3.68/1.74 YES 3.68/1.75 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.68/1.75 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.68/1.75 3.68/1.75 3.68/1.75 Left Termination of the query pattern 3.68/1.75 3.68/1.75 sublist(a,g) 3.68/1.75 3.68/1.75 w.r.t. the given Prolog program could successfully be proven: 3.68/1.75 3.68/1.75 (0) Prolog 3.68/1.75 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.68/1.75 (2) PiTRS 3.68/1.75 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.68/1.75 (4) PiDP 3.68/1.75 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.68/1.75 (6) PiDP 3.68/1.75 (7) UsableRulesProof [EQUIVALENT, 0 ms] 3.68/1.75 (8) PiDP 3.68/1.75 (9) PiDPToQDPProof [SOUND, 0 ms] 3.68/1.75 (10) QDP 3.68/1.75 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.68/1.75 (12) YES 3.68/1.75 3.68/1.75 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (0) 3.68/1.75 Obligation: 3.68/1.75 Clauses: 3.68/1.75 3.68/1.75 append([], Ys, Ys). 3.68/1.75 append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs). 3.68/1.75 sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)). 3.68/1.75 3.68/1.75 3.68/1.75 Query: sublist(a,g) 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (1) PrologToPiTRSProof (SOUND) 3.68/1.75 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.68/1.75 3.68/1.75 sublist_in_2: (f,b) 3.68/1.75 3.68/1.75 append_in_3: (f,f,b) 3.68/1.75 3.68/1.75 Transforming Prolog into the following Term Rewriting System: 3.68/1.75 3.68/1.75 Pi-finite rewrite system: 3.68/1.75 The TRS R consists of the following rules: 3.68/1.75 3.68/1.75 sublist_in_ag(X, Y) -> U2_ag(X, Y, append_in_aag(P, X1, Y)) 3.68/1.75 append_in_aag([], Ys, Ys) -> append_out_aag([], Ys, Ys) 3.68/1.75 append_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs)) 3.68/1.75 U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) -> append_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.68/1.75 U2_ag(X, Y, append_out_aag(P, X1, Y)) -> U3_ag(X, Y, append_in_aag(X2, X, P)) 3.68/1.75 U3_ag(X, Y, append_out_aag(X2, X, P)) -> sublist_out_ag(X, Y) 3.68/1.75 3.68/1.75 The argument filtering Pi contains the following mapping: 3.68/1.75 sublist_in_ag(x1, x2) = sublist_in_ag(x2) 3.68/1.75 3.68/1.75 U2_ag(x1, x2, x3) = U2_ag(x3) 3.68/1.75 3.68/1.75 append_in_aag(x1, x2, x3) = append_in_aag(x3) 3.68/1.75 3.68/1.75 append_out_aag(x1, x2, x3) = append_out_aag(x1, x2) 3.68/1.75 3.68/1.75 .(x1, x2) = .(x1, x2) 3.68/1.75 3.68/1.75 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 3.68/1.75 3.68/1.75 U3_ag(x1, x2, x3) = U3_ag(x3) 3.68/1.75 3.68/1.75 sublist_out_ag(x1, x2) = sublist_out_ag(x1) 3.68/1.75 3.68/1.75 3.68/1.75 3.68/1.75 3.68/1.75 3.68/1.75 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.68/1.75 3.68/1.75 3.68/1.75 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (2) 3.68/1.75 Obligation: 3.68/1.75 Pi-finite rewrite system: 3.68/1.75 The TRS R consists of the following rules: 3.68/1.75 3.68/1.75 sublist_in_ag(X, Y) -> U2_ag(X, Y, append_in_aag(P, X1, Y)) 3.68/1.75 append_in_aag([], Ys, Ys) -> append_out_aag([], Ys, Ys) 3.68/1.75 append_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs)) 3.68/1.75 U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) -> append_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.68/1.75 U2_ag(X, Y, append_out_aag(P, X1, Y)) -> U3_ag(X, Y, append_in_aag(X2, X, P)) 3.68/1.75 U3_ag(X, Y, append_out_aag(X2, X, P)) -> sublist_out_ag(X, Y) 3.68/1.75 3.68/1.75 The argument filtering Pi contains the following mapping: 3.68/1.75 sublist_in_ag(x1, x2) = sublist_in_ag(x2) 3.68/1.75 3.68/1.75 U2_ag(x1, x2, x3) = U2_ag(x3) 3.68/1.75 3.68/1.75 append_in_aag(x1, x2, x3) = append_in_aag(x3) 3.68/1.75 3.68/1.75 append_out_aag(x1, x2, x3) = append_out_aag(x1, x2) 3.68/1.75 3.68/1.75 .(x1, x2) = .