT) 6.06/2.37 By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. 6.06/2.37 6.06/2.37 The following dependency pairs can be deleted: 6.06/2.37 6.06/2.37 APPEND2_IN_AG(is(sum(.(Z)))) -> APPEND2_IN_AG(is(sum(Z))) 6.06/2.37 No rules are removed from R. 6.06/2.37 6.06/2.37 Used ordering: POLO with Polynomial interpretation [POLO]: 6.06/2.37 6.06/2.37 POL(.(x_1)) = 2*x_1 6.06/2.37 POL(APPEND2_IN_AG(x_1)) = 2*x_1 6.06/2.37 POL(is(x_1)) = x_1 6.06/2.37 POL(sum(x_1)) = x_1 6.06/2.37 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (22) 6.06/2.37 Obligation: 6.06/2.37 Q DP problem: 6.06/2.37 P is empty. 6.06/2.37 R is empty. 6.06/2.37 Q is empty. 6.06/2.37 We have to consider all (P,Q,R)-chains. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (23) PisEmptyProof (EQUIVALENT) 6.06/2.37 The TRS P is empty. Hence, there is no (P,Q,R) chain. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (24) 6.06/2.37 YES 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (25) 6.06/2.37 Obligation: 6.06/2.37 Pi DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 U3_GA(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_GA(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 U4_GA(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> PERM_IN_GA(W, T) 6.06/2.37 PERM_IN_GA(L, .(H, T)) -> U3_GA(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 perm_in_ga([], []) -> perm_out_ga([], []) 6.06/2.37 perm_in_ga(L, .(H, T)) -> U3_ga(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 append2_in_ag(parts([], Y), is(sum(Y))) -> append2_out_ag(parts([], Y), is(sum(Y))) 6.06/2.37 append2_in_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_ag(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 U1_ag(H, X, Y, Z, append2_out_ag(parts(X, Y), is(sum(Z)))) -> append2_out_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U3_ga(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_ga(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 append1_in_ga(parts([], Y), is(sum(Y))) -> append1_out_ga(parts([], Y), is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_ga(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 U2_ga(H, X, Y, Z, append1_out_ga(parts(X, Y), is(sum(Z)))) -> append1_out_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U4_ga(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> U5_ga(L, H, T, perm_in_ga(W, T)) 6.06/2.37 U5_ga(L, H, T, perm_out_ga(W, T)) -> perm_out_ga(L, .(H, T)) 6.06/2.37 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 perm_in_ga(x1, x2) = perm_in_ga(x1) 6.06/2.37 6.06/2.37 [] = [] 6.06/2.37 6.06/2.37 perm_out_ga(x1, x2) = perm_out_ga(x2) 6.06/2.37 6.06/2.37 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 6.06/2.37 6.06/2.37 append2_in_ag(x1, x2) = append2_in_ag(x2) 6.06/2.37 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 append2_out_ag(x1, x2) = append2_out_ag(x1) 6.06/2.37 6.06/2.37 U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 U4_ga(x1, x2, x3, x4, x5, x6) = U4_ga(x6) 6.06/2.37 6.06/2.37 