3.72/1.78 YES 3.72/1.80 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.72/1.80 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.72/1.80 3.72/1.80 3.72/1.80 Left Termination of the query pattern 3.72/1.80 3.72/1.80 append3(g,g,g,a) 3.72/1.80 3.72/1.80 w.r.t. the given Prolog program could successfully be proven: 3.72/1.80 3.72/1.80 (0) Prolog 3.72/1.80 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.72/1.80 (2) PiTRS 3.72/1.80 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.72/1.80 (4) PiDP 3.72/1.80 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.72/1.80 (6) PiDP 3.72/1.80 (7) UsableRulesProof [EQUIVALENT, 0 ms] 3.72/1.80 (8) PiDP 3.72/1.80 (9) PiDPToQDPProof [SOUND, 0 ms] 3.72/1.80 (10) QDP 3.72/1.80 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.72/1.80 (12) YES 3.72/1.80 3.72/1.80 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (0) 3.72/1.80 Obligation: 3.72/1.80 Clauses: 3.72/1.80 3.72/1.80 append([], L, L). 3.72/1.80 append(.(H, L1), L2, .(H, L3)) :- append(L1, L2, L3). 3.72/1.80 append3(A, B, C, D) :- ','(append(A, B, E), append(E, C, D)). 3.72/1.80 3.72/1.80 3.72/1.80 Query: append3(g,g,g,a) 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (1) PrologToPiTRSProof (SOUND) 3.72/1.80 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.72/1.80 3.72/1.80 append3_in_4: (b,b,b,f) 3.72/1.80 3.72/1.80 append_in_3: (b,b,f) 3.72/1.80 3.72/1.80 Transforming Prolog into the following Term Rewriting System: 3.72/1.80 3.72/1.80 Pi-finite rewrite system: 3.72/1.80 The TRS R consists of the following rules: 3.72/1.80 3.72/1.80 append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) 3.72/1.80 append_in_gga([], L, L) -> append_out_gga([], L, L) 3.72/1.80 append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 3.72/1.80 U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 3.72/1.80 U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) 3.72/1.80 U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) 3.72/1.80 3.72/1.80 The argument filtering Pi contains the following mapping: 3.72/1.80 append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) 3.72/1.80 3.72/1.80 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) 3.72/1.80 3.72/1.80 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 3.72/1.80 3.72/1.80 [] = [] 3.72/1.80 3.72/1.80 append_out_gga(x1, x2, x3) = append_out_gga(x3) 3.72/1.80 3.72/1.80 .(x1, x2) = .(x1, x2) 3.72/1.80 3.72/1.80 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 3.72/1.80 3.72/1.80 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 3.72/1.80 3.72/1.80 append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) 3.72/1.80 3.72/1.80 3.72/1.80 3.72/1.80 3.72/1.80 3.72/1.80 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.72/1.80 3.72/1.80 3.72/1.80 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (2) 3.72/1.80 Obligation: 3.72/1.80 Pi-finite rewrite system: 3.72/1.80 The TRS R consists of the following rules: 3.72/1.80 3.72/1.80 append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) 3.72/1.80 append_in_gga([], L, L) -> append_out_gga([], L, L) 3.72/1.80 append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 3.72/1.80 U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 3.72/1.80 U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) 3.72/1.80 U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) 3.72/1.80 3.72/1.80 The argument filtering Pi contains the following mapping: 3.72/1.80 append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) 3.72/1.80 3.72/1.80 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) 3.72/1.80 3.72/1.80 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 3.72/1.80 3.72/1.80 [] = [] 3.72/1.80 3.72/1.80 append_out_gga(x1, x2, x3) = append_out_gga(x3) 3.72/1.80 3.72/1.80 .(x1, x2) = .