(x1, x2) 3.68/1.75 3.68/1.75 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 3.68/1.75 3.68/1.75 U3_ag(x1, x2, x3) = U3_ag(x3) 3.68/1.75 3.68/1.75 sublist_out_ag(x1, x2) = sublist_out_ag(x1) 3.68/1.75 3.68/1.75 3.68/1.75 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (3) DependencyPairsProof (EQUIVALENT) 3.68/1.75 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.68/1.75 Pi DP problem: 3.68/1.75 The TRS P consists of the following rules: 3.68/1.75 3.68/1.75 SUBLIST_IN_AG(X, Y) -> U2_AG(X, Y, append_in_aag(P, X1, Y)) 3.68/1.75 SUBLIST_IN_AG(X, Y) -> APPEND_IN_AAG(P, X1, Y) 3.68/1.75 APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U1_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs)) 3.68/1.75 APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AAG(Xs, Ys, Zs) 3.68/1.75 U2_AG(X, Y, append_out_aag(P, X1, Y)) -> U3_AG(X, Y, append_in_aag(X2, X, P)) 3.68/1.75 U2_AG(X, Y, append_out_aag(P, X1, Y)) -> APPEND_IN_AAG(X2, X, P) 3.68/1.75 3.68/1.75 The TRS R consists of the following rules: 3.68/1.75 3.68/1.75 sublist_in_ag(X, Y) -> U2_ag(X, Y, append_in_aag(P, X1, Y)) 3.68/1.75 append_in_aag([], Ys, Ys) -> append_out_aag([], Ys, Ys) 3.68/1.75 append_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs)) 3.68/1.75 U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) -> append_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.68/1.75 U2_ag(X, Y, append_out_aag(P, X1, Y)) -> U3_ag(X, Y, append_in_aag(X2, X, P)) 3.68/1.75 U3_ag(X, Y, append_out_aag(X2, X, P)) -> sublist_out_ag(X, Y) 3.68/1.75 3.68/1.75 The argument filtering Pi contains the following mapping: 3.68/1.75 sublist_in_ag(x1, x2) = sublist_in_ag(x2) 3.68/1.75 3.68/1.75 U2_ag(x1, x2, x3) = U2_ag(x3) 3.68/1.75 3.68/1.75 append_in_aag(x1, x2, x3) = append_in_aag(x3) 3.68/1.75 3.68/1.75 append_out_aag(x1, x2, x3) = append_out_aag(x1, x2) 3.68/1.75 3.68/1.75 .(x1, x2) = .(x1, x2) 3.68/1.75 3.68/1.75 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 3.68/1.75 3.68/1.75 U3_ag(x1, x2, x3) = U3_ag(x3) 3.68/1.75 3.68/1.75 sublist_out_ag(x1, x2) = sublist_out_ag(x1) 3.68/1.75 3.68/1.75 SUBLIST_IN_AG(x1, x2) = SUBLIST_IN_AG(x2) 3.68/1.75 3.68/1.75 U2_AG(x1, x2, x3) = U2_AG'(x3) 3.68/1.75 3.68/1.75 APPEND_IN_AAG(x1, x2, x3) = APPEND_IN_AAG(x3) 3.68/1.75 3.68/1.75 U1_AAG(x1, x2, x3, x4, x5) = U1_AAG(x1, x5) 3.68/1.75 3.68/1.75 U3_AG(x1, x2, x3) = U3_AG(x3) 3.68/1.75 3.68/1.75 3.68/1.75 We have to consider all (P,R,Pi)-chains 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (4) 3.68/1.75 Obligation: 3.68/1.75 Pi DP problem: 3.68/1.75 The TRS P consists of the following rules: 3.68/1.75 3.68/1.75 SUBLIST_IN_AG(X, Y) -> U2_AG(X, Y, append_in_aag(P, X1, Y)) 3.68/1.75 SUBLIST_IN_AG(X, Y) -> APPEND_IN_AAG(P, X1, Y) 3.68/1.75 APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U1_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs)) 3.68/1.75 APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AAG(Xs, Ys, Zs) 3.68/1.75 U2_AG(X, Y, append_out_aag(P, X1, Y)) -> U3_AG(X, Y, append_in_aag(X2, X, P)) 3.68/1.75 U2_AG(X, Y, append_out_aag(P, X1, Y)) -> APPEND_IN_AAG(X2, X, P) 3.68/1.75 3.68/1.75 The TRS R consists of the following rules: 3.68/1.75 3.68/1.75 sublist_in_ag(X, Y) -> U2_ag(X, Y, append_in_aag(P, X1, Y)) 3.68/1.75 append_in_aag([], Ys, Ys) -> append_out_aag([], Ys, Ys) 3.68/1.75 append_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs)) 3.68/1.75 U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) -> append_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.68/1.75 U2_ag(X, Y, append_out_aag(P, X1, Y)) -> U3_ag(X, Y, append_in_aag(X2, X, P)) 3.68/1.75 U3_ag(X, Y, append_out_aag(X2, X, P)) -> sublist_out_ag(X, Y) 3.68/1.75 3.68/1.75 The argument filtering Pi contains the following mapping: 3.68/1.75 sublist_in_ag(x1, x2) = sublist_in_ag(x2) 3.68/1.75 3.68/1.75 U2_ag(x1, x2, x3) = U2_ag(x3) 3.68/1.75 3.68/1.75 append_in_aag(x1, x2, x3) = append_in_aag(x3) 3.68/1.75 3.68/1.75 append_out_aag(x1, x2, x3) = append_out_aag(x1, x2) 3.68/1.75 3.68/1.75 .