append1_in_ga(x1, x2) = append1_in_ga(x1) 6.06/2.37 6.06/2.37 append1_out_ga(x1, x2) = append1_out_ga(x2) 6.06/2.37 6.06/2.37 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.06/2.37 6.06/2.37 U5_ga(x1, x2, x3, x4) = U5_ga(x4) 6.06/2.37 6.06/2.37 PERM_IN_GA(x1, x2) = PERM_IN_GA(x1) 6.06/2.37 6.06/2.37 U3_GA(x1, x2, x3, x4) = U3_GA(x4) 6.06/2.37 6.06/2.37 U4_GA(x1, x2, x3, x4, x5, x6) = U4_GA(x6) 6.06/2.37 6.06/2.37 6.06/2.37 We have to consider all (P,R,Pi)-chains 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (26) UsableRulesProof (EQUIVALENT) 6.06/2.37 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (27) 6.06/2.37 Obligation: 6.06/2.37 Pi DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 U3_GA(L, H, T, append2_out_ag(parts(V, .(H, U)), is(sum(L)))) -> U4_GA(L, H, T, V, U, append1_in_ga(parts(V, U), is(sum(W)))) 6.06/2.37 U4_GA(L, H, T, V, U, append1_out_ga(parts(V, U), is(sum(W)))) -> PERM_IN_GA(W, T) 6.06/2.37 PERM_IN_GA(L, .(H, T)) -> U3_GA(L, H, T, append2_in_ag(parts(V, .(H, U)), is(sum(L)))) 6.06/2.37 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 append1_in_ga(parts([], Y), is(sum(Y))) -> append1_out_ga(parts([], Y), is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U2_ga(H, X, Y, Z, append1_in_ga(parts(X, Y), is(sum(Z)))) 6.06/2.37 append2_in_ag(parts([], Y), is(sum(Y))) -> append2_out_ag(parts([], Y), is(sum(Y))) 6.06/2.37 append2_in_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) -> U1_ag(H, X, Y, Z, append2_in_ag(parts(X, Y), is(sum(Z)))) 6.06/2.37 U2_ga(H, X, Y, Z, append1_out_ga(parts(X, Y), is(sum(Z)))) -> append1_out_ga(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 U1_ag(H, X, Y, Z, append2_out_ag(parts(X, Y), is(sum(Z)))) -> append2_out_ag(parts(.(H, X), Y), is(sum(.(H, Z)))) 6.06/2.37 6.06/2.37 The argument filtering Pi contains the following mapping: 6.06/2.37 [] = [] 6.06/2.37 6.06/2.37 append2_in_ag(x1, x2) = append2_in_ag(x2) 6.06/2.37 6.06/2.37 .(x1, x2) = .(x2) 6.06/2.37 6.06/2.37 is(x1) = is(x1) 6.06/2.37 6.06/2.37 sum(x1) = sum(x1) 6.06/2.37 6.06/2.37 append2_out_ag(x1, x2) = append2_out_ag(x1) 6.06/2.37 6.06/2.37 U1_ag(x1, x2, x3, x4, x5) = U1_ag(x5) 6.06/2.37 6.06/2.37 parts(x1, x2) = parts(x1, x2) 6.06/2.37 6.06/2.37 append1_in_ga(x1, x2) = append1_in_ga(x1) 6.06/2.37 6.06/2.37 append1_out_ga(x1, x2) = append1_out_ga(x2) 6.06/2.37 6.06/2.37 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.06/2.37 6.06/2.37 PERM_IN_GA(x1, x2) = PERM_IN_GA(x1) 6.06/2.37 6.06/2.37 U3_GA(x1, x2, x3, x4) = U3_GA(x4) 6.06/2.37 6.06/2.37 U4_GA(x1, x2, x3, x4, x5, x6) = U4_GA(x6) 6.06/2.37 6.06/2.37 6.06/2.37 We have to consider all (P,R,Pi)-chains 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (28) PiDPToQDPProof (SOUND) 6.06/2.37 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (29) 6.06/2.37 Obligation: 6.06/2.37 Q DP problem: 6.06/2.37 The TRS P consists of the following rules: 6.06/2.37 6.06/2.37 U3_GA(append2_out_ag(parts(V, .