7.72/2.81 YES 7.82/2.84 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 7.82/2.84 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 7.82/2.84 7.82/2.84 7.82/2.84 Left Termination of the query pattern 7.82/2.84 7.82/2.84 shanoi(g,g,g,g,a) 7.82/2.84 7.82/2.84 w.r.t. the given Prolog program could successfully be proven: 7.82/2.84 7.82/2.84 (0) Prolog 7.82/2.84 (1) PrologToPiTRSProof [SOUND, 0 ms] 7.82/2.84 (2) PiTRS 7.82/2.84 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 7.82/2.84 (4) PiDP 7.82/2.84 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 7.82/2.84 (6) AND 7.82/2.84 (7) PiDP 7.82/2.84 (8) UsableRulesProof [EQUIVALENT, 0 ms] 7.82/2.84 (9) PiDP 7.82/2.84 (10) PiDPToQDPProof [SOUND, 7 ms] 7.82/2.84 (11) QDP 7.82/2.84 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 7.82/2.84 (13) YES 7.82/2.84 (14) PiDP 7.82/2.84 (15) PiDPToQDPProof [SOUND, 0 ms] 7.82/2.84 (16) QDP 7.82/2.84 (17) QDPOrderProof [EQUIVALENT, 76 ms] 7.82/2.84 (18) QDP 7.82/2.84 (19) DependencyGraphProof [EQUIVALENT, 0 ms] 7.82/2.84 (20) TRUE 7.82/2.84 7.82/2.84 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (0) 7.82/2.84 Obligation: 7.82/2.84 Clauses: 7.82/2.84 7.82/2.84 shanoi(s(0), A, B, C, .(mv(A, C), [])). 7.82/2.84 shanoi(s(s(X)), A, B, C, M) :- ','(eq(N1, s(X)), ','(shanoi(N1, A, C, B, M1), ','(shanoi(N1, B, A, C, M2), ','(append(M1, .(mv(A, C), []), T), append(T, M2, M))))). 7.82/2.84 append([], L, L). 7.82/2.84 append(.(H, L), L1, .(H, R)) :- append(L, L1, R). 7.82/2.84 eq(X, X). 7.82/2.84 7.82/2.84 7.82/2.84 Query: shanoi(g,g,g,g,a) 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (1) PrologToPiTRSProof (SOUND) 7.82/2.84 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 7.82/2.84 7.82/2.84 shanoi_in_5: (b,b,b,b,f) 7.82/2.84 7.82/2.84 append_in_3: (b,b,f) 7.82/2.84 7.82/2.84 Transforming Prolog into the following Term Rewriting System: 7.82/2.84 7.82/2.84 Pi-finite rewrite system: 7.82/2.84 The TRS R consists of the following rules: 7.82/2.84 7.82/2.84 shanoi_in_gggga(s(0), A, B, C, .(mv(A, C), [])) -> shanoi_out_gggga(s(0), A, B, C, .(mv(A, C), [])) 7.82/2.84 shanoi_in_gggga(s(s(X)), A, B, C, M) -> U1_gggga(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 eq_in_ag(X, X) -> eq_out_ag(X, X) 7.82/2.84 U1_gggga(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_gggga(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U2_gggga(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> U3_gggga(X, A, B, C, M, M1, shanoi_in_gggga(N1, B, A, C, M2)) 7.82/2.84 U3_gggga(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> U4_gggga(X, A, B, C, M, M2, append_in_gga(M1, .(mv(A, C), []), T)) 7.82/2.84 append_in_gga([], L, L) -> append_out_gga([], L, L) 7.82/2.84 append_in_gga(.(H, L), L1, .(H, R)) -> U6_gga(H, L, L1, R, append_in_gga(L, L1, R)) 7.82/2.84 U6_gga(H, L, L1, R, append_out_gga(L, L1, R)) -> append_out_gga(.(H, L), L1, .(H, R)) 7.82/2.84 U4_gggga(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> U5_gggga(X, A, B, C, M, append_in_gga(T, M2, M)) 7.82/2.84 U5_gggga(X, A, B, C, M, append_out_gga(T, M2, M)) -> shanoi_out_gggga(s(s(X)), A, B, C, M) 7.82/2.84 7.82/2.84 The argument filtering Pi contains the following mapping: 7.82/2.84 shanoi_in_gggga(x1, x2, x3, x4, x5) = shanoi_in_gggga(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 s(x1) = s(x1) 7.82/2.84 7.82/2.84 0 = 0 7.82/2.84 7.82/2.84 shanoi_out_gggga(x1, x2, x3, x4, x5) = shanoi_out_gggga(x5) 7.82/2.84 7.82/2.84 U1_gggga(x1, x2, x3, x4, x5, x6) = U1_gggga(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 eq_in_ag(x1, x2) = eq_in_ag(x2) 7.82/2.84 7.82/2.84 eq_out_ag(x1, x2) = eq_out_ag(x1) 7.82/2.84 7.82/2.84 U2_gggga(x1, x2, x3, x4, x5, x6, x7) = U2_gggga(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 U3_gggga(x1, x2, x3, x4, x5, x6, x7) = U3_gggga(x2, x4, x6, x7) 7.82/2.84 7.82/2.84 U4_gggga(x1, x2, x3, x4, x5, x6, x7) = U4_gggga(x6, x7) 7.82/2.84 7.82/2.84 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 7.82/2.84 7.82/2.84 [] = [] 7.82/2.84 7.82/2.84 append_out_gga(x1, x2, x3) = append_out_gga(x3) 7.82/2.84 7.82/2.84 .