(x1, x2) 3.72/1.80 3.72/1.80 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 3.72/1.80 3.72/1.80 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 3.72/1.80 3.72/1.80 append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) 3.72/1.80 3.72/1.80 3.72/1.80 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (3) DependencyPairsProof (EQUIVALENT) 3.72/1.80 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.72/1.80 Pi DP problem: 3.72/1.80 The TRS P consists of the following rules: 3.72/1.80 3.72/1.80 APPEND3_IN_GGGA(A, B, C, D) -> U2_GGGA(A, B, C, D, append_in_gga(A, B, E)) 3.72/1.80 APPEND3_IN_GGGA(A, B, C, D) -> APPEND_IN_GGA(A, B, E) 3.72/1.80 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> U1_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 3.72/1.80 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) 3.72/1.80 U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) -> U3_GGGA(A, B, C, D, append_in_gga(E, C, D)) 3.72/1.80 U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) -> APPEND_IN_GGA(E, C, D) 3.72/1.80 3.72/1.80 The TRS R consists of the following rules: 3.72/1.80 3.72/1.80 append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) 3.72/1.80 append_in_gga([], L, L) -> append_out_gga([], L, L) 3.72/1.80 append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 3.72/1.80 U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 3.72/1.80 U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) 3.72/1.80 U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) 3.72/1.80 3.72/1.80 The argument filtering Pi contains the following mapping: 3.72/1.80 append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) 3.72/1.80 3.72/1.80 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) 3.72/1.80 3.72/1.80 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 3.72/1.80 3.72/1.80 [] = [] 3.72/1.80 3.72/1.80 append_out_gga(x1, x2, x3) = append_out_gga(x3) 3.72/1.80 3.72/1.80 .(x1, x2) = .(x1, x2) 3.72/1.80 3.72/1.80 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 3.72/1.80 3.72/1.80 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 3.72/1.80 3.72/1.80 append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) 3.72/1.80 3.72/1.80 APPEND3_IN_GGGA(x1, x2, x3, x4) = APPEND3_IN_GGGA(x1, x2, x3) 3.72/1.80 3.72/1.80 U2_GGGA(x1, x2, x3, x4, x5) = U2_GGGA(x3, x5) 3.72/1.80 3.72/1.80 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 3.72/1.80 3.72/1.80 U1_GGA(x1, x2, x3, x4, x5) = U1_GGA(x1, x5) 3.72/1.80 3.72/1.80 U3_GGGA(x1, x2, x3, x4, x5) = U3_GGGA(x5) 3.72/1.80 3.72/1.80 3.72/1.80 We have to consider all (P,R,Pi)-chains 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (4) 3.72/1.80 Obligation: 3.72/1.80 Pi DP problem: 3.72/1.80 The TRS P consists of the following rules: 3.72/1.80 3.72/1.80 APPEND3_IN_GGGA(A, B, C, D) -> U2_GGGA(A, B, C, D, append_in_gga(A, B, E)) 3.72/1.80 APPEND3_IN_GGGA(A, B, C, D) -> APPEND_IN_GGA(A, B, E) 3.72/1.80 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> U1_GGA(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 3.72/1.80 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) 3.72/1.80 U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) -> U3_GGGA(A, B, C, D, append_in_gga(E, C, D)) 3.72/1.80 U2_GGGA(A, B, C, D, append_out_gga(A, B, E)) -> APPEND_IN_GGA(E, C, D) 3.72/1.80 3.72/1.80 The TRS R consists of the following rules: 3.72/1.80 3.72/1.80 append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) 3.72/1.80 append_in_gga([], L, L) -> append_out_gga([], L, L) 3.72/1.80 append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 3.72/1.80 U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 3.72/1.80 U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) 3.72/1.80 U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) 3.72/1.80 3.72/1.80 The argument filtering Pi contains the following mapping: 3.72/1.80 append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) 3.72/1.80 3.72/1.80 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) 3.72/1.80 3.72/1.80 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 3.72/1.80 3.72/1.80 [] = [] 3.72/1.80 3.72/1.80 append_out_gga(x1, x2, x3) = append_out_gga(x3) 3.72/1.80 3.72/1.80 .(x1, x2) = .