(U)))) -> U4_GA(append1_in_ga(parts(V, U))) 6.06/2.37 U4_GA(append1_out_ga(is(sum(W)))) -> PERM_IN_GA(W) 6.06/2.37 PERM_IN_GA(L) -> U3_GA(append2_in_ag(is(sum(L)))) 6.06/2.37 6.06/2.37 The TRS R consists of the following rules: 6.06/2.37 6.06/2.37 append1_in_ga(parts([], Y)) -> append1_out_ga(is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(X), Y)) -> U2_ga(append1_in_ga(parts(X, Y))) 6.06/2.37 append2_in_ag(is(sum(Y))) -> append2_out_ag(parts([], Y)) 6.06/2.37 append2_in_ag(is(sum(.(Z)))) -> U1_ag(append2_in_ag(is(sum(Z)))) 6.06/2.37 U2_ga(append1_out_ga(is(sum(Z)))) -> append1_out_ga(is(sum(.(Z)))) 6.06/2.37 U1_ag(append2_out_ag(parts(X, Y))) -> append2_out_ag(parts(.(X), Y)) 6.06/2.37 6.06/2.37 The set Q consists of the following terms: 6.06/2.37 6.06/2.37 append1_in_ga(x0) 6.06/2.37 append2_in_ag(x0) 6.06/2.37 U2_ga(x0) 6.06/2.37 U1_ag(x0) 6.06/2.37 6.06/2.37 We have to consider all (P,Q,R)-chains. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (30) MRRProof (EQUIVALENT) 6.06/2.37 By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. 6.06/2.37 6.06/2.37 Strictly oriented dependency pairs: 6.06/2.37 6.06/2.37 U3_GA(append2_out_ag(parts(V, .(U)))) -> U4_GA(append1_in_ga(parts(V, U))) 6.06/2.37 U4_GA(append1_out_ga(is(sum(W)))) -> PERM_IN_GA(W) 6.06/2.37 PERM_IN_GA(L) -> U3_GA(append2_in_ag(is(sum(L)))) 6.06/2.37 6.06/2.37 Strictly oriented rules of the TRS R: 6.06/2.37 6.06/2.37 append1_in_ga(parts([], Y)) -> append1_out_ga(is(sum(Y))) 6.06/2.37 append1_in_ga(parts(.(X), Y)) -> U2_ga(append1_in_ga(parts(X, Y))) 6.06/2.37 append2_in_ag(is(sum(Y))) -> append2_out_ag(parts([], Y)) 6.06/2.37 append2_in_ag(is(sum(.(Z)))) -> U1_ag(append2_in_ag(is(sum(Z)))) 6.06/2.37 U2_ga(append1_out_ga(is(sum(Z)))) -> append1_out_ga(is(sum(.(Z)))) 6.06/2.37 U1_ag(append2_out_ag(parts(X, Y))) -> append2_out_ag(parts(.(X), Y)) 6.06/2.37 6.06/2.37 Used ordering: Knuth-Bendix order [KBO] with precedence:parts_2 > append1_in_ga_1 > U2_ga_1 > PERM_IN_GA_1 > ._1 > is_1 > append1_out_ga_1 > append2_in_ag_1 > U1_ag_1 > append2_out_ag_1 > U3_GA_1 > U4_GA_1 > sum_1 > [] 6.06/2.37 6.06/2.37 and weight map: 6.06/2.37 6.06/2.37 []=15 6.06/2.37 append1_in_ga_1=8 6.06/2.37 append1_out_ga_1=5 6.06/2.37 is_1=7 6.06/2.37 sum_1=7 6.06/2.37 ._1=6 6.06/2.37 U2_ga_1=6 6.06/2.37 append2_in_ag_1=2 6.06/2.37 append2_out_ag_1=1 6.06/2.37 U1_ag_1=6 6.06/2.37 U3_GA_1=2 6.06/2.37 U4_GA_1=1 6.06/2.37 PERM_IN_GA_1=19 6.06/2.37 parts_2=0 6.06/2.37 6.06/2.37 The variable weight is 5 6.06/2.37 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (31) 6.06/2.37 Obligation: 6.06/2.37 Q DP problem: 6.06/2.37 P is empty. 6.06/2.37 R is empty. 6.06/2.37 The set Q consists of the following terms: 6.06/2.37 6.06/2.37 append1_in_ga(x0) 6.06/2.37 append2_in_ag(x0) 6.06/2.37 U2_ga(x0) 6.06/2.37 U1_ag(x0) 6.06/2.37 6.06/2.37 We have to consider all (P,Q,R)-chains. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (32) PisEmptyProof (EQUIVALENT) 6.06/2.37 The TRS P is empty. Hence, there is no (P,Q,R) chain. 6.06/2.37 ---------------------------------------- 6.06/2.37 6.06/2.37 (33) 6.06/2.37 YES 6.06/2.40 EOF