(x1, x2) = .(x1, x2) 7.82/2.84 7.82/2.84 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x5) 7.82/2.84 7.82/2.84 mv(x1, x2) = mv(x1, x2) 7.82/2.84 7.82/2.84 U5_gggga(x1, x2, x3, x4, x5, x6) = U5_gggga(x6) 7.82/2.84 7.82/2.84 7.82/2.84 7.82/2.84 7.82/2.84 7.82/2.84 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 7.82/2.84 7.82/2.84 7.82/2.84 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (2) 7.82/2.84 Obligation: 7.82/2.84 Pi-finite rewrite system: 7.82/2.84 The TRS R consists of the following rules: 7.82/2.84 7.82/2.84 shanoi_in_gggga(s(0), A, B, C, .(mv(A, C), [])) -> shanoi_out_gggga(s(0), A, B, C, .(mv(A, C), [])) 7.82/2.84 shanoi_in_gggga(s(s(X)), A, B, C, M) -> U1_gggga(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 eq_in_ag(X, X) -> eq_out_ag(X, X) 7.82/2.84 U1_gggga(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_gggga(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U2_gggga(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> U3_gggga(X, A, B, C, M, M1, shanoi_in_gggga(N1, B, A, C, M2)) 7.82/2.84 U3_gggga(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> U4_gggga(X, A, B, C, M, M2, append_in_gga(M1, .(mv(A, C), []), T)) 7.82/2.84 append_in_gga([], L, L) -> append_out_gga([], L, L) 7.82/2.84 append_in_gga(.(H, L), L1, .(H, R)) -> U6_gga(H, L, L1, R, append_in_gga(L, L1, R)) 7.82/2.84 U6_gga(H, L, L1, R, append_out_gga(L, L1, R)) -> append_out_gga(.(H, L), L1, .(H, R)) 7.82/2.84 U4_gggga(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> U5_gggga(X, A, B, C, M, append_in_gga(T, M2, M)) 7.82/2.84 U5_gggga(X, A, B, C, M, append_out_gga(T, M2, M)) -> shanoi_out_gggga(s(s(X)), A, B, C, M) 7.82/2.84 7.82/2.84 The argument filtering Pi contains the following mapping: 7.82/2.84 shanoi_in_gggga(x1, x2, x3, x4, x5) = shanoi_in_gggga(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 s(x1) = s(x1) 7.82/2.84 7.82/2.84 0 = 0 7.82/2.84 7.82/2.84 shanoi_out_gggga(x1, x2, x3, x4, x5) = shanoi_out_gggga(x5) 7.82/2.84 7.82/2.84 U1_gggga(x1, x2, x3, x4, x5, x6) = U1_gggga(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 eq_in_ag(x1, x2) = eq_in_ag(x2) 7.82/2.84 7.82/2.84 eq_out_ag(x1, x2) = eq_out_ag(x1) 7.82/2.84 7.82/2.84 U2_gggga(x1, x2, x3, x4, x5, x6, x7) = U2_gggga(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 U3_gggga(x1, x2, x3, x4, x5, x6, x7) = U3_gggga(x2, x4, x6, x7) 7.82/2.84 7.82/2.84 U4_gggga(x1, x2, x3, x4, x5, x6, x7) = U4_gggga(x6, x7) 7.82/2.84 7.82/2.84 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 7.82/2.84 7.82/2.84 [] = [] 7.82/2.84 7.82/2.84 append_out_gga(x1, x2, x3) = append_out_gga(x3) 7.82/2.84 7.82/2.84 .(x1, x2) = .(x1, x2) 7.82/2.84 7.82/2.84 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x5) 7.82/2.84 7.82/2.84 mv(x1, x2) = mv(x1, x2) 7.82/2.84 7.82/2.84 U5_gggga(x1, x2, x3, x4, x5, x6) = U5_gggga(x6) 7.82/2.84 7.82/2.84 7.82/2.84 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (3) DependencyPairsProof (EQUIVALENT) 7.82/2.84 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 7.82/2.84 Pi DP problem: 7.82/2.84 The TRS P consists of the following rules: 7.82/2.84 7.82/2.84 SHANOI_IN_GGGGA(s(s(X)), A, B, C, M) -> U1_GGGGA(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 SHANOI_IN_GGGGA(s(s(X)), A, B, C, M) -> EQ_IN_AG(N1, s(X)) 7.82/2.84 U1_GGGGA(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_GGGGA(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U1_GGGGA(X, A, B, C, M, eq_out_ag(N1, s(X))) -> SHANOI_IN_GGGGA(N1, A, C, B, M1) 7.82/2.84 U2_GGGGA(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> U3_GGGGA(X, A, B, C, M, M1, shanoi_in_gggga(N1, B, A, C, M2)) 7.82/2.84 U2_GGGGA(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> SHANOI_IN_GGGGA(N1, B, A, C, M2) 7.82/2.84 U3_GGGGA(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> U4_GGGGA(X, A, B, C, M, M2, append_in_gga(M1, .