(x1, x2) = .(x1, x2) 3.68/1.75 3.68/1.75 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 3.68/1.75 3.68/1.75 U3_ag(x1, x2, x3) = U3_ag(x3) 3.68/1.75 3.68/1.75 sublist_out_ag(x1, x2) = sublist_out_ag(x1) 3.68/1.75 3.68/1.75 SUBLIST_IN_AG(x1, x2) = SUBLIST_IN_AG(x2) 3.68/1.75 3.68/1.75 U2_AG(x1, x2, x3) = U2_AG(x3) 3.68/1.75 3.68/1.75 APPEND_IN_AAG(x1, x2, x3) = APPEND_IN_AAG(x3) 3.68/1.75 3.68/1.75 U1_AAG(x1, x2, x3, x4, x5) = U1_AAG(x1, x5) 3.68/1.75 3.68/1.75 U3_AG(x1, x2, x3) = U3_AG(x3) 3.68/1.75 3.68/1.75 3.68/1.75 We have to consider all (P,R,Pi)-chains 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (5) DependencyGraphProof (EQUIVALENT) 3.68/1.75 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes. 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (6) 3.68/1.75 Obligation: 3.68/1.75 Pi DP problem: 3.68/1.75 The TRS P consists of the following rules: 3.68/1.75 3.68/1.75 APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AAG(Xs, Ys, Zs) 3.68/1.75 3.68/1.75 The TRS R consists of the following rules: 3.68/1.75 3.68/1.75 sublist_in_ag(X, Y) -> U2_ag(X, Y, append_in_aag(P, X1, Y)) 3.68/1.75 append_in_aag([], Ys, Ys) -> append_out_aag([], Ys, Ys) 3.68/1.75 append_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs)) 3.68/1.75 U1_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) -> append_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.68/1.75 U2_ag(X, Y, append_out_aag(P, X1, Y)) -> U3_ag(X, Y, append_in_aag(X2, X, P)) 3.68/1.75 U3_ag(X, Y, append_out_aag(X2, X, P)) -> sublist_out_ag(X, Y) 3.68/1.75 3.68/1.75 The argument filtering Pi contains the following mapping: 3.68/1.75 sublist_in_ag(x1, x2) = sublist_in_ag(x2) 3.68/1.75 3.68/1.75 U2_ag(x1, x2, x3) = U2_ag(x3) 3.68/1.75 3.68/1.75 append_in_aag(x1, x2, x3) = append_in_aag(x3) 3.68/1.75 3.68/1.75 append_out_aag(x1, x2, x3) = append_out_aag(x1, x2) 3.68/1.75 3.68/1.75 .(x1, x2) = .(x1, x2) 3.68/1.75 3.68/1.75 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 3.68/1.75 3.68/1.75 U3_ag(x1, x2, x3) = U3_ag(x3) 3.68/1.75 3.68/1.75 sublist_out_ag(x1, x2) = sublist_out_ag(x1) 3.68/1.75 3.68/1.75 APPEND_IN_AAG(x1, x2, x3) = APPEND_IN_AAG(x3) 3.68/1.75 3.68/1.75 3.68/1.75 We have to consider all (P,R,Pi)-chains 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (7) UsableRulesProof (EQUIVALENT) 3.68/1.75 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (8) 3.68/1.75 Obligation: 3.68/1.75 Pi DP problem: 3.68/1.75 The TRS P consists of the following rules: 3.68/1.75 3.68/1.75 APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AAG(Xs, Ys, Zs) 3.68/1.75 3.68/1.75 R is empty. 3.68/1.75 The argument filtering Pi contains the following mapping: 3.68/1.75 .(x1, x2) = .(x1, x2) 3.68/1.75 3.68/1.75 APPEND_IN_AAG(x1, x2, x3) = APPEND_IN_AAG(x3) 3.68/1.75 3.68/1.75 3.68/1.75 We have to consider all (P,R,Pi)-chains 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (9) PiDPToQDPProof (SOUND) 3.68/1.75 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (10) 3.68/1.75 Obligation: 3.68/1.75 Q DP problem: 3.68/1.75 The TRS P consists of the following rules: 3.68/1.75 3.68/1.75 APPEND_IN_AAG(.(X, Zs)) -> APPEND_IN_AAG(Zs) 3.68/1.75 3.68/1.75 R is empty. 3.68/1.75 Q is empty. 3.68/1.75 We have to consider all (P,Q,R)-chains. 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (11) QDPSizeChangeProof (EQUIVALENT) 3.68/1.75 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.68/1.75 3.68/1.75 From the DPs we obtained the following set of size-change graphs: 3.68/1.75 *APPEND_IN_AAG(.(X, Zs)) -> APPEND_IN_AAG(Zs) 3.68/1.75 The graph contains the following edges 1 > 1 3.68/1.75 3.68/1.75 3.68/1.75 ---------------------------------------- 3.68/1.75 3.68/1.75 (12) 3.68/1.75 YES 3.90/1.78 EOF