(x1, x2) 3.72/1.80 3.72/1.80 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 3.72/1.80 3.72/1.80 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 3.72/1.80 3.72/1.80 append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) 3.72/1.80 3.72/1.80 APPEND3_IN_GGGA(x1, x2, x3, x4) = APPEND3_IN_GGGA(x1, x2, x3) 3.72/1.80 3.72/1.80 U2_GGGA(x1, x2, x3, x4, x5) = U2_GGGA(x3, x5) 3.72/1.80 3.72/1.80 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 3.72/1.80 3.72/1.80 U1_GGA(x1, x2, x3, x4, x5) = U1_GGA(x1, x5) 3.72/1.80 3.72/1.80 U3_GGGA(x1, x2, x3, x4, x5) = U3_GGGA(x5) 3.72/1.80 3.72/1.80 3.72/1.80 We have to consider all (P,R,Pi)-chains 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (5) DependencyGraphProof (EQUIVALENT) 3.72/1.80 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes. 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (6) 3.72/1.80 Obligation: 3.72/1.80 Pi DP problem: 3.72/1.80 The TRS P consists of the following rules: 3.72/1.80 3.72/1.80 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) 3.72/1.80 3.72/1.80 The TRS R consists of the following rules: 3.72/1.80 3.72/1.80 append3_in_ggga(A, B, C, D) -> U2_ggga(A, B, C, D, append_in_gga(A, B, E)) 3.72/1.80 append_in_gga([], L, L) -> append_out_gga([], L, L) 3.72/1.80 append_in_gga(.(H, L1), L2, .(H, L3)) -> U1_gga(H, L1, L2, L3, append_in_gga(L1, L2, L3)) 3.72/1.80 U1_gga(H, L1, L2, L3, append_out_gga(L1, L2, L3)) -> append_out_gga(.(H, L1), L2, .(H, L3)) 3.72/1.80 U2_ggga(A, B, C, D, append_out_gga(A, B, E)) -> U3_ggga(A, B, C, D, append_in_gga(E, C, D)) 3.72/1.80 U3_ggga(A, B, C, D, append_out_gga(E, C, D)) -> append3_out_ggga(A, B, C, D) 3.72/1.80 3.72/1.80 The argument filtering Pi contains the following mapping: 3.72/1.80 append3_in_ggga(x1, x2, x3, x4) = append3_in_ggga(x1, x2, x3) 3.72/1.80 3.72/1.80 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x3, x5) 3.72/1.80 3.72/1.80 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 3.72/1.80 3.72/1.80 [] = [] 3.72/1.80 3.72/1.80 append_out_gga(x1, x2, x3) = append_out_gga(x3) 3.72/1.80 3.72/1.80 .(x1, x2) = .(x1, x2) 3.72/1.80 3.72/1.80 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 3.72/1.80 3.72/1.80 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 3.72/1.80 3.72/1.80 append3_out_ggga(x1, x2, x3, x4) = append3_out_ggga(x4) 3.72/1.80 3.72/1.80 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 3.72/1.80 3.72/1.80 3.72/1.80 We have to consider all (P,R,Pi)-chains 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (7) UsableRulesProof (EQUIVALENT) 3.72/1.80 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (8) 3.72/1.80 Obligation: 3.72/1.80 Pi DP problem: 3.72/1.80 The TRS P consists of the following rules: 3.72/1.80 3.72/1.80 APPEND_IN_GGA(.(H, L1), L2, .(H, L3)) -> APPEND_IN_GGA(L1, L2, L3) 3.72/1.80 3.72/1.80 R is empty. 3.72/1.80 The argument filtering Pi contains the following mapping: 3.72/1.80 .(x1, x2) = .(x1, x2) 3.72/1.80 3.72/1.80 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 3.72/1.80 3.72/1.80 3.72/1.80 We have to consider all (P,R,Pi)-chains 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (9) PiDPToQDPProof (SOUND) 3.72/1.80 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (10) 3.72/1.80 Obligation: 3.72/1.80 Q DP problem: 3.72/1.80 The TRS P consists of the following rules: 3.72/1.80 3.72/1.80 APPEND_IN_GGA(.(H, L1), L2) -> APPEND_IN_GGA(L1, L2) 3.72/1.80 3.72/1.80 R is empty. 3.72/1.80 Q is empty. 3.72/1.80 We have to consider all (P,Q,R)-chains. 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (11) QDPSizeChangeProof (EQUIVALENT) 3.72/1.80 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.72/1.80 3.72/1.80 From the DPs we obtained the following set of size-change graphs: 3.72/1.80 *APPEND_IN_GGA(.(H, L1), L2) -> APPEND_IN_GGA(L1, L2) 3.72/1.80 The graph contains the following edges 1 > 1, 2 >= 2 3.72/1.80 3.72/1.80 3.72/1.80 ---------------------------------------- 3.72/1.80 3.72/1.80 (12) 3.72/1.80 YES 3.93/1.84 EOF