(mv(A, C), []), T)) 7.82/2.84 U3_GGGGA(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> APPEND_IN_GGA(M1, .(mv(A, C), []), T) 7.82/2.84 APPEND_IN_GGA(.(H, L), L1, .(H, R)) -> U6_GGA(H, L, L1, R, append_in_gga(L, L1, R)) 7.82/2.84 APPEND_IN_GGA(.(H, L), L1, .(H, R)) -> APPEND_IN_GGA(L, L1, R) 7.82/2.84 U4_GGGGA(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> U5_GGGGA(X, A, B, C, M, append_in_gga(T, M2, M)) 7.82/2.84 U4_GGGGA(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> APPEND_IN_GGA(T, M2, M) 7.82/2.84 7.82/2.84 The TRS R consists of the following rules: 7.82/2.84 7.82/2.84 shanoi_in_gggga(s(0), A, B, C, .(mv(A, C), [])) -> shanoi_out_gggga(s(0), A, B, C, .(mv(A, C), [])) 7.82/2.84 shanoi_in_gggga(s(s(X)), A, B, C, M) -> U1_gggga(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 eq_in_ag(X, X) -> eq_out_ag(X, X) 7.82/2.84 U1_gggga(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_gggga(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U2_gggga(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> U3_gggga(X, A, B, C, M, M1, shanoi_in_gggga(N1, B, A, C, M2)) 7.82/2.84 U3_gggga(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> U4_gggga(X, A, B, C, M, M2, append_in_gga(M1, .(mv(A, C), []), T)) 7.82/2.84 append_in_gga([], L, L) -> append_out_gga([], L, L) 7.82/2.84 append_in_gga(.(H, L), L1, .(H, R)) -> U6_gga(H, L, L1, R, append_in_gga(L, L1, R)) 7.82/2.84 U6_gga(H, L, L1, R, append_out_gga(L, L1, R)) -> append_out_gga(.(H, L), L1, .(H, R)) 7.82/2.84 U4_gggga(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> U5_gggga(X, A, B, C, M, append_in_gga(T, M2, M)) 7.82/2.84 U5_gggga(X, A, B, C, M, append_out_gga(T, M2, M)) -> shanoi_out_gggga(s(s(X)), A, B, C, M) 7.82/2.84 7.82/2.84 The argument filtering Pi contains the following mapping: 7.82/2.84 shanoi_in_gggga(x1, x2, x3, x4, x5) = shanoi_in_gggga(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 s(x1) = s(x1) 7.82/2.84 7.82/2.84 0 = 0 7.82/2.84 7.82/2.84 shanoi_out_gggga(x1, x2, x3, x4, x5) = shanoi_out_gggga(x5) 7.82/2.84 7.82/2.84 U1_gggga(x1, x2, x3, x4, x5, x6) = U1_gggga(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 eq_in_ag(x1, x2) = eq_in_ag(x2) 7.82/2.84 7.82/2.84 eq_out_ag(x1, x2) = eq_out_ag(x1) 7.82/2.84 7.82/2.84 U2_gggga(x1, x2, x3, x4, x5, x6, x7) = U2_gggga(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 U3_gggga(x1, x2, x3, x4, x5, x6, x7) = U3_gggga(x2, x4, x6, x7) 7.82/2.84 7.82/2.84 U4_gggga(x1, x2, x3, x4, x5, x6, x7) = U4_gggga(x6, x7) 7.82/2.84 7.82/2.84 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 7.82/2.84 7.82/2.84 [] = [] 7.82/2.84 7.82/2.84 append_out_gga(x1, x2, x3) = append_out_gga(x3) 7.82/2.84 7.82/2.84 .(x1, x2) = .(x1, x2) 7.82/2.84 7.82/2.84 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x5) 7.82/2.84 7.82/2.84 mv(x1, x2) = mv(x1, x2) 7.82/2.84 7.82/2.84 U5_gggga(x1, x2, x3, x4, x5, x6) = U5_gggga(x6) 7.82/2.84 7.82/2.84 SHANOI_IN_GGGGA(x1, x2, x3, x4, x5) = SHANOI_IN_GGGGA(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 U1_GGGGA(x1, x2, x3, x4, x5, x6) = U1_GGGGA(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 EQ_IN_AG(x1, x2) = EQ_IN_AG(x2) 7.82/2.84 7.82/2.84 U2_GGGGA(x1, x2, x3, x4, x5, x6, x7) = U2_GGGGA(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 U3_GGGGA(x1, x2, x3, x4, x5, x6, x7) = U3_GGGGA(x2, x4, x6, x7) 7.82/2.84 7.82/2.84 U4_GGGGA(x1, x2, x3, x4, x5, x6, x7) = U4_GGGGA(x6, x7) 7.82/2.84 7.82/2.84 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 7.82/2.84 7.82/2.84 U6_GGA(x1, x2, x3, x4, x5) = U6_GGA(x1, x5) 7.82/2.84 7.82/2.84 U5_GGGGA(x1, x2, x3, x4, x5, x6) = U5_GGGGA(x6) 7.82/2.84 7.82/2.84 7.82/2.84 We have to consider all (P,R,Pi)-chains 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (4) 7.82/2.84 Obligation: 7.82/2.84 Pi DP problem: 7.82/2.84 The TRS P consists of the following rules: 7.82/2.84 7.82/2.84 SHANOI_IN_GGGGA(s(s(X)), A, B, C, M) -> U1_GGGGA(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 SHANOI_IN_GGGGA(s(s(X)), A, B, C, M) -> EQ_IN_AG(N1, s(X)) 7.82/2.84 U1_GGGGA(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_GGGGA(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U1_GGGGA(X, A, B, C, M, eq_out_ag(N1, s(X))) -> SHANOI_IN_GGGGA(N1, A, C, B, M1) 7.82/2.84 U2_GGGGA(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> U3_GGGGA(X, A, B, C, M, M1, shanoi_in_gggga(N1, B, A, C, M2)) 7.82/2.84 U2_GGGGA(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> SHANOI_IN_GGGGA(N1, B, A, C, M2) 7.82/2.84 U3_GGGGA(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> U4_GGGGA(X, A, B, C, M, M2, append_in_gga(M1, .(mv(A, C), []), T)) 7.82/2.84 U3_GGGGA(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> APPEND_IN_GGA(M1, .(mv(A, C), []), T) 7.82/2.84 APPEND_IN_GGA(.(H, L), L1, .(H, R)) -> U6_GGA(H, L, L1, R, append_in_gga(L, L1, R)) 7.82/2.84 APPEND_IN_GGA(.(H, L), L1, .(H, R)) -> APPEND_IN_GGA(L, L1, R) 7.82/2.84 U4_GGGGA(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> U5_GGGGA(X, A, B, C, M, append_in_gga(T, M2, M)) 7.82/2.84 U4_GGGGA(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> APPEND_IN_GGA(T, M2, M) 7.82/2.84 7.82/2.84 The TRS R consists of the following rules: 7.82/2.84 7.82/2.84 shanoi_in_gggga(s(0), A, B, C, .(mv(A, C), [])) -> shanoi_out_gggga(s(0), A, B, C, .(mv(A, C), [])) 7.82/2.84 shanoi_in_gggga(s(s(X)), A, B, C, M) -> U1_gggga(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 eq_in_ag(X, X) -> eq_out_ag(X, X) 7.82/2.84 U1_gggga(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_gggga(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U2_gggga(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> U3_gggga(X, A, B, C, M, M1, shanoi_in_gggga(N1, B, A, C, M2)) 7.82/2.84 U3_gggga(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> U4_gggga(X, A, B, C, M, M2, append_in_gga(M1, .(mv(A, C), []), T)) 7.82/2.84 append_in_gga([], L, L) -> append_out_gga([], L, L) 7.82/2.84 append_in_gga(.(H, L), L1, .(H, R)) -> U6_gga(H, L, L1, R, append_in_gga(L, L1, R)) 7.82/2.84 U6_gga(H, L, L1, R, append_out_gga(L, L1, R)) -> append_out_gga(.(H, L), L1, .(H, R)) 7.82/2.84 U4_gggga(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> U5_gggga(X, A, B, C, M, append_in_gga(T, M2, M)) 7.82/2.84 U5_gggga(X, A, B, C, M, append_out_gga(T, M2, M)) -> shanoi_out_gggga(s(s(X)), A, B, C, M) 7.82/2.84 7.82/2.84 The argument filtering Pi contains the following mapping: 7.82/2.84 shanoi_in_gggga(x1, x2, x3, x4, x5) = shanoi_in_gggga(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 s(x1) = s(x1) 7.82/2.84 7.82/2.84 0 = 0 7.82/2.84 7.82/2.84 shanoi_out_gggga(x1, x2, x3, x4, x5) = shanoi_out_gggga(x5) 7.82/2.84 7.82/2.84 U1_gggga(x1, x2, x3, x4, x5, x6) = U1_gggga(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 eq_in_ag(x1, x2) = eq_in_ag(x2) 7.82/2.84 7.82/2.84 eq_out_ag(x1, x2) = eq_out_ag(x1) 7.82/2.84 7.82/2.84 U2_gggga(x1, x2, x3, x4, x5, x6, x7) = U2_gggga(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 U3_gggga(x1, x2, x3, x4, x5, x6, x7) = U3_gggga(x2, x4, x6, x7) 7.82/2.84 7.82/2.84 U4_gggga(x1, x2, x3, x4, x5, x6, x7) = U4_gggga(x6, x7) 7.82/2.84 7.82/2.84 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 7.82/2.84 7.82/2.84 [] = [] 7.82/2.84 7.82/2.84 append_out_gga(x1, x2, x3) = append_out_gga(x3) 7.82/2.84 7.82/2.84 .(x1, x2) = .(x1, x2) 7.82/2.84 7.82/2.84 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x5) 7.82/2.84 7.82/2.84 mv(x1, x2) = mv(x1, x2) 7.82/2.84 7.82/2.84 U5_gggga(x1, x2, x3, x4, x5, x6) = U5_gggga(x6) 7.82/2.84 7.82/2.84 SHANOI_IN_GGGGA(x1, x2, x3, x4, x5) = SHANOI_IN_GGGGA(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 U1_GGGGA(x1, x2, x3, x4, x5, x6) = U1_GGGGA(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 EQ_IN_AG(x1, x2) = EQ_IN_AG(x2) 7.82/2.84 7.82/2.84 U2_GGGGA(x1, x2, x3, x4, x5, x6, x7) = U2_GGGGA(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 U3_GGGGA(x1, x2, x3, x4, x5, x6, x7) = U3_GGGGA(x2, x4, x6, x7) 7.82/2.84 7.82/2.84 U4_GGGGA(x1, x2, x3, x4, x5, x6, x7) = U4_GGGGA(x6, x7) 7.82/2.84 7.82/2.84 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 7.82/2.84 7.82/2.84 U6_GGA(x1, x2, x3, x4, x5) = U6_GGA(x1, x5) 7.82/2.84 7.82/2.84 U5_GGGGA(x1, x2, x3, x4, x5, x6) = U5_GGGGA(x6) 7.82/2.84 7.82/2.84 7.82/2.84 We have to consider all (P,R,Pi)-chains 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (5) DependencyGraphProof (EQUIVALENT) 7.82/2.84 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 7 less nodes. 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (6) 7.82/2.84 Complex Obligation (AND) 7.82/2.84 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (7) 7.82/2.84 Obligation: 7.82/2.84 Pi DP problem: 7.82/2.84 The TRS P consists of the following rules: 7.82/2.84 7.82/2.84 APPEND_IN_GGA(.(H, L), L1, .(H, R)) -> APPEND_IN_GGA(L, L1, R) 7.82/2.84 7.82/2.84 The TRS R consists of the following rules: 7.82/2.84 7.82/2.84 shanoi_in_gggga(s(0), A, B, C, .(mv(A, C), [])) -> shanoi_out_gggga(s(0), A, B, C, .(mv(A, C), [])) 7.82/2.84 shanoi_in_gggga(s(s(X)), A, B, C, M) -> U1_gggga(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 eq_in_ag(X, X) -> eq_out_ag(X, X) 7.82/2.84 U1_gggga(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_gggga(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U2_gggga(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> U3_gggga(X, A, B, C, M, M1, shanoi_in_gggga(N1, B, A, C, M2)) 7.82/2.84 U3_gggga(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> U4_gggga(X, A, B, C, M, M2, append_in_gga(M1, .(mv(A, C), []), T)) 7.82/2.84 append_in_gga([], L, L) -> append_out_gga([], L, L) 7.82/2.84 append_in_gga(.(H, L), L1, .(H, R)) -> U6_gga(H, L, L1, R, append_in_gga(L, L1, R)) 7.82/2.84 U6_gga(H, L, L1, R, append_out_gga(L, L1, R)) -> append_out_gga(.(H, L), L1, .(H, R)) 7.82/2.84 U4_gggga(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> U5_gggga(X, A, B, C, M, append_in_gga(T, M2, M)) 7.82/2.84 U5_gggga(X, A, B, C, M, append_out_gga(T, M2, M)) -> shanoi_out_gggga(s(s(X)), A, B, C, M) 7.82/2.84 7.82/2.84 The argument filtering Pi contains the following mapping: 7.82/2.84 shanoi_in_gggga(x1, x2, x3, x4, x5) = shanoi_in_gggga(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 s(x1) = s(x1) 7.82/2.84 7.82/2.84 0 = 0 7.82/2.84 7.82/2.84 shanoi_out_gggga(x1, x2, x3, x4, x5) = shanoi_out_gggga(x5) 7.82/2.84 7.82/2.84 U1_gggga(x1, x2, x3, x4, x5, x6) = U1_gggga(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 eq_in_ag(x1, x2) = eq_in_ag(x2) 7.82/2.84 7.82/2.84 eq_out_ag(x1, x2) = eq_out_ag(x1) 7.82/2.84 7.82/2.84 U2_gggga(x1, x2, x3, x4, x5, x6, x7) = U2_gggga(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 U3_gggga(x1, x2, x3, x4, x5, x6, x7) = U3_gggga(x2, x4, x6, x7) 7.82/2.84 7.82/2.84 U4_gggga(x1, x2, x3, x4, x5, x6, x7) = U4_gggga(x6, x7) 7.82/2.84 7.82/2.84 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 7.82/2.84 7.82/2.84 [] = [] 7.82/2.84 7.82/2.84 append_out_gga(x1, x2, x3) = append_out_gga(x3) 7.82/2.84 7.82/2.84 .(x1, x2) = .(x1, x2) 7.82/2.84 7.82/2.84 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x5) 7.82/2.84 7.82/2.84 mv(x1, x2) = mv(x1, x2) 7.82/2.84 7.82/2.84 U5_gggga(x1, x2, x3, x4, x5, x6) = U5_gggga(x6) 7.82/2.84 7.82/2.84 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 7.82/2.84 7.82/2.84 7.82/2.84 We have to consider all (P,R,Pi)-chains 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (8) UsableRulesProof (EQUIVALENT) 7.82/2.84 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (9) 7.82/2.84 Obligation: 7.82/2.84 Pi DP problem: 7.82/2.84 The TRS P consists of the following rules: 7.82/2.84 7.82/2.84 APPEND_IN_GGA(.(H, L), L1, .(H, R)) -> APPEND_IN_GGA(L, L1, R) 7.82/2.84 7.82/2.84 R is empty. 7.82/2.84 The argument filtering Pi contains the following mapping: 7.82/2.84 .(x1, x2) = .(x1, x2) 7.82/2.84 7.82/2.84 APPEND_IN_GGA(x1, x2, x3) = APPEND_IN_GGA(x1, x2) 7.82/2.84 7.82/2.84 7.82/2.84 We have to consider all (P,R,Pi)-chains 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (10) PiDPToQDPProof (SOUND) 7.82/2.84 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (11) 7.82/2.84 Obligation: 7.82/2.84 Q DP problem: 7.82/2.84 The TRS P consists of the following rules: 7.82/2.84 7.82/2.84 APPEND_IN_GGA(.(H, L), L1) -> APPEND_IN_GGA(L, L1) 7.82/2.84 7.82/2.84 R is empty. 7.82/2.84 Q is empty. 7.82/2.84 We have to consider all (P,Q,R)-chains. 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (12) QDPSizeChangeProof (EQUIVALENT) 7.82/2.84 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 7.82/2.84 7.82/2.84 From the DPs we obtained the following set of size-change graphs: 7.82/2.84 *APPEND_IN_GGA(.(H, L), L1) -> APPEND_IN_GGA(L, L1) 7.82/2.84 The graph contains the following edges 1 > 1, 2 >= 2 7.82/2.84 7.82/2.84 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (13) 7.82/2.84 YES 7.82/2.84 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (14) 7.82/2.84 Obligation: 7.82/2.84 Pi DP problem: 7.82/2.84 The TRS P consists of the following rules: 7.82/2.84 7.82/2.84 U1_GGGGA(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_GGGGA(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U2_GGGGA(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> SHANOI_IN_GGGGA(N1, B, A, C, M2) 7.82/2.84 SHANOI_IN_GGGGA(s(s(X)), A, B, C, M) -> U1_GGGGA(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 U1_GGGGA(X, A, B, C, M, eq_out_ag(N1, s(X))) -> SHANOI_IN_GGGGA(N1, A, C, B, M1) 7.82/2.84 7.82/2.84 The TRS R consists of the following rules: 7.82/2.84 7.82/2.84 shanoi_in_gggga(s(0), A, B, C, .(mv(A, C), [])) -> shanoi_out_gggga(s(0), A, B, C, .(mv(A, C), [])) 7.82/2.84 shanoi_in_gggga(s(s(X)), A, B, C, M) -> U1_gggga(X, A, B, C, M, eq_in_ag(N1, s(X))) 7.82/2.84 eq_in_ag(X, X) -> eq_out_ag(X, X) 7.82/2.84 U1_gggga(X, A, B, C, M, eq_out_ag(N1, s(X))) -> U2_gggga(X, A, B, C, M, N1, shanoi_in_gggga(N1, A, C, B, M1)) 7.82/2.84 U2_gggga(X, A, B, C, M, N1, shanoi_out_gggga(N1, A, C, B, M1)) -> U3_gggga(X, A, B, C, M, M1, shanoi_in_gggga(N1, B, A, C, M2)) 7.82/2.84 U3_gggga(X, A, B, C, M, M1, shanoi_out_gggga(N1, B, A, C, M2)) -> U4_gggga(X, A, B, C, M, M2, append_in_gga(M1, .(mv(A, C), []), T)) 7.82/2.84 append_in_gga([], L, L) -> append_out_gga([], L, L) 7.82/2.84 append_in_gga(.(H, L), L1, .(H, R)) -> U6_gga(H, L, L1, R, append_in_gga(L, L1, R)) 7.82/2.84 U6_gga(H, L, L1, R, append_out_gga(L, L1, R)) -> append_out_gga(.(H, L), L1, .(H, R)) 7.82/2.84 U4_gggga(X, A, B, C, M, M2, append_out_gga(M1, .(mv(A, C), []), T)) -> U5_gggga(X, A, B, C, M, append_in_gga(T, M2, M)) 7.82/2.84 U5_gggga(X, A, B, C, M, append_out_gga(T, M2, M)) -> shanoi_out_gggga(s(s(X)), A, B, C, M) 7.82/2.84 7.82/2.84 The argument filtering Pi contains the following mapping: 7.82/2.84 shanoi_in_gggga(x1, x2, x3, x4, x5) = shanoi_in_gggga(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 s(x1) = s(x1) 7.82/2.84 7.82/2.84 0 = 0 7.82/2.84 7.82/2.84 shanoi_out_gggga(x1, x2, x3, x4, x5) = shanoi_out_gggga(x5) 7.82/2.84 7.82/2.84 U1_gggga(x1, x2, x3, x4, x5, x6) = U1_gggga(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 eq_in_ag(x1, x2) = eq_in_ag(x2) 7.82/2.84 7.82/2.84 eq_out_ag(x1, x2) = eq_out_ag(x1) 7.82/2.84 7.82/2.84 U2_gggga(x1, x2, x3, x4, x5, x6, x7) = U2_gggga(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 U3_gggga(x1, x2, x3, x4, x5, x6, x7) = U3_gggga(x2, x4, x6, x7) 7.82/2.84 7.82/2.84 U4_gggga(x1, x2, x3, x4, x5, x6, x7) = U4_gggga(x6, x7) 7.82/2.84 7.82/2.84 append_in_gga(x1, x2, x3) = append_in_gga(x1, x2) 7.82/2.84 7.82/2.84 [] = [] 7.82/2.84 7.82/2.84 append_out_gga(x1, x2, x3) = append_out_gga(x3) 7.82/2.84 7.82/2.84 .(x1, x2) = .(x1, x2) 7.82/2.84 7.82/2.84 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x5) 7.82/2.84 7.82/2.84 mv(x1, x2) = mv(x1, x2) 7.82/2.84 7.82/2.84 U5_gggga(x1, x2, x3, x4, x5, x6) = U5_gggga(x6) 7.82/2.84 7.82/2.84 SHANOI_IN_GGGGA(x1, x2, x3, x4, x5) = SHANOI_IN_GGGGA(x1, x2, x3, x4) 7.82/2.84 7.82/2.84 U1_GGGGA(x1, x2, x3, x4, x5, x6) = U1_GGGGA(x2, x3, x4, x6) 7.82/2.84 7.82/2.84 U2_GGGGA(x1, x2, x3, x4, x5, x6, x7) = U2_GGGGA(x2, x3, x4, x6, x7) 7.82/2.84 7.82/2.84 7.82/2.84 We have to consider all (P,R,Pi)-chains 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (15) PiDPToQDPProof (SOUND) 7.82/2.84 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (16) 7.82/2.84 Obligation: 7.82/2.84 Q DP problem: 7.82/2.84 The TRS P consists of the following rules: 7.82/2.84 7.82/2.84 U1_GGGGA(A, B, C, eq_out_ag(N1)) -> U2_GGGGA(A, B, C, N1, shanoi_in_gggga(N1, A, C, B)) 7.82/2.84 U2_GGGGA(A, B, C, N1, shanoi_out_gggga(M1)) -> SHANOI_IN_GGGGA(N1, B, A, C) 7.82/2.84 SHANOI_IN_GGGGA(s(s(X)), A, B, C) -> U1_GGGGA(A, B, C, eq_in_ag(s(X))) 7.82/2.84 U1_GGGGA(A, B, C, eq_out_ag(N1)) -> SHANOI_IN_GGGGA(N1, A, C, B) 7.82/2.84 7.82/2.84 The TRS R consists of the following rules: 7.82/2.84 7.82/2.84 shanoi_in_gggga(s(0), A, B, C) -> shanoi_out_gggga(.(mv(A, C), [])) 7.82/2.84 shanoi_in_gggga(s(s(X)), A, B, C) -> U1_gggga(A, B, C, eq_in_ag(s(X))) 7.82/2.84 eq_in_ag(X) -> eq_out_ag(X) 7.82/2.84 U1_gggga(A, B, C, eq_out_ag(N1)) -> U2_gggga(A, B, C, N1, shanoi_in_gggga(N1, A, C, B)) 7.82/2.84 U2_gggga(A, B, C, N1, shanoi_out_gggga(M1)) -> U3_gggga(A, C, M1, shanoi_in_gggga(N1, B, A, C)) 7.82/2.84 U3_gggga(A, C, M1, shanoi_out_gggga(M2)) -> U4_gggga(M2, append_in_gga(M1, .(mv(A, C), []))) 7.82/2.84 append_in_gga([], L) -> append_out_gga(L) 7.82/2.84 append_in_gga(.(H, L), L1) -> U6_gga(H, append_in_gga(L, L1)) 7.82/2.84 U6_gga(H, append_out_gga(R)) -> append_out_gga(.(H, R)) 7.82/2.84 U4_gggga(M2, append_out_gga(T)) -> U5_gggga(append_in_gga(T, M2)) 7.82/2.84 U5_gggga(append_out_gga(M)) -> shanoi_out_gggga(M) 7.82/2.84 7.82/2.84 The set Q consists of the following terms: 7.82/2.84 7.82/2.84 shanoi_in_gggga(x0, x1, x2, x3) 7.82/2.84 eq_in_ag(x0) 7.82/2.84 U1_gggga(x0, x1, x2, x3) 7.82/2.84 U2_gggga(x0, x1, x2, x3, x4) 7.82/2.84 U3_gggga(x0, x1, x2, x3) 7.82/2.84 append_in_gga(x0, x1) 7.82/2.84 U6_gga(x0, x1) 7.82/2.84 U4_gggga(x0, x1) 7.82/2.84 U5_gggga(x0) 7.82/2.84 7.82/2.84 We have to consider all (P,Q,R)-chains. 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (17) QDPOrderProof (EQUIVALENT) 7.82/2.84 We use the reduction pair processor [LPAR04,JAR06]. 7.82/2.84 7.82/2.84 7.82/2.84 The following pairs can be oriented strictly and are deleted. 7.82/2.84 7.82/2.84 SHANOI_IN_GGGGA(s(s(X)), A, B, C) -> U1_GGGGA(A, B, C, eq_in_ag(s(X))) 7.82/2.84 The remaining pairs can at least be oriented weakly. 7.82/2.84 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 7.82/2.84 7.82/2.84 POL( U2_GGGGA_5(x_1, ..., x_5) ) = x_4 7.82/2.84 POL( shanoi_in_gggga_4(x_1, ..., x_4) ) = 2x_2 + 2x_3 + x_4 7.82/2.84 POL( s_1(x_1) ) = x_1 + 2 7.82/2.84 POL( 0 ) = 0 7.82/2.84 POL( shanoi_out_gggga_1(x_1) ) = max{0, 2x_1 - 2} 7.82/2.84 POL( ._2(x_1, x_2) ) = 2x_2 + 2 7.82/2.84 POL( mv_2(x_1, x_2) ) = 2 7.82/2.84 POL( [] ) = 0 7.82/2.84 POL( U1_gggga_4(x_1, ..., x_4) ) = max{0, 2x_1 + 2x_2 + 2x_3 - 2} 7.82/2.84 POL( eq_in_ag_1(x_1) ) = x_1 + 1 7.82/2.84 POL( U1_GGGGA_4(x_1, ..., x_4) ) = x_4 7.82/2.84 POL( eq_out_ag_1(x_1) ) = x_1 7.82/2.84 POL( U2_gggga_5(x_1, ..., x_5) ) = max{0, 2x_1 + 2x_2 + 2x_4 + 2x_5 - 2} 7.82/2.84 POL( U3_gggga_4(x_1, ..., x_4) ) = max{0, 2x_3 + 2x_4 - 2} 7.82/2.84 POL( U4_gggga_2(x_1, x_2) ) = max{0, 2x_1 - 2} 7.82/2.84 POL( append_in_gga_2(x_1, x_2) ) = max{0, 2x_1 + 2x_2 - 2} 7.82/2.84 POL( U5_gggga_1(x_1) ) = 2 7.82/2.84 POL( append_out_gga_1(x_1) ) = max{0, -2} 7.82/2.84 POL( U6_gga_2(x_1, x_2) ) = max{0, 2x_1 - 2} 7.82/2.84 POL( SHANOI_IN_GGGGA_4(x_1, ..., x_4) ) = x_1 7.82/2.84 7.82/2.84 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 7.82/2.84 7.82/2.84 eq_in_ag(X) -> eq_out_ag(X) 7.82/2.84 7.82/2.84 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (18) 7.82/2.84 Obligation: 7.82/2.84 Q DP problem: 7.82/2.84 The TRS P consists of the following rules: 7.82/2.84 7.82/2.84 U1_GGGGA(A, B, C, eq_out_ag(N1)) -> U2_GGGGA(A, B, C, N1, shanoi_in_gggga(N1, A, C, B)) 7.82/2.84 U2_GGGGA(A, B, C, N1, shanoi_out_gggga(M1)) -> SHANOI_IN_GGGGA(N1, B, A, C) 7.82/2.84 U1_GGGGA(A, B, C, eq_out_ag(N1)) -> SHANOI_IN_GGGGA(N1, A, C, B) 7.82/2.84 7.82/2.84 The TRS R consists of the following rules: 7.82/2.84 7.82/2.84 shanoi_in_gggga(s(0), A, B, C) -> shanoi_out_gggga(.(mv(A, C), [])) 7.82/2.84 shanoi_in_gggga(s(s(X)), A, B, C) -> U1_gggga(A, B, C, eq_in_ag(s(X))) 7.82/2.84 eq_in_ag(X) -> eq_out_ag(X) 7.82/2.84 U1_gggga(A, B, C, eq_out_ag(N1)) -> U2_gggga(A, B, C, N1, shanoi_in_gggga(N1, A, C, B)) 7.82/2.84 U2_gggga(A, B, C, N1, shanoi_out_gggga(M1)) -> U3_gggga(A, C, M1, shanoi_in_gggga(N1, B, A, C)) 7.82/2.84 U3_gggga(A, C, M1, shanoi_out_gggga(M2)) -> U4_gggga(M2, append_in_gga(M1, .(mv(A, C), []))) 7.82/2.84 append_in_gga([], L) -> append_out_gga(L) 7.82/2.84 append_in_gga(.(H, L), L1) -> U6_gga(H, append_in_gga(L, L1)) 7.82/2.84 U6_gga(H, append_out_gga(R)) -> append_out_gga(.(H, R)) 7.82/2.84 U4_gggga(M2, append_out_gga(T)) -> U5_gggga(append_in_gga(T, M2)) 7.82/2.84 U5_gggga(append_out_gga(M)) -> shanoi_out_gggga(M) 7.82/2.84 7.82/2.84 The set Q consists of the following terms: 7.82/2.84 7.82/2.84 shanoi_in_gggga(x0, x1, x2, x3) 7.82/2.84 eq_in_ag(x0) 7.82/2.84 U1_gggga(x0, x1, x2, x3) 7.82/2.84 U2_gggga(x0, x1, x2, x3, x4) 7.82/2.84 U3_gggga(x0, x1, x2, x3) 7.82/2.84 append_in_gga(x0, x1) 7.82/2.84 U6_gga(x0, x1) 7.82/2.84 U4_gggga(x0, x1) 7.82/2.84 U5_gggga(x0) 7.82/2.84 7.82/2.84 We have to consider all (P,Q,R)-chains. 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (19) DependencyGraphProof (EQUIVALENT) 7.82/2.84 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes. 7.82/2.84 ---------------------------------------- 7.82/2.84 7.82/2.84 (20) 7.82/2.84 TRUE 8.02/2.96 EOF